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Unmanned and/or autonomous flight has applications in many 
forms of aviation, from remotely controlled predator drones to 
Amazon’s much-discussed drone delivery program. One form of 

autonomous flight involves instructing an aerial vehicle to visually track 
or follow another object. Systems that successfully implement this can 
be used in tasks ranging from serious, such as surveillance for national 
security and search and rescue operations, to frivolous, such as capturing 
the ultimate moving selfie. In this paper, we present a system comprised 
of a small, camera-equipped drone and a ground-based laptop computer 
with software to facilitate control. In two separate though related imple-
mentations, the drone either follows a target object or finds and flies to it.   

Micro Aerial Vehicles (MAVs), popularly known as drones, make 
unmanned flight research safe and inexpensive. While such vehicles are 
typically quite small, often weighing only a few pounds or less, they can 
be very capable. Thanks to high-bandwidth communication, even very 
lightweight drones with little onboard processing capability can undertake 
tasks that require significant computation. For example, in this work, we 
capture a video stream using an onboard camera but send the images over 
Wi-Fi to a laptop for processing. The computer uses the image data to 
determine flight adjustments and communicates them to the drone over 
the same Wi-Fi connection. This allows vehicles lacking sufficient thrust, 
or without connectivity options, to incorporate an onboard computer to 
be used for research projects such as this.

The ability to detect and track objects is an essential step in the 
solutions to many problems. We experience this frequently, perhaps 
daily, without realizing it. Object tracking is incorporated into systems 
designed for tasks such as surveillance, navigation, and search and rescue 
operations. Most of these solutions are completely reliant on the capabil-
ities of a computer system to acquire and track objects, including people, 
in an environment. 

Though there are multiple methods for tracking an object, visual 
tracking is frequently used. One reason for this is likely the affordability 
of cameras capable of capturing the required images and the broad array 
of software available of processing them. Thus, there are many instances 
of tracking systems based on visual data. For example, military and police 
operations may utilize visual tracking systems for surveillance. One such 
system along national borders allows for the detection and tracking of 
people suspected of attempting to enter a country illegally [1].

Tracking systems have also recently become prevalent in search and 
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rescue efforts, allowing ground crews and 
emergency personnel to locate individuals 
who may be in danger. Some applications in 
this domain include the ability for lifeguards 
to detect people who might be drowning [2], 
and for firefighters, using infrared and sonar, 
to locate people trapped in a fire [3].

Visual object detection and tracking is 
one part of a larger area of research known 
as computer vision. Computer vision is the 
study of analyzing, processing, and under-
standing images from the real world in a 
quantifiable manner in order to produce 
numerical or symbolic information [4]. 
Only recently has the technology reached a 
level of accuracy that allows integration into 
systems capable of navigation and control of a 
vehicle. New advancements will, for example, 
make self-driving cars possible by allowing 
computers to map other vehicles on the road 
and monitor their motions relative to the au-
tonomous system.

In this work, we demonstrate a system that 
finds an object in its environment (based on 
color) and either flies to it or follows it. In sub-
sequent sections of this paper, we describe the 
research that was our inspiration and starting 
point, describe our drone and other tools, 
outline our solution to the problem, and discuss 
the results and future directions.

Previous Work
MAVs have been the subject of a large body of 
research in several areas of computer science. 
Given the ease with which cameras can be 
incorporated into small, flying vehicles, it is 
not surprising that many results are related to 
computer vision. Many of these focus on vi-
sion-based autonomous navigation, typically 
in GPS-denied environments such as inside 
buildings [5][6][7][8][9].

Another type of problem involves visually 
tracking an object. This can include tracking 
another drone, a ground-based vehicle, a person, 
or an object [10][11][12][13]. Of particular 
interest to us is the work of Levy [14], in which a 
MAV visually tracks and follows a ball held and 
moved by a person. 

Levy’s system allows a drone to track a solid 

Figure 1: Orientation of the X, Y, and Z axes. This orienta-
tion is standard in aviation at all levels. The arrow indicates the 
front of the vehicle and the orientation of the front-facing camera.

green ball through the environment along two 
axes of motion, X and Z but not Y (see Figure 
1). His system does not seek the target; it must 
be placed in view of the vehicle’s camera. He has 
made his software, which includes a computer 
vision component and a vehicle control 
component, available to the community. The 
vision component is implemented in Python; 
the vehicle control component in C++. We use 
this system as the starting point for our research.

