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Organisms have various forms and life-styles, which surprise me with their diversity
and complexity. The traits, without exception, have been developed in the history of evolution
with their roots in a simple common ancestor. This fact makes me conscious of some mechanistic
principles behind the diversification and complexification of life. My major goal as an theoretical
biologist is to formulate this stochastic process. This attempt will be a critical step toward a
comprehensive understanding of “Tree of Life”. I have been working on the problem focusing on
the two properties combined in gene regulatory networks (GRNs)—robustness and evolvability.

Driving force of evolution is genetic variation, the quantity of which in a population
determines the speed and direction of phenotypic evolution (Hansen and Houle 2008; Lande
1976; Lande and Arnold 1983). While adaptive phenotypic evolution depends on heritable
variation in phenotypes, selection on phenotypes exhausts genetic variance, resulting in a limit
to the selection response (Blows and Hoffmann 2005; Blows 2007). The maintenance of genetic
variation has therefore been a major concern in evolutionary biology. Furthermore, concerted
action of multiple genetic modifications are often necessary for organisms to produce a new
complex traits (Monteiro and Nogueira 2010; Muller and Newman 2005). It is a long-disputed
question how organisms could go through useless or deleterious intermediate stages, fitness
valleys (Masel 2006; Stern 2011).

A group of organisms exhibit larger phenotypic variance when they encounter a novel
environment than they usually do (Schlichting 2008; Takahashi 2013). It indicates the existence
of invisible variations, i.e., cryptic genetic variations (CGVs), which would emerge as diverse
phenotypes in response to the changes in environmental or genetic background. Such
mechanisms that enable accumulation and release of CGVs are called evolutionary capacitor and
considered to contribute to macro-evolutionary patterns such as saltatory evolution and
adaptation to novel environments (Gibson and Dworkin 2004; McGuigan and Sgro 2009;
Rutherford and Lindquist 1998; Schlichting 2008; Wagner 2005).

However, it is not always possible for organisms to produce any desired traits with
recurrent mutations; although mutations occur at random positions in a genome, their effects are
not random nor additive, but are constrained and biased by their developmental pathways
(Pigliucci and Preston 2004; Smith et al. 1985; Wagner and Altenberg 1996; Wilkins 2007).

Therefore, assuming the simple allelic effects on phenotypes is insufficient to understand the
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evolution of phenotypic novelty; instead, considering how genetic variations are translated into
phenotypic variations is necessary. A novel phenotype is not necessarily the product of a novel
gene, but rather often emerges when a novel expression pattern is created with existing genes
(Prud’homme et al. 2007; Shubin et al. 1997, 2009). Gene regulatory network (GRN) is in this
sense the key stone of evolutionary novelty. GRNs control the spatial and temporal patterns of
gene expression and are ubiquitously involved in biological processes such as cell differentiation,
environmental responses, pattern formation and circadian rhythm (Davidson 2006; Evans and
Marcus 2006; Farkas et al. 2006). Modularity of GRN enables co-option of a existing functional
unit for another context and provide the useful material for phenotypic novelty (Carroll et al.
2004; Fraser et al. 2009; Masel and Trotter 2010; Monteiro 2012; Wilkins 2007).

Also GRNs are considered to be a candidate of evolutionary capacitor because of their
epistatic behavior and mutational robustness (Siegal and Bergman 2002; Wagner 1996); thus
GRNss can facilitate macro-evolution not only by modularity, but also through cryptic variations.
However, the nature of cryptic variations in GRNSs is poorly understood because most studies on
the evolvability of GRNs hardly paid careful attention to population dynamics (Aldana et al. 2007,
Ciliberti et al. 2007; Draghi and Whitlock 2012; Espinosa-Soto et al. 2011; von Dassow et al. 2000).
CGVs should be accumulated through population genetic processes, such as mutations, genetic
drift, and natural selection. It is therefore essential to understand how GRNs are modified in
evolutionary processes under various conditions and how they can contribute to the phenotypic
evolution through cryptic variations.

