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Abstract 

     A rocking ratchet phenomenon of directed transport is demonstrated. This has been realised with cold 

rubidium atoms in one dimensional dissipative optical lattice with lin⊥lin configuration. The temperature 

of the cold atomic cloud is measured by time of flight technique with 29𝜇𝑘. The atom number trapped 

in the MOT is determined using absorption imaging to be 5.6 × 106 atoms. The results show the 

influence of the atomic current amplitude by varying the lattice beams parameters. One of the lattice 

beams is modulated with different modulation depths. It shows that highest modulation values have a 

higher atomic current. The current amplitude is also depending on the modulation frequencies. The 

results indicate the possibility of existence the vibrational frequency. The harmonic amplitude ratio 

varied and found the ratchet current is growing with increasing the amplitude of one of the lattice beams 

and at a certain value goes down. 
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1. Introduction 

Transport phenomena are a very interesting topic in many fields of science like 

physics, chemistry, and biology [1]. Brownian motors, or ratchets, are microscopic 

devices that turn random fluctuations into directed motion in the absence of a bias force. 

Ratchets are useful for the understanding of how nanoscale motors can work under the 

influence of substantial thermal motion.  Ratchets are an intriguing phenomenon that 

has attracted the attention of the scientific community for their numerous applications, 

such as electron pumps [2] or particle separation devices [3]. The archetypal of a ratchet 

device is the rocking ratchet or general AC driven ratchets. Rocking ratchets can be 

realised by using either an asymmetric spatial potential and zero mean symmetric 

driving force, or a symmetric spatial potential and a temporal asymmetric driving force, 

which is used in this work.  The principle of a rocking ratchet is a spatially symmetric 

potential is rocked, or tilted, by a time asymmetric zero average force. This force drives 

the system out of equilibrium and breaks the system symmetry. Therefore, a directed 

atomic current can be generated [4,5].   

The rocking ratchet scheme considered  is based on a temporally asymmetric bi-

harmonic drive and a spatially symmetric periodic potential. The underlying 

mechanism of rectification is the so-called Harmonic Mixing [6]. The anharmonicity of 
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the optical potential causes the medium to be nonlinear. Thus, it becomes able to mix 

the harmonics with frequencies 𝜔𝑑  and 2𝜔𝑑  with phase difference ∅ and to generate a 

current. This current is proportional to the sine of the relative phase ∅  between driving 

harmonics (𝐼 ∝ 𝑠𝑖𝑛∅) [7]. Basically, in harmonic mixing mechanism, all possible 

higher harmonics and their relative sum and difference are generated. When the driving 

frequencies are commensurable (𝑛𝜔𝑑1
= 𝑚𝜔𝑑2

) with n and m integer, the DC 

response also will appear [8, 9]. The driving force relevant to our experiment is given 

by [9]: 

                   𝐹𝑑(𝑡) = 𝐹0[𝐴𝑐𝑜𝑠(𝜔𝑑𝑡) + 𝐵𝑐𝑜𝑠(2𝜔𝑑𝑡 + ∅)       (1) 

 

where 𝐹0 is the overall amplitude of the driving force, 𝜔𝑑 =
2𝜋

𝑇
 is the driving frequency 

with time T, A and B are the driving force amplitudes and ∅ is the relative phase 

between the harmonics, which controls the symmetry of the system and therefore the 

generation of a current. In addition to the requirement of out of equilibrium settings, a 

ratchet has to possess a type of asymmetry to be able to generate a directed current. 

Symmetry analysis is the tool that is used to predict whether directed transport is 

possible or not. According to Curie's principle, generation of a current is expected when 

the system does not have any symmetry, which would prevent it [1]. 

 

 

2. Experimental work 
 

 A rocking ratchet can be implemented experimentally by using an optical lattice  

[10,11]. Optical lattices can be defined as periodic potentials produced by the 

interference of two or more laser beams. It was suggested for the first time when 

Letokhov proposed the possibility of cooling and confining the atoms in the potential 

wells by the dipole force that results from the light shift [12].  

Dissipative optical lattice is laser beams configuration of the 𝑙𝑖𝑛 ⊥ 𝑙𝑖𝑛 optical 

lattice. “lin” denotes the polarisation in a standing wave formed by two laser beams that 

propagate in opposite direction (z and -z), and have orthogonal linear polarisation along 

x and y respectively. The optical lattice creates a spatial modulation of the laser field 

polarisation. By interacting with the atomic states, a periodic modulation of the light 

shift of the ground state sublevels is produced. For this configuration, the interaction 

between the laser fields and the atoms reduces the kinetic energy and then localises the 

atoms in the optical potential.  

