
INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL
ISSN 1841-9836, 11(6):804-818, December 2016.

The Particle Swarm Optimization Algorithm with Adaptive
Chaos Perturbation

L. Mengxia, L. Ruiquan, D. Yong

Li Mengxia
1. School of Information and Mathematics, Yangtze University
Jingzhou Hubei 434023, China
2. Petroleum Engineering College, Yangtze University
Wuhan Hubei 430100, China
3. The Branch of Key Laboratory of CNPC for Oil and Gas Production, Yangtze University
Wuhan Hubei 430100, China
4. Key Laboratory of Exploration Technologies for Oil and Gas Resources, Yangtze University
Wuhan Hubei 430100, China
limengxia81@126.com

Liao Ruiquan
1. Petroleum Engineering College, Yangtze University
Wuhan Hubei 430100, China
2. The Branch of Key Laboratory of CNPC for Oil and Gas Production, Yangtze University
Wuhan Hubei 430100, China
3. Key Laboratory of Exploration Technologies for Oil and Gas Resources, Yangtze University
Wuhan Hubei 430100, China
liaoruiquan@263.net

Dong Yong*
1. School of Information and Mathematics,Yangtze University
Jingzhou Hubei 434023, China
2. The Branch of Key Laboratory of CNPC for Oil and Gas Production, Yangtze University
Wuhan Hubei 430100, China
3. Key Laboratory of Exploration Technologies for Oil and Gas Resources, Yangtze University
Wuhan Hubei 430100, China
*Corresponding author: dongyong80@126.com

Abstract: Aiming at the two characteristics of premature convergence of parti-
cle swarm optimization that the particle velocity approaches 0 and particle swarm
congregate, this paper learns from the annealing function of the simulated annealing
algorithm and adaptively and dynamically adjusts inertia weights according to the
velocity information of particles to avoid approaching 0 untimely. This paper uses
the good uniformity of Anderson chaotic mapping and performs chaos perturbation
to part of particles based on the information of variance of the population’s fitness
to avoid the untimely aggregation of particle swarm. The numerical simulations of
five test functions are performed and the results are compared with several swarm
intelligence heuristic algorithms. The results shows that the modified algorithm can
keep the population diversity well in the middle stage of the iterative process and it
can improve the mean best of the algorithm and the success rate of search.
Keywords: Particle Swarm Optimization, inertia weight,population diversity, ex-
pected velocity, chaos perturbation.

1 Introduction

Particle swarm optimization (PSO) is an evolutionary algorithms (EAs). It stems from the
simulation of group behavior for birds swarm’s foraging [1, 2]. The parameters and structures of

Copyright © 2006-2016 by CCC Publications

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Agora University Editing House: Journals

https://core.ac.uk/display/236055456?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Particle Swarm Optimization Algorithm with Adaptive Chaos Perturbation 805

PSO are very simple and are apt to be realized. It has parallelism essentially. It has no require-
ment to the properties of objective functions. It has good adaptation and gains wide concern.
It is applied in many fields such as decision feedback equalizer [3, 4], parameter identification [5,
6], power dispatch [7] and mechanical control [8,9], etc.

The particle swarm of the standard PSO is apt to get into local best position and occurs
premature convergence phenomenon. The premature convergence has two characteristics that
the velocity of particle swarm approach 0 and the particles aggregate in a small region.

In order to avoid early approaching to 0 for the velocity of particle swarm, the inertia weights
of standard PSO are modified from fixed values to variation values in the references [10-15], and
the performance of PSO is improved in some extent.

The reference [2] proposed a method that the inertia weight decreases within the increasing
of iterations. It emphasizes the global search in the earlier stage of evolution and intensifies
the local exploitation in the later stage of evolution. But the effect on the complex problem is
not obvious. The reference [10] use the fuzzy controller to adjust the inertia weight, but it is
complex to build the fuzzy rule. The reference [11] proposed the method to set the inertia weight
randomly and obtained a greater effect on pursuing the optimization. The reference [12] used
the chaotic mapping to change the inertia weight and the inertia weight changes according to
the Logistic chaotic mapping. The reference [13, 14] used different exponential forms to build
the setting method of the inertia weight which deceases according to the exponential rule. The
reference [15] uniformly adjusted the inertia weight for the all particles according to the mean
velocity of the particle swarm, and the numerical results showed that it can keep the population
diversity in the middle stage of evolution.