Here I constructed an individual-based model of GRNs that controlled gene expression
in response to environmental stimuli. The model enabled the analysis of network properties in
the context of population genetics. It demonstrated that populations of GRNs accumulate and
release cryptic variations, the number of which varies depending on the properties of the GRNs
and the environments to which they have been subjected across the generations. Large and
complex GRNs are preferentially evolved under heterogeneous and fluctuating environment;
such GRNs tend to exhibit higher potential for accumulation and release of CGVs and thus for
new adaptation. These findings indicate that the expansion of GRNs and adaptation to novel
environments are mutually facilitating, resulting in a sustainable sources of evolvability. This

study thus provides important insight into the origins of biological diversity and complexity. The

WataL M. IWASAKI — ABSTRACT 2



progress in genome decoding techniques will soon enable the analyses of GRN structure within
and among populations. For the future, this study provides the theoretical framework to
understand how GRN structure and cryptic variations in a population will behave on an
evolutionary timescale.

An important factor I ignored in this thesis is stochastic noise in gene expression. The
expression of duplicated genes was more diverse than that of singletons (Dong et al. 2011; Ha
et al. 2009; Kliebenstein 2008); individuals with larger GRNs genes may have advantages in
diverse environments because they produce more genetically variable offspring. Therefore,
considering stochastic effects of gene duplication may expand the parameter range in which
environmental fluctuations facilitate the GRN evolvability.

Stochastic noise has importance aside of that aspect; it may facilitate GRN evolution
and phenotypic novelty especially in unicellular organisms through the intermediate state called
phenotypic accommodation (West-Eberhard 2003), partial penetrance (Eldar et al. 2009) or
persistence (Wakamoto et al. 2013). Whereas deterministic dynamics is dominant when the
cellular activity is high, stochastic fluctuation overwhelms deterministic component of the
dynamics when the cellular activity is low under stressful environments (Kashiwagi et al. 2006).
Then cells can find the new optimal phenotypes in stressful environments without guided by
programmed pathway to express them. Genetic basis that more stably express such novel
phenotypes that originally produced with stochasticity or plasticity can evolve and be fixed
afterward (phenotypic assimilation; West-Eberhard 2003). I think it will be a major route for a
horizontally transferred free gene to be integrated as a terminal node of GRNs, and that is why
genes derived from horizontal transfer are abundant in terminal genes, not transcription factors
(Lagomarsino et al. 2007).

This scenario can be extended to multicellular organisms, which have capacity to
produce functional outcomes despite physiological, developmental, environmental change. A
striking example is the evolution of tetrapod forelimb to a bird or bat wing. It needs concerted
changes in bones, muscles, nerves, and vessels, but co-evolution of all these tissues with many
regulatory changes in parallel is not necessary. Each component are developed through
interactions with each other called exploratory processes (Kirschner et al. 2005) or

self-organization (Kauffman 1993). Complex phenotypic changes can be produced with a small
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number of genetic modification in this way. Such “facilitated variations” will be a key player that
literally facilitate the evolution of complex traits (Gerhart and Kirschner 2007).

A theory of macro-evolutionary dynamics should fulfill two requirements. First, the
potential of “facilitated variations” has to be quantified. A possible solution today is to measure
the degree of phenotypic integration (Pigliucci and Preston 2004) by morphometrics, or some
statistics on modularity of a GRN may be good proxies for that. The effect of facilitation can be
examined by phylogenetic analysis. Second, the model must be designed from the viewpoint that
individual GRNs constitute their own environment and thus ecosystem; niche construction
should be included in phenotypes, and phenotypes should affect the evolutionary trajectories of
other genotypes. It can be considered as a kind of game theory, but is different in that a new
theory aims not at reaching an optimum nor equilibrium, but at divergence toward
diversification and complexification. Modeling the interplay between ecology and development

in this manner will lead us to a comprehensive understanding of macro-evolutionary pattern.
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