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Introduction 

 

 Traditionally, environmental health analyses of coastal benthic habitats have been 

performed through assessing direct measurements of water, sediment, and tissue samples for 

contaminant content (Fukuyama et al. 2008, Pulkrabová et al. 2007) or physiological responses 

of benthic animals (Bamber and Depledge 1997, Medesani et al. 2011). Many recent studies 

have suggested there are population trends and animal behaviors that can be used to accurately 

determine the health status of benthic communities (Table 1). For example, environments with 

favorable total suspended solids and conductivity exhibit increased diversity and density of 

invertebrate species (Quintana et al. 2010), whereas anthropogenically induced loss of habitat 

heterogeneity causes changes in community structure of benthic macroinvertebrates (Marques et 

al. 2003). Collectively, these data suggest that certain invertebrate species can act as 

bioindicators of environmental health, and the population dynamics of these species can be used 

to determine whether the community is stressed (Miserendino et al. 2008, Wildsmith et al. 2009). 

 

 Of the macroinvertebrates, crabs hold promise as effective bioindicators of a myriad of 

different natural environmental factors. For instance, stenohaline and euryhaline oyster reef crabs 

have been used to monitor fluctuations of salinity in the estuaries (Shirley et al. 2004). Similarly, 

the sand fiddler crab, Uca pugilator, is an excellent bioindicator of temperature changes, as 

elevated temperatures increase mortality and shell blanching (Wilkens and Fingerman 1965). 

 

Crab morphometrics, population dynamics, and behaviors have been used to address 

environmental health. Male and female mud fiddler crabs, Uca pugnax, are significantly larger in 

industrial polluted areas than crabs in a less polluted environment (Bergey and Weis 2008). 

Crabs from these same polluted sites have significantly lower population density, lower 

recruitment, a reduced reproductive season, and lower survivorship of offspring. Whereas 

population dynamics and morphometrics are obvious indicators of environmental health, crab 

behaviors have been used as a subtler indicator. Mangrove fiddler crabs (Uca annulipes and Uca 

inversa) exhibit alterations in feeding behaviors in response to increased sewage dumping 

(Bartolini et al. 2009), Uca pugnax exposed to petroleum avoid burrowing into layers of 

sediment with oil (Culbertson et al. 2007), and Uca pugilator exposed to the pesticide Dimilin 

show reduced ability to avoid predators, construct burrows, and forage (Cunninghan and Myers 

1987). These findings, coupled with the fact that fiddler crabs are relatively easy to study due to 

their high density populations and the short time needed to observe them (Bartolini et al. 2009), 

suggest the use of fiddler crab, Uca spp., morphology, population dynamics, and behavior as a 

way to monitor areas of suspected anthropogenic perturbations. 

 

 This study examined the feasibility of using Uca pugilator as a bioindicator of 

anthropogenic impact on coastal South Carolina. The goal of this study was to examine the 

influence of various human-altered habitats on Uca pugilator. To accomplish this, Uca pugilator 

from three sites of varying human impacts (one reference site, one golf course site, and one 

municipal site) were assessed for population densities, morphological measurements, and 

behaviors. It was hypothesized that different anthropogenic activities would influence Uca 

pugilator population density, morphology, and behaviors. 

 

 



 

 

Table 1. Benthic species used as bioindicators 

Species Common Name Anthropogenic 

activity 

Bioindication Reference 

Chironomus 

spp. 

Non-biting 

midge 

Mining Indicated metallic 

contamination by 

fluctuating asymmetry 

Al-Shami et 

al. 2010 

Various 

macro-

invertebrates 

 Habitat 

alteration/ 

Urbanization 

Indicated sedimentation 

and changes in water 

quality by differences in 

population dynamics 

Miserendino 

et al. 2008; 