For PSO algorithm, the particle,s position is different. The global best particle and the
personal best particle are in the leading position. In the process of evolution, the other particles
are affected by the two particles and are close to them. The global best particle and the personal
best particle are considered as on group which is called the dominant group. The other particles
are taken as another group which is called the ordinary group. Obviously, it is appropriate to
deal with the dominant group and the ordinary group respectively.

This paper uses the smaller inertia weight to develop the local development capabilities for
the particles in the dominant group. For the particles in the ordinary group, the method in
reference [15] that adjusts the inertia weight based on the mean velocity of swarm is modified
and the inertia weight corresponding to each particle is adjusted respectively according to the
expected values of velocity of particle swarm to avoid the swarm velocity early approaching 0.

For the second characteristics of the premature convergence, the reference [16] considered that
the variance of the population’s fitness can reflect the concentration degree of population. If the
value of is less than some specified threshold, the particle swarm aggregate and the premature
convergence occurs.

σ2 =

n∑
k=1

(
fk − fm

f
)2 (1)

f = max

{
1,max

k
{|fk − favg|}

}
(2)

In Eq. 1 and Eq. 2, fkdenotes the fitness value of the k-th particle.fmdenotes the mean value of
the variance of the population’s fitness. fdenotes the normalized parameter.

The reference [16] didn’t point out how to determine the appropriate threshold value. To
analyze a large number of numerical simulations, the results showed that the variances σ2keep
stabilization and basically equal in the subsequent several evolutionary when the premature
convergence occurs. Hence, this paper compares the corresponding variancesσ2between two

806 L. Mengxia, L. Ruiquan, D. Yong

adjacent iterations. If the change of σ2value is very small, it considers that the premature
convergence occurs and needs to set the position of particle swarm to advance the population
diversity. One common method is to use the Logistic chaotic mapping performing perturbation
to part of particles.

It is easy to verify that the distribution of the chaotic sequence generated by the Logistic
chaotic mapping has the characteristic that is big at both ends and small in the middle and the
uniformity of the chaotic sequence is poor. But the chaotic sequence generated by the Anderson
chaotic mapping has better uniformity. So it is appropriate to use the Anderson chaotic mapping
to perform the perturbation to part of particles.

Based on the above analysis, this paper firstly considers the expected value of population
velocity, and changes the inertia weights respectively corresponding to the particles according
to the category of particles. And then it performs chaos perturbation to part of particles based
on the difference of the variances of the population’s fitness between two adjacent iterations.
Finally, the numerical simulations are performed and the results show that the new algorithm
has higher performance.

2 Standard PSO algorithm

PSO algorithm is simulating the foraging process of the bird flock. Particle denotes the indi-
vidual. It has position and velocity, but has no volume and mass. Multiple particles constitute
the particle swarm which denote the bird flock. The objective function value corresponding to
the particle’s position is called the fitness of the particle which is used to evaluate the good
points and the bad points of the particle. The best position which the individual particle went
through is called the personal previous best position. The personal previous best position of the
kth particle is denoted by pk.The previous best position of the particle swarm is called the swarm
best position which is denoted by pg.The evolution of the particle is realized through tracing the
personal previous best position and swarm best position.

The evolution of standard PSO algorithm is divided into the evolution of the velocity and
the evolution of the position. The evolution equations are shown in Eq. 3 and Eq. 4 [1, 2] as
below.

vt+1
k = ω × vtk + c1 × r1 × (pk − xtk) + c2 × r2 × (pg − xtk) (3)

xt+1
k = xtk + vt+1

k (4)

In Eq. 3 and Eq. 4, vtkdenotes the velocity of the kth particle in the tth evolution. xtkdenotes
the position of the kth particle in the tth evolution. r1 and r2 denote the independent random
numbers on the interval [0, 1]. c1 and c2 denote the learning factors which generally equal 2. ω
denotes the inertia weight which takes fixed value between 0.1 and 0.9.

The value ranges of the particle’s velocity and position are usually restricted. If the maximum
of the position is determined by xmax, the maximum of the velocity is vmax = k × xmax for
0.1 ≤ k ≤ 1.0 [16].