Flight Platform and Tools
Choosing the correct MAV for a project such 
as this is critical. We had a number of require-
ments: suitable for indoor flight, able to hover 
reliably, onboard camera, communication 
channel capable of streaming video, and an API 
that allows complete control via a high-level pro-
gramming language. Total cost of the package 
was an additional constraint. 	

Fortunately, at least one commercial-
ly available drone met all of these criteria, 
including cost [15]. The Parrot A.R. Drone 2.0 
(Figure 2) is a ready-to-fly, lightweight quad-
copter that can be flown indoors and out. It 
is equipped with both forward and downward 
facing cameras, video that can be streamed to 
a smart mobile device or a computer. Though 
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the front camera captures images at 720p, the 
streamed framerate is approximately 30 frames 
per second. Communication is via a Wi-Fi 
access point created by the vehicle. The API 
provided by Parrot supports a C++ interface 
allowing direct control of roll, pitch, yaw and 
thrust, making possible complete control of the 
vehicle via software. 

While relatively small, the A.R. Drone 2.0 is 
equipped with a full array of flight sensors. These 
include a 3 axis accelerometer for detecting 
motion; a 3 axis gyroscope for determining 
attitude; and a 3 axis magnetometer for deter-
mining heading. In addition, a downward facing 
ultrasound unit supplies altitude information 
when the drone is within 5m of the ground while 
a barometer is used for higher flight. Onboard 
processing, for functions such as stabilization, is 
provided by a 32 bit ARM Cortex A8 processor 
running at 1 GHz.

While the MAV is an important component 
of our overall system, other hardware com-
ponents are necessary. First among these is 
a computer capable of processing the video 
stream, determining required navigational 
adjustments, and sending the corresponding 
commands to the vehicle. For this purpose, we 
used a Dell Latitude laptop with Intel Core i7 
processor running at 3 GHz. On the computer, 

Figure 2: The A.R.Drone 2.0 in flight. The front-facing camera, bottom-facing camera and ultra-
sound sensors.

we installed Ubuntu Linux 14.04. The broad 
array of open source software available makes 
Linux a good choice for scientific research. 

One important safety procedure when 
flying a MAV under computer control is to have 
backup control capability. This allows one to 
take control of the vehicle if the software fails 
to function as intended. In our case, because 
our missions are indoors and there is no need 
to return to a takeoff location, this involves only 
instructing the drone to land. For this purpose, 
we use a Microsoft Xbox controller connected 
to the ground-based computer via USB. This 
controller is also used for takeoff and to initiate 
computer control of the MAV.

Computer Vision and Object Detection
Control of the MAV in our system is achieved by 
having the drone visually follow the target object. 
In order to accomplish this, the system must be 
able to distinguish that object from others in the 
environment. This is achieved using color. The 
software examines images looking for a green 
object. Once acquired, the object is tracked as 
long as it is in view. Clearly, this method has 
limitations. For example, outdoors there may 
be numerous green objects and, therefore, the 
drone may attempt to follow a tree. However, as 
we fly indoors and can control the environment, 
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this limitation is not problematic.
In this work, computer vision makes 

possible the detection and identification of the 
object that we want the MAV to track. Several 
methods could be used to achieve this; our 
system uses a form of blob detection that dis-
tinguishes objects by color. For each frame of 
the video stream transmitted by the MAV, the 
computer examines the full color image. The 
image is converted to monochrome by stripping 
away pixels that are not comprised of the pre-
determined color we wish to track, or are not 
within a certain threshold of that color. This 
leaves us with a binary image representing only 
the pixels we do want to track in white and the 
pixels we do not want to track in black. An 
example of the result is seen in the monochrome 
image in Figure 3 below. 

The window on the right shows the video 
feed from the camera on the A.R. Drone 2.0. 
The window on the lower left shows what the 
software sees as green. Shadows and highlights 
prevent the detected object from appearing as a 
complete circle. Note the small patch of green 
detected above and to the right. This is a green 
element on a poster across the hall. Detection of 
such small elements presents problems in some 
cases.

Figure 3: Screen capture of our system in use.