Wildsmith et 

al. 2009 

Uca annulipes 

and Uca 

inversa 

Mangrove 

fiddler crabs 

Sewage 

dumping 

Indicated sewage 

contaminants by 

alterations in feeding 

behavior 

Bartolini et 

al. 2009 

Uca pugnax Fiddler crabs Oil spill Indicated petroleum 

contamination by delayed 

responses and lower 

population density 

Culbertson et 

al. 2007 

  Industrial 

pollution 

Indicated industrialization 

by larger body size of 

individuals and lower 

population density in 

urban site than the 

nondeveloped site  

Bergey and 

Weis 2008 

Uca pugilator Sand fiddler 

crabs 

Harmful 

pesticide 

pollution 

Indicated contamination 

with Dimilin pesticide by 

reduced predator 

avoidance, burrow 

construction, and feeding 

abilities 

Cunninghan 

and Myers 

1987 

Scylla serrata Mud crabs Chemical 

pollution 

Indicated presence of 

pollutants by elevation of 

enzyme and urinary 

metabolite biomarkers 

van 

Oosterom  

et al. 2010 

  

 

Materials and Methods 

 

Study Areas 

 

 The study was conducted on three ~ 30 m
2
 sites in Beaufort County, South Carolina from 

June 16 to July 10, 2011. (A video of the sites is available at www.youtube.com/mcbiology.) 

One site was relatively undisturbed and served as the reference site, a second was a municipal 

site directly receiving sewage effluent, and a third site was downstream from a golf course (thus 

receiving fertilizer and pesticides). Each site was divided into three replicated plots of 10 m
2
, 

which were selected based on areas of the highest concentration of observed Uca pugilator. Due 



 

 

to the confined geographic location of this study (Beaufort County, SC), multiple affected golf 

course and municipal sites were not available for examination, and thus the present study suffers 

from pseudoreplication (Hurlbert, 1984). Nonetheless, the three distinct sites were selected to 

ascertain the potential use of Uca spp. as a bioindicator. 

 

  The reference site, Lemon Island Preserve, was virtually undisturbed by human activity. 

The preserve is a large island (approximately 400 acres) of protected estuarine salt marsh on the 

southern side of Broad River in Beaufort, SC (32.371382° N, -80.812937° W). The reference site 

included large salt pans and tidal pools surrounded by Spartina spp. and Juncus spp. Bordering 

this salt marsh were maritime forests. Uca pugilator frequented the tidal pools and salt pans but 

burrowed on the edges of the salt pans adjacent to the Spartina spp. and Juncus spp. Uca minax 

and Uca pugnax were also seen in this site, although Uca pugilator was the most abundant 

species. 

 

 The municipal site (32.357410° N, -80.696090° W) was located on Parris Island, a 

portion of Port Royal. This island houses the U. S. Marine Corps Recruit Depot Parris Island 

training facility. The estuary receives effluent from the Parris Island Wastewater Treatment Plant 

(958 m southeast of the site) and the unlined Causeway Landfill (1.66 km southwest of the site). 

The study site was located in the salt marsh north of Malecon Drive and is within fluvial impact 

of both the water treatment plant and the landfill. The site was notably more turbid than the 

reference site (Table 2). The habitat consisted of a narrow strip of salt pans and tidal pools, 

which quickly transitioned into a moist and muddy field of Spartina spp. Uca pugilator's 

burrows were along this transition. Uca pugnax were observed, but no Uca minax were seen at 

this site. 

 

 The third site, adjacent to an active golf course, was located near Harbour Town, in Sea 

Pines on Hilton Head Island (32.139670° N, -80.808602° W). The study site was along the banks 

of the Heddy Gutter Creek near Deer Island Road Bridge. This creek is the sink of the Harbor 

Town Golf Course, contributing insecticides and fertilizers. Flat banks consisting of mud and 

sand characterized the site. Surrounding these embankments were patches of Spartina spp. 

Burrows of both Uca pugilator and Uca pugnax were found along the borders of these patches. 

As observed in the other two sites, Uca pugilator and Uca pugnax tended to live in separate but 

nearby colonies. Also observed at this site was the blue crab Callinectes sapidus. No Uca minax 

were observed at this site. 

 

Endpoints Measured 

 

 Morphometrics, population density measurements, and behavioral observations were 

taken at every site during low tide. The sites were visited one site per day in rotation for three 

weeks between June 16, 2011 and July 10, 2011, such that each site was visited every three days. 

Environmental conditions were also monitored. A Vernier LabQuest was used to assess the water 

temperature, salinity, and turbidity twice each week at each site. 