3 Modification of the inertia weight

The mean velocity vta of the particle swarm in the kth evolution is denoted by Eq. 5.

vta = (
n∑
i=1

m∑
k=1

∣∣∣v(t)
k,i

∣∣∣)/(n×m) (5)

The Particle Swarm Optimization Algorithm with Adaptive Chaos Perturbation 807

n is the dimension of the problem which is the dimension of the search space. m is the total
number of the particles. v(t)

k,i is the velocity of the kth particle in the ith dimensionality as the

particle experiences the tth evolution. v(t)
a denotes the evolution amplitude of the particle swarm

or the evolution step. The larger the value of v(t)
a is, the larger the evolution step is. It means

that the search capability of the particle swarm is great. If the value of v(t)
a is small, it means that

the search of particle swarm focuses on the local exploitation. In the earlier stage of evolution,
the global search capability is expected to be stronger. It means that the value of v(t)

a is expected
to be larger. In the later stage of the evolution, the capability of local exploitation is expected
to be intensified to increase the capability of finding the maximal solution by the algorithm, and
the value of v(t)

a is expected to be smaller.
This paper firstly introduce the expected value of the mean value of particle swarm in the

evolution which is shown in Eq. 6 as follow.

vte = v0 × exp(−(λ1 × t/Tmax)λ2) (6)

In Eq. 6, v0 denotes the mean velocity of the initial particle swarm. λ1 and λ2 are adjustable
parameters which is to control the change rule of the expected value vte of the particle swarm
shown in Figure 1. Tmax denotes the maximal evolution generations.

Figure 1: The change rule of vte under different parameters

From Figure 1, it can be seen that the value of vte as λ1 = 1.8 and λ2 = 5 is suitable to be
the expected mean velocity of particle swarm. In this case, in the earlier stage of evolution, the
expected value of mean velocity of particle swarm is larger and it helps to keep the global search
capability. In the last stage of evolution, the expected value of mean velocity approaches 0 and
it helps to improve the local exploitation capability.

ω0 denotes the initial inertia weight. vte denotes the actual velocity of the kth particle. ωtk
denotes the inertia weight of the kth particle in the tth evolution. ωt+1

k denotes the inertia weight
of the kth particle in the (t+ 1)th evolution. ωt+1

k is determined by the following rule.
(1) If the particle is the better particle, ωt+1

k =ωmin;
(2) If the particle is the trivial particle, then, define

v
(t)
k,a = (

n∑
i=1

∣∣∣v(t)
k,i

∣∣∣)/n (7)

808 L. Mengxia, L. Ruiquan, D. Yong

there are three cases to be considered as below.
(2.1) If v(t)

k,a > v
(t)
e ,then, ω(t+1)

k = ω
(t)
k × p1.

(2.2) If v(t)
k,a < v

(t)
e ,then, ω(t+1)

k = ω
(t)
k × p2.

(2.3) if v(t)
k,a = v

(t)
e ,then, ω(t+1)

k = ω
(t)
k .

In the above process, p1 and p2 are constants with 0 < p1 < 1 and p2 > 1. It also can take
p1 = 1/p2. If ω

(t+1)
k > ωmax, p2 is taken to be 1.05 according to the reference [8] or is determined

by the experiment. Then taking ω(t+1)
k = ωmax. ωmax and ωmin denote the upper limit and

lower limit of the inertia weight, respectively.

4 Anderson chaotic mapping

This paper uses the rule that the difference of σ2 between the adjacent evolution process
is less than some given value se to recognize the premature convergence, for example, taking
se = 10−3. If there exists premature convergence, then it needs to perform the perturbation for
the current particle to improve the population diversity.