The experiment is performed with 87Rb atoms trapped in a magneto-optical trap 

(MOT). For the operation of the experiment, there are many important factors such as 

the alignment of the MOT laser beams, their polarisation and frequency. The beams 

must be aligned by the retro-reflected method. Each pair of the beams should have 

opposite circular polarisation to the other one.  Figure (2) shows the schematic of the 

MOT. The main part is a glass cell (30x30x100mm3) attached to an ion pump to 

produce a vacuum of below 10-9mbar. The rubidium source is a pair of Saes getters 

connected to an electrical feedthrough.  In order to control the experiment and acquire 

the data, two computers are used with a LabView program. The first computer is used 

to control all the experimental parameters and their arrangement in a time sequence. 

The computer control consists of a digital PCI-card with 64 channels (Viewpoint DIO-

64) and 2 analogue output cards with 8 channels each (NI PCI-6731). The timing 

resolution is 1μs. There are two modes to control the experiment: MOT mode and 
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sequence mode. When we use the sequence mode to run the experiment, the first step 

is loading the atoms in (3 s) time by turning the MOT beams (-2.5Г detuning) and the 

magnetic field on. Then, for (15 ms), the detuning is changed to -7Г to reduce the MOT 

temperature. The final temperature was around 30μK. 

Then the lattice beams are switched on while the magnetic field and the MOT 

beams are switched off. After 1ms the modulation of one of the AOMs is ramped up 

from 0 to maximum value in 1ms and then the system is driven for a variable amount 

of time. This is followed by 1 ms time of flight, in which the lattice beams are switched 

off, to compensate for eventual delays and to make sure that during the imaging phase 

there is no other light present. After that, we take in a short time 3 absorptive images 

with 0.144ms exposure time, the first two with imaging beam switched on, the last one 

just with the ambient background of the lab. Between the images is a 25ms waiting time 

to allow the camera to get ready again.  From those images the optical density is 

calculated and then displayed and fitted with a 2D Gaussian curve.  The parameters of 

the fit are displayed as well and then stored in a file. After that the sequence starts again. 

The second computer is used to acquire, save and analyse the images obtained by a 

CCD camera. The configuration is created via interacting the cold atoms cloud with 

two counter propagating laser beams which have linear orthogonal polarisation 𝑙𝑖𝑛 ⊥
𝑙𝑖𝑛 configuration. Each laser beam is passed through an acousto-optical modulator 

(AOM) to shift the frequency down with respect to the atomic transition. Each AOM is 

driven by a function generator with the same carrier frequency (SMY01 and SMT02) 

to modulate the amplitude. A double pass AOM controls the main lattice beam before 

splitting it into two lattice beams. Another function generator (Agilent 33220A) 

produce a signal of sinusoidal form which is utilised to modulate the frequency of one 

of the lattice beams signal generators. A 1D rocking ratchet is realised for cold 87Rb 

atoms by using a driven optical lattice. To perform a ratchet experiment, many steps 

must be performed: loading the MOT, cooling the atoms and turning on the optical 

lattice. Then, modulate the frequency of one of the lattice beams and generate a zero 

mean force. The relationship between the frequency and phase modulation is a 

differential one, 𝜔(𝑡) = 𝛼 ̇ (𝑡), where 𝛼(𝑡) is the phase modulation. Driving the system 

out of equilibrium and breaking the symmetries is a method used to tilt the lattice and 

reduce the potential well which leads to generate the current. It depends on many factors 

such as amplitude, phase and frequency of the driving.  In this work, a bi-harmonic 

force is applied with frequencies ω1 and ω2 (with ω2=2ω1). In addition, there is phase 

difference (∅) between the driving forces to create a periodic force that breaks the 

system symmetries. 

 

3. Experimental Results 
 

The data which are presented here is the experimental results of a one dimensional 

rocking ratchet experiment for 87Rb cold atoms. The presented data demonstrates the 

control of the atomic transport by tuning some of the system parameters. The particles 

current is generated as a result of applying an AC force by modulating the frequency of 

one of the optical lattice beams. 