Tracking the object depends, in part, on 
how big it appears to be in the frame. This can 
be used to determine relative distance to the 
object. If the object appears smaller, the MAV 
is farther away; larger indicates that the MAV 
is closer. For this reason, we need an object for 
which the apparent size is constant, independent 
of viewing angle. The apparent surface area of a 
cube, for example, changes with one’s position 
relative to it. A sphere, on the other hand, is 
not subject to this. Regardless of the angle from 
which a sphere is viewed, it appears as a circle 
with the same radius as the sphere, fulfilling our 
requirement. We use a 6” Styrofoam ball painted 
light green and mounted on a wooden rod. This 
provides a very inexpensive and effective target.

The computer vision heavy lifting is 
performed by OpenCV, an open source, widely 
used computer vision library. It provides C++, 
Python, and Java APIs on all major desktop and 
mobile operating systems. We use the Python 
library, as does Levy [14]. Available OpenCV 
functions used in this work allow manipulation 
and analysis of a video frame. These include 
steps for isolating objects of a given color, de-
termining the size (in pixels) of an object, and 
calculating the centroid of an object. Informally, 
the centroid is the arithmetic mean of all points 
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in the object.
In aviation, the axes of 3-dimensional space 

are denoted X, Y, Z. The X and Y axes are orthog-
onal to the Earth’s radius and run East/West and 
North/South respectively. The Z axis is radial. 
Figure 1 provides an illustration of this frame of 
reference. As noted in the Previous Work section, 
Levy [14] provides 2-dimensional control in the 
vertical plane defined by axes X and Z. One goal 
of this work is to introduce control in the Y axis.

 
Depth Perception
Control in the vertical plane [14] is achieved 
by calculating the centroid of the target sphere 
and attempting to keep it centered in the camera 
frame. This is facilitated by sending roll (left/
right) and thrust (up/down) adjustments to the 
vehicle. Our first result provides tracking in the 
Y axis as well. The goal for the third dimension, 
as with the first two, is to maintain, as closely as 
possible, a position relative to the target object. 
Unfortunately, position of the centroid within 
the video frame does not aid in this determina-
tion in the Y dimension because motion along 
that axis does not affect the position of the 
target within the video frame. We must instead 
attempt to determine distance to the target. We 
implement two solutions to this problem. Figure 
4 provides an abstract outline of the software.

Determining distance to an object, a form 
of depth perception, is easily achieved with 
binocular vision. Our brains perform this task 

Figure 4: High-level schematic of the software. This cycle is repeated many 
times per second, allowing fine control of the vehicle’s flight. 

continually. In computer 
vision, use of two cameras 
allows algorithms to leverage 
binocular disparity – the 
offset of features in images 
from cameras that are a small 
distance apart – to calculate 
the distance to target. 
Monocular vision makes this 
calculation impossible as 
there is only a single image 
and, therefore, no disparity. 
Because the A.R. Drone 2.0 
has only a single front-facing 
camera, our algorithm must 
approximate distance using 
monocular vision. To achieve 
this, we do not attempt to 

calculate distance to the object but instead track 
relative distance, determining only if the vehicle 
is moving toward or away from the target.

As soon as the target sphere is in the camera 
frame, OpenCV detects it. Once detected, we 
are able to request its apparent area in pixels. This 
area is stored and serves as a baseline for later 
comparison. In subsequent images, the current 
apparent area of the target is determined. If this 
area is greater than the baseline, the vehicle is 
closer to the target than it was initially. If smaller, 
the vehicle is farther from the target. Correcting 
for this difference is a simple matter of sending a 
command temporarily adjusting the pitch of the 
MAV, moving it slowly forward or backward. 
Calculations, and the resulting adjustments, are 
performed for every video frame. We refer to 
this as the First Area Version. 

Though effective, this solution is not 
perfect. While calculating changes in the area 
of the target object will tell us if the MAV is 
moving closer or further away, it will not allow 
us to determine the actual distance to the object, 
nor more importantly, the rate of change of the 
distance. The latter point is not obvious, but the 
change in apparent area is not linear with change 
in distance. Knowing the rate of change would 
allow for more accurate, variable pitch adjust-
ments which would result in more accurate 
tracking of the target in the Y dimension.

