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Abstract Analysis of electromagnetic wave scattering by three-dimensional dielectric and magnetic bodies is faced
in various systems and design processes due to its wide range of applications such as analysis of dielectric radar targets,
specific absorption rate (SAR) calculation for the analysis of electromagnetic wave interaction between antenna and
biological body, design of printed antennas on finite dielectric substrates and suppression of undesired wave emission in
high-frequency PCB’s using magnetic absorbers. Two popular numerical techniques for these kinds of problems are
based on either integral equations or partial differential equations. Intégral equations are often numerically solved with
the method of moments (MoM), which is one of the most generally accepted computational techniques for
electromagnetic (EM) problems. The finite difference time domain (FDTD) technique is also one of the most popular
numerical method for solution of partial differential equations appeared in EM area. In this thesis a new approach for
solution of the Tensor-Volume Integral Equation (TVIE) using Galerkin-based MoM for three-dimensional dielectric
bodies is proposed. Three problems of plane wave scattering by a dielectric sphere, a thin-wire antenna in close
proximity to a dielectric body, and printed dipole on finite size dielectric substrate are investigated. In all cases, cubic
modeling is applied and a combination of entire-domain and sub-domain basis functions, including three-dimensional
polynomial functions with fixed or different degrees is utilized for field expansion inside dielectric bodies. Power
polynomial and modified Legendre polynomial are adopted for this purpose, and their properties are discussed over the
proposed mixed-domain MoM formulation. Moreover, an extreme care is exercised in calculation of the principal value
integral for singularity extraction of the dyadic Green’s function. Also, an integral degree reduction method-is applied to
perform more efficient numerical integration. These two tasks cause to-obtain more accurate results through the
Galerkin’s method computations. Numerical examples show that based on the proposed method, a relative fast
algorithm and suitable accuracy are achieved compared with conventional MoM. The accuracy of the proposed method
is verified by comparing it with the Mie theory, conventional MoM, FDTD method and experimental data.

Chapter 1: Introduction
Two popular numerical techniques for analysis of electromagnetic wave scattering by dielectric bodies are based on
either integral equations or partial differential equations. In the integral equation approach, we usually start from
Maxwell equations and apply theory of the Green’s function and electromagnetic equivalence theorems to derive some
integral equations according to the geometry of the problem. The integral equation method is based on the boundary
condition satisfied on the surface of the conducting scatterer or on the condition for the polarization current in dielectric
material. Integral equations (IE) are often numerically solved with the method of moments (MoM), which is one of the
most generally accepted computational techniques for electromagnetic (EM) problems. The finite difference time
domain (FDTD) technique is also one of the most popular numerical method for solution of partial differential
equations appeared in EM: area by which the Maxwell equations are solved directly in time domain. FDTD method can
be used for an open space using the finite number of cells. In this work, we will deal with solution of the corresponding
integral equations based on MoM. There are two general methods to analyze scattenng problems including dielectric
materials using IE method and MoM. The first approach is the exact treatment using the corresponding Green’s function
for a given topology of a scattering problem. Indeed, the exact Green’s function method can be applied for few number
of problems and for arbitrary geometries, the second method, which is free space Green’s function method should be
utilized. In this work, we go for the second method dealing with volume integral equations for three-dimensional
arbitrary dielectric scatterers and we will use the tensor-volume integral equation and try to remove the strong
singularity of the dyadic Green’s function numerically with extreme care during the moment method computations. By




adopting the tensor-volume integral equation, the next step is to discretize that integral equation using MoM. The first
task in MoM is to model the dielectric scatterer using a suitable geometric modeling. In this study, we keep our
attention on the first and the old kind of geometric modeling due to its sirple realization for dielectrics with shape that
is cubic modeling.