Generally, the researchers use the Logistic chaotic mapping to perform perturbation [18-21],
but the sequence generated by the Logistic chaotic mapping has bad uniformity [22]. The Logistic
chaotic mapping is shown in Eq. 8 as below.

yn+1 = µ× yn × (1− yn) (8)

When µ = 4, Eq. 8 will generate the chaotic sequence whose value is taken between 0 and 1.
This paper introduce Anderson chaotic mapping to generate chaotic sequence which has good

uniformity [23]. Anderson chaotic mapping is shown in Eq. 9 as below.

yi = (Ln(xi + 1/2) + Ln(2)))/ln(3) (9)

where,

xn+1 =

{
3
2 × xn + 1/4 0 6 xn <

1
2

1
2 × xn − 1/4 1

2 6 xn < 1
(n = 1, 2, ...) (10)

The sequence yi is uniform distribution on (0, 1).
In order to compare the uniformity of the two chaotic mapping, the initial value is taken

arbitrarily. And then iterate 1000 times according to Eq. 8 and Eq. 9. The interval [0, 1] is
divided into 10 subintervals with equal width. The frequency that the elements of the chaotic
sequence locate at each subinterval is considered and shown in Figure 2.

If the other initials are taken except that the value of 0.25 and 0.75 cannot be taken because
of the occurring of fixed points for Logistic chaotic mapping. The obtained frequency graph is
similar to Figure 2. This means that Anderson chaotic mapping has stable uniformity.

5 Modified PSO algorithm

The objective function is expressed in Eq. 11.

minf(x) = f(x1, x2, ..., xn) (11)

Where, n is the dimension of the problem.

The Particle Swarm Optimization Algorithm with Adaptive Chaos Perturbation 809

0 0.5 1
0

200

400

600

800

1000

1200

Fr
eq

ue
nc

y
hi

st
og

ra
m

 fr
om

 A
nd

er
so

n

Subinterval
0 0.5 1

0

500

1000

1500

2000

2500

Fr
eq

ue
nc

y
hi

st
og

ra
m

 fr
om

 L
og

is
tic

Subinterval

Figure 2: Comparison of the uniformity between two chaotic mappings

5.1 Initial particle swarm generated by the chaotic mapping

Firstly, one m-dimensional vector is generated randomly and its element is between 0 and 1.
Secondly, each element is taken as initial value. And using Anderson chaotic mapping iterates
n− 1 times to generate ms n-dimensional vector which are denoted by y1, y2, ..., ym. Finally, the
value range of element of yi for i = 1, 2, ...,m is transformed to the search space from the interval
[0, 1].

Suppose y ∈ [a, b],then x ∈ [c, d]. And the relation between x and y is shown in Eq. 12.

x = c+
y − a
b− a (d− c) (12)

The initialization of the velocity can be finished analogously.

5.2 Modification for evolution process

In Figure.3, after finishing the tth evolution process, the variance σ2(t) is obtained by cal-
culating the variance of the population’s fitness. And then it is compared with the variance
σ2(t− 1) in the previous evolution process. If

∣∣σ2(t)− σ2(t− 1)
∣∣ 6 se, the particles are ordered

from small to large according to the fitness value. The particles which account for 61.8% of total
particle number after ordering are performed chaotic perturbation. The number of foregoing
particles is denoted by S. That is, the positions of Ss particles are initialized again.

5.3 Modified PSO algorithm

Step 1 Give the initial value of the inertia weight ω0 = ωmax = 0.95,ωmin = 0.05 learn-
ing factors c1 = c2 = 2, the number of particles m = 40, the maximal evolution generations
Tmax = 10000, the maximal evolution generations n, the control value for starting the chaotic
perturbation se = 10−3, the search space [xmin, xmax] and the upper limit of velocity vmax.

step 2 Randomly generate a m-dimensional particle on [0, 1].Use the Anderson mapping
shown in Eq. 9 and Eq. 10 to get ms n-dimensional particles. The ms n-dimensional particles
which are transformed into the search space based on Eq. 12 are denoted by xi for i = 1, 2, ...,m.

810 L. Mengxia, L. Ruiquan, D. Yong

Figure 3: The flow chart of chaos perturbation

The Particle Swarm Optimization Algorithm with Adaptive Chaos Perturbation 811

Similarly, generate the particle’s velocity. Take vmax = xmax. Let the evolution generations be
0, and then turn to step 3.

step 3 Calculate the fitness of each particle and the variance of the population’s fitness.
Determine the swarm best position pg, the personal previous best position pi for i = 1, 2, ...,m.
Turn to step 4.