Our second solution, which relies on PID 
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control [16], addresses, to a degree, the diffi-
culty with determining rate of change. PID, an 
acronym for Proportional-Integral-Derivative, 
is a form of feedback control. PID controllers 
are used in many industrial applications and 
are effective at generating a response to a cal-
culated error in the system. The error, however, 
is not a single value. While the current error is 
addressed via the proportional term, past errors 
are addressed via the integral term and the deriv-
ative term attempts to predict future error based 
on the rate of change of the error value. The 
purpose of the integral term is to allow increased 
adjustment if the rate of change in the error is 
insufficient.

The key to achieving good PID control is 
determining effective coefficients for the P, I and 
D terms. This process, known as tuning, can be 
quite challenging and something of an art. A 
system that is not adequately tuned may exhibit 
symptoms such as oscillations, a common issue 
with PID control. Oscillation is caused by 
repeated error corrections that are too large, 
causing the system to overshoot the goal. 

Levy integrated a simple PID control-
ler, written in Python, in his system [14]. We 
have adapted it for the Y dimension and have 
attempted to tune it. However, oscillations are 
sometimes observed as the vehicle approaches 
the target. The effect is most pronounced in the 
X axis. Because the magnitude of the oscillations 
diminishes with time, the system is reasonably 
stable. 

Thus far, the First Area implementation 
performs better than the PID implementation, 
providing a more stable result subject to less 
error along the Y axis. With further tuning of 
the PID coefficients, we expect to improve flight 
characteristics of that version which may allow 
it to outperform the simpler First Area version.

Searching for the Target
In the versions described in the previous section, 
the target object is intentionally placed in the 
camera’s field of view to begin the tracking task. 
While the computer vision algorithms must 
detect the target, there is no need for target ac-
quisition. Here we describe a version that first 
searches for the target and then flies to it. When 

this version is run, after instructing the MAV to 
takeoff, the software sends yaw commands so 
that the vehicle will slowly rotate in the horizon-
tal plane. During this phase, the vision system 
attempts to detect the target object. When the 
target is located, the drone is maneuvered so that 
the object is centered in the camera frame. Once 
this is accomplished, it flies forward toward the 
object. When the target fills a predetermined 
percentage of the video frame, the drone is suf-
ficiently close to the target and stops. At this 
point, it can enter hover mode and await further 
instructions or remain in autopilot mode to 
continue tracking the object if it should move.

One problem encountered with early 
versions of this implementation involved false 
positive identification of the target. In these 
cases, the vision system would sometimes detect 
an extremely small object of similar color, such 
as a detail on a poster on the wall. This did not 
occur in solutions to the first problem we consid-
ered because when running those versions, the 
much larger, intended target was always visible 
to the camera. To address this, we added a check 
to ensure that to be detected as the target, an 
object must exceed a size threshold. Thus we can 
control the environment to ensure the absence 
of sufficiently large objects that might result in 
a false positive while the system ignores small 
objects. With this modification, the system 
performs quite well.

Future Work
The greatest weakness in our system is sensitiv-
ity to light level. In very bright light, the target 
can be blown-out in the image, meaning that it 
appears more as white than its actual color. In 
low light or shadow, the opposite problem may 
occur. In either case, the system may fail to detect 
the target. Another possible outcome is that it is 
detected but only a portion is seen as the target 
color. In this scenario, flight may be affected if 
light conditions change and the portion of the 
target seen as the correct color changes, causing 
changes in the apparent size of the target. This 
can cause greater than desired acceleration and 
an inaccurate distance to the target. This problem 
is likely due to the inexpensive optics in the A.R. 
Drone 2.0 camera. We believe that switching 
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to a different flight platform on which we can 
mount a higher quality camera will address this.

Apart from shortcomings in the project 
so far, there are a number of areas for future 
study. In the future we hope to continue to 
implement a system that can follow more 
complex targets such as people or, perhaps, other 
MAVs. Additionally, we would like to achieve 
autonomous visual navigation of more complex 
environments, such as obstacle courses, without 
following a target object. 

In recent work, we have begun the process 
of porting our system to a different micro aerial 
vehicle: the 3DR Iris+. The Iris+ is a more 
capable vehicle better suited to outdoor flight. 
It does not include a camera; therefore, we have 
mounted a Logitech C920 webcam. This camera 
is of higher quality than that integrated into 
the A.R. Drone 2.0 and in preliminary testing 
appears to have solved the problem of sensitivity 
to light level. We have only recently begun im-
plementing the flight control code for the Iris+ 
and have performed very limited flight testing 
at this time.
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