 

Similar numbers of Uca pugilator were captured at the reference, municipal, and golf 

course sites (n = 388, 406, and 370 respectively). Crabs were captured from the surface or 



 

 

coaxed from burrows by lightly prodding the back of the burrow with a spade. The crabs were 

collected individually by hand and placed into a 19-L bucket. 

 

Morphological measurements were made using a plastic Vernier Caliper DY-VC01 (+/- 

0.05 mm). Carapace width was measured at the widest point for all crabs. Crab gender was 

determined by abdomen shape. Male fiddler crabs possess the secondary sexual characteristic of 

typically having one large, dominant claw for attracting mates and one subordinate feeding claw. 

Both their dominant and subordinate claws were measured from the tip of the immovable finger 

to the base of the propodus. (The ratio of dominant claw to subordinate claw was used in our 

analysis as an indicator of claw regeneration after predation.) All crabs were then marked on the 

left side of the carapace with a permanent marker so that recaptures could be recorded and 

released near the vicinity of their collection. 

 

The three sites were also surveyed for population density following the methods of 

Bergey and Weis (2008). A 1 m plastic ring was thrown randomly at 30 points per site (10 per 

plot). The number of burrows within the ring were counted and divided by the area to determine 

population density. This was repeated once a week for every site. This method has been 

demonstrated to not damage the community (e.g. in comparison to excavation), and it provides 

for a much more accurate estimation than only counting individuals outside the burrow (Bergey 

and Weis 2008). 

 

 On each sampling day before collecting began, 15 min were spent watching male crabs 

for mating behavior. Care was taken not to disturb crabs, and, as such, the crabs were watched 

from a distance. During mating season, in order to attract female mates and ward off 

conspecifics, male fiddler crabs wave their enlarged dominant claw up and down while just 

outside their burrow. The number of males observed engaging in this courtship behavior was 

recorded. 

 

Statistical Analyses 

 

 Data were analyzed using Minitab 16 Statistical Software. A two-way ANOVA was 

performed on carapace width, claw size ratio, and population density comparing the three sites. 

The software was also used to perform Fisher’s LSD post hoc test on all significant data sets. 

Environmental conditions—temperature, salinity, and turbidity—were compared among the 

three sites by a one-way ANOVA. 

 

Results 

 

The environmental data collected from each site demonstrated some variability among 

sites (Table 2). Salinity was not significantly different among sites (F = 0.39, DF = 41, p = 

0.681). However, temperature was significantly lower at the golf course site (F = 9.68, DF = 41, 

p < 0.001), and turbidity was significantly higher at the municipal site (F = 20.01 DF = 41, p < 

0.001). Recapture rates were extremely low at all sites (reference = 0.0062 + 0.003, municipal = 

0.0083 + 0.008, and golf course = 0.0038 + 0.004).  

 

 



 

 

Table 2. Environmental data from each site 

 

 

Temperature (°C) Salinity (ppt) Turbidity (NTU) 

Site Mean SE Mean SE Mean SE 

Reference 

 

34.26 0.408 28.62 3.150 125.9 24.10 

Municipal 

 

34.81 1.260 30.43 2.760 226.1 32.50 

Golf 

Course 

30.28 0.158 31.57 0.356 23.37 2.700 

 

Figure 1 shows the crab carapace width over time at each of the three sites. Site, day, and 

the interaction of site and day all had significant influence on crab carapace width (p < 0.001, < 

0.001, and 0.005 respectively). Crabs from the golf course site were smaller throughout the time 

period. Population density was not influenced by day of sampling (p = 0.162); however, site (p < 

0.001) and the interaction of site and day (p < 0.001) did influence density, with densities being 

higher at both of the affected sites (Figure 2). Claw size ratio (the ratio between the dominant 

and subordinate claw sizes) was significantly influenced by site, day, and the interaction of site 

and day (p = 0.005, 0.008, and 0.002 respectively), but there was no clear pattern in these 

influences (Figure 3). 

 

 
Figure 1. Mean crab carapace widths (+/- 1 SE) over the duration of the study. Crabs from the 

golf course were smaller throughout the study (p < 0.005). 

 



 

 

 
Figure 2. Mean population densities (+/- 1 SE) of crabs over the duration of the study. 