Although there are different reports of similar studies; nevertheless, some improvements are introduced in the previous
researches regarding MoM in this thesis. First, similar to the conventional approaches, cubic block modeling and the
tensor-volume integral equation, which includes the free-space dyadic Green’s function, are adopted for a scattering
problem consisting of a three-dimensional dielectric sphere, illuminated by a plane wave. We have chosen the sphere
model to compare the accuracy of the proposed method with the exact solution of Mie scattering. Also, systems of
coupled tensor-volume/line and tensor-volume/surface integral equations are applied for a radiation problem including a
thin-wire antenna adjacent to a dielectric scatterer and printed dipole antenna on dielectric substrate with finite size,
respectively. Finally, Galerkin-based MoM is utilized to solve the integral equations. Symbolically, three main models
that we treat in this research are shown in Figure 1.
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Fig. 1:

(a) Plane wave scattered by dielectric sphere
(b) Dipole antenna in the vicinity of the dielectric box
(c) Printed antenna over the finite dielectric substrate

Chapter 2: Fundamental Concepts for Subdomain MoM Using Polynomials

In this chapter, basic concepts that are applied in this research will be reviewed. The required volume, surface and line
integral equations for this work will be introduced in this part. Also, some notes regarding analytic treatment of the
singular volume integral equation are discussed. General MoM formulation for a three-dimensional scatterer, which has
both dielectric and magnetic properties, will be introduced and the point-matching formulation with a different notation
compared with conventional approaches will be presented. After that, we introduce the power polynomial basis function
and apply it in sub-domain Galerkin’s method. The exact MoM formulation will be derived and the then, numerical
results will be presented. The main integral equation that we deal with in this work is as follows
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where the dyad L is the extracted singularity of the volume integral of dyadic Green’s function (source dyad) in a

form of a surface integral over an arbitrary shape around the field point, JP is the polarization current inside the

dielectric object. G, is the dyadic Green’s function, E' is the imposed incident field, £, isthe complex relative

permittivity of the dielectric scatterer and V is the volume of the dielectric scatterer. It has been proved in the

dissertation that Z— has the following form
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and can be reduced to I /3 inthe case of sphere or square cube modeling for the principal volume. Also, in the case
of dielectric scatterer in the presence of a linear antenna, we have to consider the following system of integral equation
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and for the printed strip antenna over a finite dielectric substrate, the above line integral is transformed to a surface
integral. In this chapter we will show that the point matching solution of (1) is given by
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For more accurate solunon using Galerkin’s based MoM, we apply the fo]lowmg polynomJaI as the basis and test
function
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Power polynomials have the nature of a truncated three-variable Taylor series and behave as entife-domain basis
functions. However, the number of unknowns will be large if polynomial basis function is used in a subdomain
expansion. This drawback is solved in next chapter. When power polynomials even with low degrees are applied for
_ polarization current expansion as the subdomain MoM, more accurate results are achieved compared with conventional
subdomain MoM due to the analytic nature of those kinds of basis functions. It means, whatever the describing function
of the unknown field is, it can be approximately expanded in terms of power polynomial functions, yet with some
truncation error. This property is particularly useful for polarization current expansion procedure in complex dielectric
materials and also in the near field problems because of the non-uniform behavior of fields in such cases. Polynomial
basis functions would be able to well satisfy the boundary conditions at interfaces between adjacent cells of different
- permiftivities inside the scatterer body and prevent the production of fictitious charge density in a homogeneous
dielectric body, whereas they happen in some conventional MoM. In other words, current distribution inside the
dielectric is approximated by three-dimensional polynomials that satisfy the boundary condition for the normal
“component of the electric equivalent displacement vector on surfaces shared by two adjacent blocks. About
conventional sub-domain MoM, particularly pulse basis function with cubic modeling. First of all, when using the cubic
cells, one can not properly model the physics of the smooth curved material bodies. Also, the charge density that is
assocjated with the current must exist only on the surface of the body as inside a-homogeneous dielectric. However,
when we use pulse basis function for the current, this introduces additional surface charge layers, at the interface of the