Step 4 Adjust ω according to the contents in section 3. Evolve the particle’s velocity and
position according to Eq. 3 and Eq. 4. And then add one to the evolution generations. Update
pg and pi.Calculate the variance of current population’s fitness. Compare the calculating variance
with the variance of fitness value before evolution. If the difference is less than se, turn to step
5. Otherwise, turn to step 6.

Step 5 Determine the number of particles which need to be performed perturbation, S.
Use Anderson mapping to generate Ss particles to replace the Ss particles whose fitness value
order are back. Then turn to step 6.

Step 6 If the evolution generations is less than Tmax, turn to step 4. Otherwise, turn to
step 7.

Step 7 Output the results: pg and f(pg).

6 Numerical simulation

In order to test the performance of the PSO algorithm with chaos perturbation proposed in
this paper, this paper selects five benchmark function shown in Table 1.

Table 1: Benchmark functions and part parameters

Function Dimensionality Search space Optimal value Convergence
criteria

Sphere Function 30 [−100, 100]n 0 0.01
Rosenbrock’s Func-
tion

30 [−30, 30]n 0 0.01

Rastrigin’s Function 30 [−5.12, 5.12]n 0 0.01
Griewanks’s Func-
tion

30 [−600, 600]n 0 0.01

Schwefel Function 30 [−100, 100]2 0 0.01

Table 1 gives some parameters of the algorithm, such as dimensionality, search space, theoret-
ical optimum and convergence criteria. The theoretical optimums of these benchmark functions
are all zeros. Because the theoretical optimum is difficult to obtained, so this paper uses the
convergence criteria to determine the astringency of the algorithm. The convergence criteria
equals to 0.01.

Aiming at the above benchmark functions, this paper compares the optimal performance of
the following algorithms with each other: the algorithm ACPSO proposed in this paper, the
standard PSO algorithm denoted by SPSO, the algorithm in the reference [12] denoted by Ref.
12, the algorithm in the reference [15] denoted by Ref. 15, and the algorithm in the reference [20]
denoted by Ref. 20. The algorithm ACPSO proposed in this paper tests the number of two kinds
of particles. The SPSO algorithm is shown in the reference [2]. The algorithm Ref. 12 generates
the random number of the velocity equation for the SPSO algorithm by using Logistic chaos.
The algorithm Ref. 15 uniformly adjusts the inertia weight according to the average velocity of
the all particles. The algorithm Ref. 20 is the firefly algorithm. For Ref. 20, it takes the number

812 L. Mengxia, L. Ruiquan, D. Yong

of particles 40, the evolution generations 1000, initial attractiveness 0.728, the initial absorption
coefficient 0.345 and the randomization parameter 0.25. Using the parameters shown in Table
2, each algorithm is run 20 times respectively.

Table 2: The parameters for each algorithm

Algorithm Number of
particles

Evolution
generations

Initial ω p2 se Chaos
update rate

r1 r2

ACPSO 40 1000 0.95 1.05 1 61.8% / /
ACPSO 400 1000 0.95 1.05 1 61.8% / /
SPSO 40 1000 0.7298 / / / / /
Ref. 12 40 1000 0.7298 / / / 0.2 0.8
Ref. 15 40 1000 3 1.05 / / / /

The performance of each algorithm is compared by adapting the following criterions. (1)
The convergence rate Ir. It is the ratio of running time as achieving the convergence criteria to
the total running time 20.

(2) Optimal value fbest. It is the minimum value of the results in 20 times run.
(3) The mean optimal value denoted by fav. It is defined by the arithmetic mean value of

the optimal fitness in 20 times run.
(4) Mean squared deviation denoted by std. It is the mean squared deviation for some

algorithm in 20 times run.
(5) Elapsed time. It is the consuming time for each run.
(6) The schematic diagram of mean convergence. Firstly the evolution generations and the

corresponding optimal value are extracted. And then take the arithmetic mean value for the
optimal value in 20 times run for each evolution generation. Finally, draw the graph by taking
the evolution generations and the mean optimal value of each evolution generation to be the
abscissa and ordinate respectively.

(7) The schematic diagram of optimal convergence. Aiming at 20 times run, take the
running process corresponding the optimal result. And draw the graph by taking the evolution
generations and the optimal value of each evolution generation to be the abscissa and ordinate,
respectively.

It gives the result respectively for each benchmark function from Table 3 to Table 7 as follow.

