
ABSTRACT

This project aims to analyze and present the discrepancies in

performance of different implementations of neural

networks. A basic feed-forward neural networks, a feed-

forward neural network with convolutional layers and lastly

a recurrent convolutional neural network will be the subjects

of comparison, being used for the in the task of character

recognition. Performance will be measured in terms of

maximum accuracy achieved for the MNIST character

dataset and training speed. To implement these neural

networks, Python and TensorFlow will be utilized. The

collected data will be used as a framework to make

predictions regarding solutions for more elaborate deep

learning utilizations, for instance object recognition. A

conclusion about the potential held by different

implementations for presenting viable solutions to problems

the deep learning research community is currently

concerned with will be presented at the end.

The MNIST Character Set

• Handwritten digits 28x28 pixels

• Utilized for its ease of use due to the dataset’s uniformity

in size and positioning of the characters

• Consists of 60,000 training images and 10,000 test

images
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Recurrent neural network 

• TensorFlow implementation still being worked on

• For the purpose of this project however, the network 

analyzed in “Recurrent Convolutional Neural Network 

for Object Recognition” (Liang, et al.) will be considered

• This network is comprised of one convolutional layer, 

four recurrent convolutional layers, and one Softmax

layer in that order 

• After L1, L3, and L5 a max pooling layer is employed 

• In the recurrent layers consists of and unfolding of the 

input over four steps, each one being influenced by the 

previous through a recurrent input

• The first convolutional layer and the Softmax layer are 

non-recurrent.

Applications for Neural Networks

• Character recognition, especially in datasets as controlled 

as MNIST, is not the most difficult machine learning task

• Other methods, including statistical classifiers (based on 

Bayes decision theory) like a k nearest neighbor classifier 

perform almost equally well on this task [LeCunn et al]

• Neural networks show the best results by minimal 

margins [LeCunn et al] on character recognition, 

however, have proven extremely efficient in more 

complex tasks.

• The reason character recognition has been chosen as a 

baseline for this task is the similarity it has to many of 

these more advanced applications for neural networks, 

including object recognition, scene detection, and even 

gesture of face recognition. 

What the results indicate for the task of scene analysis

• Scene analysis searches to analyze a picture (often of 

outdoor scenes) for certain structures by interpreting low 

level structures

• This is employed in self-driving cars and in even mars 

rovers [Castano et al. 1] and an area of continuing 

research

• Benefits neural networks offer based on the testing 

results:

• Enormous precision, unmatched by most other 

machine learning methods employed for similar tasks, 

which makes them the most reliable solution. 

• The models are very flexible, with a similar 

architectural approach to most problems. Limits are 

mostly set by training data available.

• Different architectures can easily be combined, as with 

the example networks, where one network always 

builds on the previous one and expands their models.

• Potential drawbacks indicated by testing results

• Enormously time consuming to train, with even the 

simplest model taking around 22 minutes to walk 

through one training cycle. This is a result of the 

complex operations performed on the computation 

graph (but certainly also affected by hardware limits). 

While this problem, to an extent, can be resolved 

through more sophisticated hardware (i.e. performing 

vector computations by using V-RAM rather than the 

CPU), some tasks inherently limit the hardware that 

can be used (for instance, room on a mars rover is very 

limited). However, after the training is done, 

classification will be done almost instantaneously.

• Precision depends highly on vast training data. While 

this is less of a problem in the age of ‘big data’, for 

novel tasks, like navigating on Mars’ surface, this can 

present a serious issue.

Contemporary Implementations of Neural Networks for 

Scene Analysis

• ‘Salience-based visual attention model’, proposed by Itti 

et al. is based off of visual systems found in nature and a 

strictly hierarchical [Itti et al. 1254].

• In this model, several different convolutions and 

feature extraction methods are employed to extract 

prominent features in the scene. This is employed in a 

hierarchical structure not unlike that of the visual 

cortex, with basic feature detectors (e.g. for color) on 

the bottom of the hierarchy and more complex 

detectors on the top, culminating in a “salience map” 

that is then analyzed by a winner-takes-all type fully 

connected layer [Itti et al. 1254].

• This combination of more sophisticated convolutions 

culminating in a single feature map is something that 

could easily be achieved by building on the basic code 

provided in the second neural net in this project

• This network, being built for rapid scene analysis, has 

near-human performance in pop-out tasks [Itti et al. 

1258] that require the fast analyzing of a given scene, 

making this type of network especially effective for 

environments that require fast computation like 

navigating traffic as a self-driving car

• ‘Region-based convolutional networks’, as proposed by 

Girshick et al., again work in a hierarchical fashion. 

• These networks first go over an image to segment it in 

a recurrent fashion. Segments are then handled by 

specialized sub-networks to allow for good domain-

specificity [Girshick 2]. 

• While this approach requires very diligent and 

extensive training, it is so far the best performing 

model overall [Girshick 14] and widely employed for 

object recognition tasks that require high accuracy.

Conclusion

This project is still a work in progress. So far this project 

has successfully shown that even very simple neural 

network implementations bear great potential for simple 

classification problems on one hand, and, if correctly 

recombined, for more sophisticated problems on the other 

hand. 

In the future, this project will be expanded to include an 

implementation of the recurrent neural network in 

tensorflow, as well as a recombination of these networks to 

tackle a tougher problem and demonstrate the inherent 

power if neural nets in general.

Convolutional feed-forward neural network

2 convolutional layers added before the fully connected layers

After each layer the images will be down-sampled through 

max pooling with a 2x2 stride

Then one fully connected layer is added that functions like a 

single layer in the first model

For training, the dropout rate will be 25%

Neural Networks Utilized for this Project

Feed-forward neural network

• This network consists of three fully connected layers with

500 nodes each

• The 28x28 images are being resized into flat 784 vector

to then be passed through the computation graph

• In each layer, the vector is multiplied by the weights and

biases unique to the individual nodes.

• The Softmax function is applied and then a ReLU

function acts as threshold for the neurons to fire (except

for the output layer)

• Cross entropy is used to evaluate the loss or cost for each

training iteration

• Cost is then being minimized through a gradient descent

algorithm

Fig.1: MNIST character sample (characters 0-9)

Fig.2: Feed-forward neural network sample 

structure (left to right:     3 input nodes, 3 hidden 

layer nodes, 2 output nodes)

𝒔𝒐𝒇𝒕𝒎𝒂𝒙(𝒙)𝒊 =
𝒆𝒙𝒑(𝒙𝒊)

 𝒋 𝒆𝒙𝒑(𝒙𝒋)

Fig.3:Softmax function being applied to nodes 

to normalize output

Fig.4: Softplus

function (ReLU), 

which serves as 

activation function 

for the networks

Fig.7:Computation graph for convolutional neural network (created with 

TensorBoard)

Fig.9: Achieved accuracy of network 1 over 

9000 iterations (time taken: ~22min)

Fig.8: Network 1 weight distribution in the 

first layer over 9000 iterations

Fig.6: Computation graph for feed-forward neural network (created with 

TensorBoard)
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