cells, inside a homogeneous region. It has been reported that this additional charge will affect the accuracy of the
near-field quantities but the far-field quantities are reasonably accurate.
In this chapter we could achive some results with suitable accuracy but with long CPU time. This problem is improved
in the next chapter.
~ Chapter 3: Polynomials in Mixed-domain Galerkin’s Method
Traditionally, subdomain expansions have been favored because of their geometric flexibility, easier evaluation of the
multiple integrals arising in the MoM technique, and ability to handle localized surface (topological, geometrical)
. features in scattering problems or present aperture and feed-point distributions in antenna problems. On the other hand,
the entire-domain representation, leads to multiple integrals that are difficult to evaluate expect for some classes of
geometries in which generating curve is part of a separable coordinate system. The mixed-domain expansion bridges the
limitations of the two approaches outlined. The mixed-domain expansions are overlapped to provide continuity of
currents at the transition from the subdomain to the entire-domain representations. In this work, a mixture of
three-dimensional polynomials with various degrees is applied for field expansion inside the dielectric body. In
mixed-domain expansion method, polynomials with higher degree are used for some macro-blocks located in the
internal part of the dielectric object and polynomials with lower degrees (pulse function as a special case), which
behave as sub-domain basis function are used for smaller blocks at corners and boundaries of the dielectric body to
provide a suitable estimation of dielectric shape Consequently, by doing this procedure, the number of blocks has
decreased and at same time, the high degree polynomials also exist'in the corresponding expansion to improve the
accuracy. Therefore, we expect that both CPU time and accuracy are improved by this actlon in MoM procedure. The:
numerical results confirm this expectation.
Chapter 4: Modified Legendre Polynomlals in Mixed-domain Galerkin’s Method
In this chapter, the power polynomial basis functions are replaced with another polynomial, so called modified
Legendre polynomials. This task is mainly carried out to have an orthogonal basis function improving the
ill-conditioned situation of the occurred problems by decreasing the condition number of the impedance matrix. This
basis function is derived from orthogonal Legendre polynomial, which is medified to impose the continuity condition of
the currents between neighboring elements. This allows the use of high-order basis functions without introducing
ill-conditioning of the resulting MoM matrix. Numerical results confirm that the condition number of the MoM matrix
obtained with this new basis is much lower than power polynomial function proposed in the previous part with the same
accuracy. In fact, complete orthogonality is not possible when the power polynomial is required to satisfy continuity of
the normal component across the element boundaries in sub-sectioning procedure of MoM. In other words, the
modification that is applied to enforce continuity essentially destroys the orthogonality of the expansion. By this
polynomial replacement, we could improve the condition number of the impedance matrix but not very much the level
of the accuracy.
Chapter 5: Conclusions
In this research we performed a fundamental methodology research regarding' MoM for numerical solution of the
tensor-volume integral equation. This kind of integral equation appears in the electromagnetic scattering problems,
which includes finite dielectric materials without closed. form Green’s function.More specifically, in this thesis an
integral equation approach with a new solution method was used to obtain polarization current inside dielectric bodies
which is required for the computation of some field quantities like radar cross-section of dielectric targets, SAR and
antenna characteristics in the vicinity of a dieleciric scatterer or finite size dielectric substrate. Some improvements
. were introduced in the previous researches regarding MoM. The Galerkin-based MoM was utilized to solve the integral
equations. The first difference of this work with the previous ones was the extreme care, which had been exercised in
calculation of the principal value integral for singularity extraction of the dyadic Green’s function. Moreover, an
integral degree reduction method was applied to perform more efficient numerical integration. These two tasks caused
to obtain more accurate results through the Galerkin’s method computations. The second difference of this article with
the previous ones was use of three-dimensional polynomials of two different kinds for field estimation inside the
dielectric body applying a combined subdomain and entire-domain expansion method called mixed-domain moment
method. It was demonstrated that a compromise between accuracy and efficiency was achieved by combining the
entire-domain and subdomain expansion using this kind of polynomial functions with various degrees. Accuracy of the
proposed method was compared with the numerical solutions of different methods such as conventional MoM, point
matching and FDTD. Furthermore, in the case of dielectric sphere, numerical results of the proposed technique were
compared with exact solutions of the Mie theory.
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