Table 3: The result of Sphere Function

Algorithm Ir /% fbest fav std Elapsed
time /s

ACPSO 0 0.7204 2.68 1.11 1.66
ACPSO 1 7.83e− 13 6.60e− 12 4.77 15.23
SPSO 0 2164.84 6705.48 2772.00 0.97
Ref. 12 0 22237.05 55486.04 14306.06 0.97
Ref. 15 0 41.8138 438.52 448.86 1.14
Ref. 20 1 0.00174 0.00268 0.000495 5.12

The benchmark functions adapted in this paper are all high-dimensional functions of 30-
dimension. From Figure 4 to Figure 13, it can be seen that the ACPSO algorithm proposed
in this paper has better search capability, especially in the earlier stage of the evolution. From
Table 3 to 7, it can be seen that the ACPSO algorithm shows better stability. On the whole,

The Particle Swarm Optimization Algorithm with Adaptive Chaos Perturbation 813

0 200 400 600 800 1000
−12

−10

−8

−6

−4

−2

0

2

4

6

8

Generations

lo
g 10

fit
ne

ss

ACPSO
40

PSO

Ref. 12

Ref.15

Ref.20

ACPSO
400

Figure 4: Average evolutionary process for Sphere function

0 200 400 600 800 1000
−12

−10

−8

−6

−4

−2

0

2

4

6

8

Generations

lo
g 10

fit
ne

ss

ACPSO
40

PSO

Ref. 12

Ref.15

Ref.20

ACPSO
400

Figure 5: Best evolutionary process for Sphere function

Table 4: The result of Rosenbrock’s Function

Algorithm Ir/% fbest fav std Elapsed
time s

ACPSO 0 38.10 174.31 128.14 1.64
ACPSO 1 16.90 23.19 10.99 14.74
SPSO 0 6.65e+ 5 3.79e+ 6 3.16e+ 6 0.90
Ref. 12 0 1.40e+ 8 2.26e+ 8 4.57e+ 7 1.03
Ref. 15 0 138.44 3.75e+ 3 4.86e+ 3 1.05
Ref. 20 1 28.07 1.76e+ 5 7.00e+ 5 5.27

Table 5: The result of Rastrigin’s Function

Algorithm Ir/% fbest fav std Elapsed
time s

ACPSO 0 44.32 105.88 39.94 1.63
ACPSO 0 29.85 80.35 29.34 15.05
SPSO 0 205.15 262.46 39.06 0.93
Ref. 12 0 304.99 392.91 41.42 0.94
Ref. 15 0 29.01 62.14 24.09 1.09
Ref. 20 0 17.39 34.47 9.39 4.96

814 L. Mengxia, L. Ruiquan, D. Yong

 ! " # $ %

!

"

#

$

%

%!

%"

&'(')*+,-(.

/-
0 %

1,+
('

..

23456
"

456

7'189%!

7'18%:

7'18!

23456
"

Figure 6: Average evolutionary process for Rosenbrock’s function

 ! " # $ %

!

"

#

$

%

%!

%"

&'(')*+,-(.

/-
0 %

1,+
('

..

23456
"

456

7'189%!

7'18%:

7'18!

23456
"

Figure 7: Best evolutionary process for Rosenbrock’s function

 ! " # $ %
%&'

!

!&'

(

(&'

"

"&'

'

'&'

#

#&'

)*+*,-./0+1

20
3 %

4/.
+*

11

56789
"

789

:*4&;%!

:*4&%'

:*4&!

56789
"

Figure 8: Average evolutionary process for Rastrigin’s function

The Particle Swarm Optimization Algorithm with Adaptive Chaos Perturbation 815

 ! " # $ %
%

!

&

"

'

#

(

)*+*,-./0+1

20
3 %

4/.
+*

11

56789
"

789

:*4;<%!

:*4;%'

:*4;!

56789
"

Figure 9: Best evolutionary process for Rastrigin’s function

Table 6: The result of Griewanks’s Function

Algorithm Ir/% fbest fav std Elapsed
time s

ACPSO 0 0.7952 0.9675 0.0068 1.87
ACPSO 35 5.66e− 10 0.0214 0.0169 19.52
SPSO 0 19.303 51.182 18.643 1.10
Ref. 12 0 278.85 527.87 116.75 1.11
Ref. 15 0 1.2985 6.2802 5.9002 1.36
Ref. 20 85 1.04e− 4 0.0041 0.0082 6.21

 ! " # $ %
&'

&!