Throughout the study, densities were higher at both affected sites compared to the reference site 

(p < 0.001).  

 
Figure 3. Mean claw size ratios (+/- 1 SE) of male crabs over the duration of the study. Claw size 

ratio was significantly influenced by site, date, and the interaction of site and date (p < 0.01 in all 

cases), but there was no clear pattern to these influences. 

 

 Behavioral data are shown in Table 3. These data show the proportion of male crabs 

observed engaging in the mating behavior of claw waving. The majority of crabs at the golf 



 

 

course site exhibited this mating behavior, but very few of the crabs at the other sites were 

observed in this activity. 

 

Table 3. Ratio of male crabs observed claw waving to the total number of crabs observed 

 Day of Observation 

Observation 

Duration 

June 19 – 

June 24 

June 25 – 

June 28 

June 30 – 

July 2 

July 3 –  

July 6 

July 7 –  

July 10 

Reference 0/200 3/200 1/100 0/200 1/200 

Municipal 0/200 1/200 1/50 0/200 0/200 

Golf Course 95/100 95/100 95/100 95/100 95/100 

  

Discussion 

 

 These data suggest that fiddler crab morphometrics, population densities, and behaviors 

can be used as indicators of environmental health in coastal South Carolina. Whereas previous 

studies have shown that Uca spp. are influenced negatively by natural disturbances (Brandt et al. 

2010), the present study shows that fiddler crabs may also be influenced by anthropogenic 

disturbances. The hypothesis that anthropogenic activities would influence Uca pugilator was 

supported by data from population density, morphology, and behaviors. 

 

Crabs at the golf course site had a much higher population density and were smaller. It is 

not unreasonable to consider that size of the crabs and population density could be related, as 

Bergey and Weis (2008) found that sites with a smaller population density could reduce the 

amount of competition, allowing for greater growth. There were significant differences in the 

temperatures and turbidities of the sites, so it is possible that these factors influenced the results. 

It is also possible that the cause of these crabs being smaller and in higher population densities is 

human impact. For instance, the golf course runoff—pesticides and fertilizers—could have 

inhibited growth in the crabs. Smaller crabs require less living space and thus have a higher 

population density. An alternative explanation is that some of the contaminants, such as high 

nitrogen fertilizer, caused eutrophication and an overabundance of one of Uca pugilator’s food 

sources, algae. This could have caused the population of Uca pugilator to thrive, and thus over-

populate. The overpopulation could have resulted in increased competition, resulting in a scarcity 

of resources. Future studies should examine whether physical (e.g., temperature or turbidity) or 

anthropogenic factors (e.g., pesticides or fertilizers) influence crab morphology and population 

density. 

 

 The claw size ratio showed no clear patterns. This is not surprising, as U. pugilator often 

shed their dominant claw when threatened and regenerate a new dominant claw in its place 

(Ahmed 1978). Because sampling of the male crabs could have shown a ratio for any stage in 

this growth pattern, and because any of the crabs could have dropped a claw at any date prior, it 

is not surprising that the ratio between dominant and subordinate claw would be random among 

all sites. 

 

 Mating behavior was different among the sites. At the reference and municipal sites, very 

few crabs were observed exhibiting claw waving behavior. However, every day at the golf 

course site, virtually all male crabs were engaged in this behavior. One possible explanation is 



 

 

that the crabs’ increased mating behavior is due to individual pollutants or a mixture of 

fertilizers, herbicides, or insecticides. Another possibility is that the difference is due to the 

increased population density. Pratt et al. (2005) found that the boldness of courting behavior 

(measured by number of reemergences to court and time elapsed until reemergence when crabs 

were purposely startled into their burrows) was significantly higher in populations of higher 

population densities. However, the similarity of population densities between the golf course and 

municipal sites does not support this possibility. Future studies should examine the influence of 

particular pollutants on crab mating behaviors. 

 

The purpose of this study was to test the feasibility of utilizing Uca pugilator as a 

bioindicator of anthropogenic impact in coastal South Carolina. At the three distinctly different 

sites, fiddler crabs had different body size, population density, and behaviors. This study 

illustrates relatively inexpensive, timesaving, low-impact methods to assess estuarine health.  
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