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ABSTRACT

In this poster, well-posedness in C1(R) (a.k.a.
classical solutions) for a generalized Camassa-
Holm equation (g-kbCH) having (k + 1)-degree
nonlinearities is explored. This result holds for
the Camassa-Holm, the Degasperi-Procesi and
the Novikov equations, which improves upon
earlier results in Sobolev and Besov spaces.

OBJECTIVE
We will show that this family of shallow wa-
ter wave equations is well-posed in the space
of bounded and continuously differentiable func-
tions on the real line, denoted C1, and equipped
with the norm

‖f‖C1 = sup
x∈R
|f(x)|+ sup

x∈R
| d
dx
f(x)|.

THE SEMI-LINEAR SYSTEM


d
dtw = −P1(w, v, q)−R1(w, v, q),
d
dtv = k−b

2 wk−1v2 + b
k+1w

k+1 − P2(w, v, q)−R2(w, v, q),
d
dtq = kwk−1vq,

(1)

with initial data 
w(x, 0) = u0(x)

v(x, 0) = d
dxu0(x)

q(x, 0) = 1,

(2)
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FUTURE RESEARCH
• Classical solutions to the CH2 system and other shallow water wave equations.

• Asymptotic profiles and propagation speed of solutions to other shallow water wave systems.

• Local and global solutions to Camassa-Holm type equations in Besov spaces.
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SUMMARY OF PROOF FOR WELL-POSEDNESS
• We show that the forcing terms from the o.d.e. (1) are locally Lipschitz in the space C1 × C × C.

• This gives us a unique solution (w, v, q) within the time interval t ∈ [−T, T ] where T = min

{
1

2‖u0‖k
C1
, 1

2L

}
,

where L is our Lipschitz constant.

• We construct our solution u(x, t) from our particle trajectories η : R→ R and show uniqueness and continu-
ous dependence on the initial data.

MAIN INGREDIENTS

For k ∈ Z+ and b ∈ R, we consider the Cauchy problem
for the following generalized Camassa-Holm (g-kbCH)
equation{

(1− ∂2
x)∂tu = uk∂3

xu+ buk−1∂xu∂
2
xu− (b+ 1)uk∂xu,

u(x, 0) = u(0), x ∈ R and t ∈ R,

which takes the following non-local form

∂tu+ uk∂xu+ F (u) = 0,

F (u) = ∂x(1− ∂2
x)−1[ b

k + 1
uk+1 +

3k − b
2

uk−1(∂xu)2]
+ (1− ∂2

x)−1[ (k − 1)(b− k)

2
uk−2(∂xu)3].

Theorem 1 (Picard-Lindelöf) Let X be a Banach space.
Suppose that f : X → X is locally Lipschitz on a closed
ball B̄R(u0) ⊂ X where R > 0 and u0 ∈ X . Let

M = sup
u∈B̄R(u0)

‖f(u)‖ <∞.

Then the initial value problem{
u̇ = f(u)

u(0) = u0

has a continuously differentiable local solution u(t). This
solution is defined in the time interval t ∈ (−δ, δ) where
δ = R/M .

METHODOLOGY
We begin by showing how one formally con-
structs an equivelent ODE system to the g-kbCH
equation. Assuming a solution, u, exists and is a
C1 solution of the g-kbCH initial value problem,
we have our trajectories satisfy the ODE{

ηt(x, t) = uk(η(x, t), t)

η(x, 0) = x.

Moreover, the above ODE has a unique solution
η(x, t) which is also continuously differentiable,
therefore, we may define

w(x, t) =u(η(x, t), t), v(x, t) = ux(η(x, t), t),

q(x, t) = ηx(x, t), (3)

and we see that we may easily obtain u(x, t) from
the composition

u = w ◦ η−1.

We will first find a system of equations satisfied
by w, v and q, and then show that this system of
equations is indeed an ODE system, and therefore
the solutions are uniquely defined. Using w, we
will then construct η and u similarly to the above
formal definitions.