&%

%

!

'

()*)+,-./*0

1/
2 %

3.-
*)

00

45678
"

678

9)3:;%!

9)3:%<

9)3:!

45678
"

Figure 10: Average evolutionary process for Griewanks’s function

Table 7: The result of Griewanks’s Function

Algorithm Ir/% fbest fav std Elapsed
time s

ACPSO 0 1.0486 2.0469 0.6447 1.84
ACPSO 1 0.00038 0.00038 1.91e− 08 17.08
SPSO 0 207.8326 453.7501 130.34 1.10
Ref. 12 0 2014.7359 3771.971 852.53 1.11
Ref. 15 0 12.2179 44.2053 32.499 1.27
Ref. 20 0 4621.4715 6014.141 767.825 5.38

816 L. Mengxia, L. Ruiquan, D. Yong

 ! " # $ %
&"

&'

&!

&%

%

!

'

()*)+,-./*0

1/
2 %

3.-
*)

00

45678
"

678

9)3:;%!

9)3:%<

9)3:!

45678
"

Figure 11: Best evolutionary process for Griewanks’s function

 ! " # $ %
&"

&'

&!

&%

%

!

'

"

(

)*+*,-./0+1

20
3 %

4/.
+*

11

56789
"

789

:*4;<%!

:*4;%(

:*4;!

56789
"

Figure 12: Average evolutionary process for Schwefel function

 ! " # $ %
&"

&'

&!

&%

%

!

'

"

(

)*+*,-./0+1

20
3 %

4/.
+*

11

56789
"

789

:*4;<%!

:*4;%(

:*4;!

56789
"

Figure 13: Best evolutionary process for Schwefel function

The Particle Swarm Optimization Algorithm with Adaptive Chaos Perturbation 817

the search capability of the algorithm proposed in this paper is superior to the standard PSO
algorithm and is better than the algorithm Ref. 20 for part benchmark functions.

Conclusions

(1) The algorithm proposed in this paper introduces the Anderson chaotic mapping to
realize the initial of the particle swarm and the perturbation of part particles. It also introduces
the concept of the expected mean velocity of particle swarm to realize the adjustment of the
inertia weight of particles.

(2) The results of Benchmark functions show that the algorithm proposed in this paper
reflects preferable search ability.

(3) The analyses of the mean optimal fitness and evolution generations show that the
algorithm of this paper keeps the population diversity well in the middle stage of the evolution
and it has stronger local search ability in the later stage of evolution.

Acknowledgment

The authors will thank people in the Branch of Key Laboratory of CNPC for Oil and Gas
Production and Key Laboratory of Exploration Technologies for Oil and Gas Resources for their
great help. This paper is supported by Educational Commission of Hubei Province of China
(B2015449) and National Natural Science Foundation of China (61572084 and 51504038).

Bibliography

[1] Kennedy J, Eberhart R,(1995); Particle swarm optimization. IEEE Int. Conf. on Neural
Networks. Piscataway, NJ. IEEE Service Center, 1942-1948.

[2] Shi Y, Eberhart R C,(1998); A modified particle swarm optimizer. IEEE Int. Conf. on
Evolutionary Computation. Piscataway, NJ. IEEE Service Center, 69-73.

[3] Naveed Iqbal, Azzedine Zerguine,Naofal Al-Dhahir,(2014); Decision Feedback Equal-
ization using Particle Swarm Optimization. Signal Processing, 108:1-12, DOI:
10.1016/j.sigpro.2014.07.030

[4] Manish Mandloi, Vimal Bhatia,(2016); A low-complexity hybrid algorithm based on particle
swarm and ant colony optimization for large-MIMO detection. Signal Processing, 50:66-74.
DOI: 10.1016/j.eswa.2015.12.008

[5] Md Ashiqur Rahmana,Sohel Anwara,Afshin Izadian,(2016); Electrochemical model parame-
ter identification of a lithium-ion battery using particle swarm optimization method.Journal
of Power Sources.307, 86-97. DOI: 10.1016/j.jpowsour.2015.12.083