 For these measurements, it is important to calibrate the camera (CCD) to 

transform measurements done in camera pixels into absolute values. This is done by 

measuring the movement of the centre of mass with different expansion times of the 
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MOT as shown in Fig. 1. Because the atoms will fall under the influence of gravity, the 

gravity force is used for this purpose to obtain the calibration ratio 12.5 μm/Pixel.  

To be able to measure the temperature of the MOT, The width of the MOT is 

measured as a function of the free expansion time as shown in Fig. 2. The temperature 

is 29.5μK. The velocity of the cloud is measured with ω1=45KHz (Amp1=0.8V) and 

ω2=90KHz (Amp2=0.2V), as a function of different driving times 16.9 mm/sec. The 

number of the atoms trapped in the MOT was also determined using the absorption 

imaging technique to be 5.6 ×106 atoms. The measurements are taken by varying the 

modulation, frequency ratio and amplitude ratio applied to the lattice beams as a 

function of the atomic current amplitude.   

 

3.1. Current amplitude vs. modulation 

Studying the magnitude of the atomic current as a function of one of the lattice 

beams modulation reveals several distinguishing features of the ratchet effect. Fig. 3 

shows the atomic centre of mass velocity as a function of the phase difference between 

the driving force harmonics. The velocity is expressed in terms of the recoil velocity 

𝑉𝑟 =
ℏ𝑘

𝑀
 (for 87Rb D2 line 𝑉𝑟 = 5.88 𝑚𝑚/𝑠). 

The data are taken for different modulation depths. The red lines in the graph 

represent the best fits of the data with the function 𝑓(𝑥) =
𝑉

𝑉𝑟
sin(𝜙 + 𝜙0). This graph 

provides a clear insight on the key feature of the ratchet so that the highest modulation 

values have the biggest current (sine amplitude). This can be attributed to the strong 

shaking of the lattice which induces higher current.  Fig. 4 summarises the relation 

between the amplitude of the sines and the driving force. It can be seen that there are 

two maxima (at 200 KHz/V and 900 KHz/V) with ω1=50 KHz and ω2 =100 KHz driving 

frequencies and a fixed modulation ratio. However, the best sines that have best fit and 

lower deviation from the sine function are in the lower values area.  
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Figure. 1. The centre of mass of the MOT as a function of the free expansion 

time. 

 

 

 
 

Figure. 2. The MOT width as a function of the free expansion time of the MOT 

revealing the temperature of the cloud.  
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Figure. 3. The centre of mass velocity, in units of the recoil velocity (𝑉𝑟 =

ћ𝑘 𝑀⁄ ), as a function of the phase between the two harmonics.  

 

3.2. Current amplitude vs. frequency ratio 

 

Fig. 5 exhibits the sine current amplitude dependence on the modulation 

frequencies. The largest current is obtained for 𝜔1 = 45 𝐾𝐻𝑧 and 𝜔2 = 90 𝐾𝐻𝑧. This 

may indicate existence of the vibrational frequency. When the frequency increases 

beyond this value, the current will decrease accordingly.  

3.3. Current amplitude vs. modulation ratio amplitude 

The relationship between the amplitude of the sine and the harmonics amplitudes 

ratio is studied while keeping the amplitude of the ω1- force constant at 0.8V. In 

addition, the frequencies ratio is constant as well at ω1=45 KHz, ω2=90 KHz which 

have the highest atomic current from the previous experiment. As shown in Fig. 6, the 

ratchet current is growing when we increase the amplitude of the first force. However, 

at a certain value the current goes down. 
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Figure. 4.  The sine amplitude as a function of the modulation depth. 

 

 

 

 

Figure. 5. The sine amplitude over different modulation frequencies. The graph is 

plotted with ω1. 
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Amplitude (V) 

Figure. 6. The current amplitude over one of the amplitude modulation with keeping 

the other amplitude constant (0.8V). 

 

4. Conclusion 

One dimensional rocking ratchet for cold atoms in a driven optical lattice is 

realised and characterised. The relationship between atomic current amplitude (sine 

amplitude) and the ratchet system parameters is studied and analysed. The system is 

characterised by measuring the trap temperature and the atom number. In addition, it is 

found that there is a dependence of the sine amplitude on the modulation frequency and 

amplitude ratio modulation. There is an ability of controlling the directed motion in 1D. 

The results show the possibility of producing the directed motion of the rubidium atoms 

when applying time-asymmetric forces. These forces are produced by adding two sine 

waves as a driving force with different frequencies and suitable phase difference 

between them. Controlling the symmetry is also studied which can direct the ratchet 

motion. Characterising the rocking system has an importance for a future study in 

controlling the atomic current or generating an ultra-cold atom in Bose-Einstien 

Condensate. 