[6] Razieh Sheikhpour,Mehdi Agha Sarrama,Robab Sheikhpour,(2016); Particle swarm opti-
mization for bandwidth determination and feature selection of kernel density estimation
based classifiers in diagnosis of breast cancer.Applied Soft Computing, 40113-131. DOI:
10.1016/j.asoc.2015.10.005

[7] Yu-Shan Cheng,Man-Tsai Chuang,Yi-Hua Liu,Shun-Chung Wang,Zong-Zhen Yang,(2016);
A particle swarm optimization based power dispatch algorithm with roulette wheel
re-distribution mechanism for equality constraint.Renewable Energ, 88: 58-72, DOI:
10.1016/j.renene.2015.11.023.

818 L. Mengxia, L. Ruiquan, D. Yong

[8] Migdat Hodzic, Li-Chou Tai (2016); Grey Predictor reference model for assisting par-
ticle swarm optimization for wind turbine contro.Renewable Energ, 86: 251-256, DOI:
10.1016/j.renene.2015.08.001.

[9] Tao Lin, Peng Wu, Fengmei Gao, Yi Yu, Linhong Wang (2016); Study on SVM tempera-
ture compensation of liquid ammonia volumetric flowmeter based on variable weight PSO,
International Journal of Heat and Technology , 33(2):151-156, DOI: 10.18280/ijht.330224.

[10] Shi Y. and Eberhart, R.C. (2001); Fuzzy adaptive particle swarm optimization, IEEE Int.
Conf. on Evolutionary Computation.Seoul, Korea, 101-106.

[11] Zhang L., Yu H., Hu S. (2003); A new approach to improve particle swarm optimization,
Genetic and Evolutionary Computation Conference 2003 .Chicago, IL, USA, 134-142.

[12] Jiang C. W., Etorre B. (2005); A hybrid method of chaotic particle swarm optimization and
linear interior for reactive power optimization, Mathematics and Computers in Simulation,
68:57-65.

[13] Chen G.M., Huang X.B.,Jia J Y, Min Z.F.(2006); Natural exponential inertia weight strategy
in particle swarm optimization.World Congress on Intelligent Control & Automation, 1:
3672-3675.

[14] Jiao B., Lian Z.G.,Gu X.S.(2008); A dynamic inertia weight particle swarm optimization
algorithm.Chaos Solitons & Fractals, 37(3): 698-705.

[15] Zhang Dingxue, Liao Ruiquan,(2009); Adaptive particle swarm optimization al-
gorithm based on population velocity.Control and Decision, 24(8): 1257-1265,
DOI:10.13195/j.cd.2009.08.139.zhangdx.025

[16] Lv Zhensu, Hou Zhirong (2004); Particle Swarm Optimization with Adaptive Mutation.Acta
Electronica sinica, 32(3):416-420.

[17] Zeng Jianchao, Cui Zhihua (2012); Nature Inspired Computation, Beijing, National Defense
Industry Press, 252-256.

[18] Kazem A., Sharifi E., Hussain F.K., Saberi M., Hussain O.K. (2013); Support vector re-
gression with chaos-based firefly algorithm for stock market price forecasting, Applied Soft
Computing, 13: 947-958. DOI: http://dx.doi.org/10.1016/j.asoc.2012.09.024.

[19] LIU Huaying, LIN Yue (2006); A Hybrid Particle Swarm Optimization Based on Chaos
Strategy to Handle Local Convergence, Computer Engineering and Applications, 42(13):77-
79.

[20] Yang X.S.(2011); Chaos-enhanced firefly algorithm with automatic parameter tuning, In-
ternational Journal of Swarm Intelligence Research, 2: 1-11.

[21] Lu Y., Liu X.(2011); A new population migration algorithm based on the chaos theory,
IEEE 2nd International Symposium on Intelligence Information Processing and Trusted
Computing, 147-150, DOI: 10.1109/IPTC.2011.44

[22] LV Jinhu, LU Junan, Chen Shihua,(2002); Chaotic time series analysis and its application,
Wuhan: Wuhan University press, 87-89.

[23] R. Anderson (1996); Industrial Cryptography, IEEE REV., 118-120.