 

 

 

 

 

 

 

 



Journal of University of Babylon for Pure and Applied Sciences, Vol. (27), No. (3): 2019 

 

273 
 

Conflict of Interests.  
There are non-conflicts of interest . 

 

References 

[1] P. Reimann, “Brownian motors: noisy transport far from equilibrium,” Phys. Rep., 

vol. 361, no. 2–4, pp. 57–265, 2002. 

[2] V. Serreli, C.-F. Lee, E. R. Kay, and D. A. Leigh, “A molecular information 

ratchet,” Nature, vol. 445, no. 7127, p. 523, 2007. 

[3] J. Rousselet, L. Salome, A. Ajdari, and J. Prostt, “Directional motion of Brownian 

particles induced by a periodic asymmetric potential,” Nature, vol. 370, no. 6489, 

p. 446, 1994. 

[4] N. A. Abdulwahhab. Transport of cold atoms in laser fields. PhD thesis, University 

College London, 2015. 

[5] C. Grossert, M. Leder, S. Denisov, P. Hänggi, and M. Weitz, “Experimental control 

of transport resonances in a coherent quantum rocking ratchet,” Nat. Commun., 

vol. 7, p. 10440, 2016. 

[6] F. Marchesoni, “Harmonic mixing signal: Doubly dithered ring laser gyroscope,” 

Phys. Lett. A, vol. 119, no. 5, pp. 221–224, 1986. 

[7] S. Flach, O. Yevtushenko, and Y. Zolotaryuk, “Directed current due to broken 

time-space symmetry,” Phys. Rev. Lett., vol. 84, no. 11, p. 2358, 2000. 

[8] F. Marchesoni, “Harmonic mixing signal: Doubly dithered ring laser gyroscope,” 

Phys. Lett. A, vol. 119, no. 5, pp. 221–224, 1986. 

[9] W. Wonneberger, “Harmonic mixing in the classical charge density wave model 

above threshold,” Zeitschrift für Phys. B Condens. Matter, vol. 53, no. 3, pp. 167–

173, 1983. 

[10] R. Gommers, S. Denisov, and F. Renzoni, “Quasiperiodically driven ratchets for 

cold atoms,” Phys. Rev. Lett., vol. 96, no. 24, p. 240604, 2006. 

[11] M. Schiavoni, L. Sanchez-Palencia, F. Renzoni, and G. Grynberg, “Phase control 

of directed diffusion in a symmetric optical lattice,” Phys. Rev. Lett., vol. 90, no. 

9, p. 94101, 2003. 

[12] D. R. Meacher, “Optical lattices-crystalline structures bound by light,” Contemp. 

Phys., vol. 39, no. 5, pp. 329–350, 1998. 

 

لخلاصةا  

داخل الشبيكة البصرية  Rb87باستخدام ذرات الربيديوم المبردة  ) Rocking ratchet(تم دراسة خصائص ظاهرة التيار الذري الهزاز 
𝑙𝑖𝑛ذات بعد واحد ⊥ 𝑙𝑖𝑛 Configuration)   .( تم قياس درجة حرارة الغيمة الذرية الباردة باستخدام تقنية زمن الطيران) (Time of 

Flight  29وهي 𝜇𝑘 . 

5.6) نت بحدود تم حساب عدد الذرات المقتنصة في المصيدة البصرية المغناطيسية باستخدام التصوير بالامتصاص وكا × 106)  
الذري عند تغيير معلمات الشبيكة البصرية. تم تضمين احد اشعة الشبيكة البصرية الليزرية بموجات  سعة التيار ذرة. النتيجة بينت تغير

ان سعة التيار تعتمد ايضاً على ترددات التضمين وان  ذات شدات مختلفة حيث تم ملاحظة أعلى تيار ذري عند اكبر عمق تضمين و
كما تم ملاحظة تغير سعة التيار الذري بتغيير سعة الموجه     (Vibrational frequency)النتيجة بينت امكانية وجود تردد اهتزازي 

  الشبيكة البصرية. المضمنه لاحد الاشعة للشبيكة البصرية وبذلك يتم التحكم بالتيار الذري عن طريق تغيير معلمات

    .: الشبيكة البصرية ، التبريد بالليزر، التيار الذري الكلمات الدالة


