
Journal of University of Babylon, Pure and Applied Sciences, Vol.(26), No.(9): 2018

107

A Suggested Lightweight Lossless
Compression Approach for Internet of

Everything Devices

Mohammed Salih Mahdi

BIT Dept, Business Information College, University of Information Technology and

Communications, Baghdad, Iraq

mohammed.salih@uoitc.edu.iq

Nidaa Flaih Hassan

Computer science Dept. University of Technology, Baghdad, Iraq

110020@uotechnology.edu.iq

Abstract
Limit storage space, high traffic sensor data transfer and power efficient transmission are

samples of the challenging issues in the development of Internet of Everything (IoE) apps. This paper

tackles these issues by presenting a suggested lossless compression approach according to lightweight

operations. The suggested approach is working efficiently even with a low-performance equipment.

Furthermore, enhancing the sensor node effectively of IoE by minimizing energy exhaustion and

resource utilizing. Hence, provision power and expanding the age of IoE devices. The suggested

approach is evaluated by using two datasets as a benchmark by calculating compression ratio firstly, on

messages between person to person and secondly, on healthcare sensors (HeartRate and Body

Temperature) between machine to person pattern of IoE. In two tests, the suggested approach may

obtain a significant compression ratio.

Keywords: lossless compression, dictionary table, IoT, IoE

1. Introduction

Internet of Things (IoT) is a modern standard, which is swiftly obtained scope

by combining sets of models and communication. The main concept of the IoT is the

exist a diversity of objects like emergency mechanisms (Bluetooth, RIFD, sensors)

and mobile phones, etc. IoT has eligible to communicate with another mechanism to

attain the aims during transmission across the Internet. The native IoT sight surrounds

a structure which is utilizing Internet to the specified and monitored objects[1][2].

Wireless Sensor Network (WSN) is an essential coring mechanism of IoT combines a

number of spatially disseminated separated sensors into net and exchange their data

during links [3].

Intranet has been expanded into the Internet. This expansion is referred to

access IoT[4]. Things are 1st layer in Internet, IoT pushes across combining

everything into Internet root, and this is referred to Internet of Everything (IoE).

Whole processes far reachable during internet, hence, Combining of everything is

encouraged by the business desires[5]. Everything indicates to refrigerator, vehicle,

persons, sensors and fundamentally anything, which has an ability Internet link. IoE is

a novel Internet idea that attempts to link everything which may be linked to the

ARTICLE INFO
Submission date:27/10/2017
Acceptance date:4/3/2018

Publication date:14/10/2018

mailto:mohammed.salih@uoitc.edu.iq
https://www.iasj.net/iasj?func=search&query=au:%22Nidaa%20Flaih%20Hassan%20%D9%86%D8%AF%D8%A7%D8%A1%20%D9%81%D9%84%D9%8A%D8%AD%20%D8%AD%D8%B3%D9%86%22&uiLanguage=en
mailto:110020@uotechnology.edu.iq

Journal of University of Babylon, Pure and Applied Sciences, Vol.(26), No.(9): 2018

108

Internet [6]. When utilizing IoE, Numerous firms have highly incomes because IoE

has an effect on growth of job capacity. IoE consists of three patterns of links:

 The 1st pattern is machine to machine which is regarded to security. Notable

instances of this pattern are catastrophe warning and martial security.

 The 2nd pattern is person to machine which fetches growing house

automation model. Notable instances of this pattern are catastrophe reply,

patient surveillance, smart garage, etc.

 The 3rd pattern is person to person which is regarded to people relations.

Notable instances of this pattern are social networks, network education, chat,

and telemedicine.

In this paper, the 2nd pattern and the 3rd pattern will be used.

 IoE acts many orientation like cloud computing, mobile computing, data

analysis [7]. At the moment, Sensors are all over the places of IoE apps. IoE apps

infiltrate into people body, vehicles, healthcare, Agriculture, etc. Mammoth size of

sensors produce high size of information with possibility subversive achievement and

hazard in information storing and transition. These criteria impacts minifying duration

of battery life and large procedure power[8], [9].

With a view to reaper IoE apps is to be expanded compression procedure

and suggested lightweight data compression for IoE sensor.

Data Compression is expressed as transformation of data into a small number

of individual bits as an alternative of native data representation [10] Data compression

is an approach utilized to minify the recurrence in the appearance of the data. It assists

to adequate more files inside a restricted amount of size of the storage medium by

minimizing files.

Furthermore, in the data transference, it displays an excellent way to use the

bandwidth of the connection and thus minify the communication cost[11], [12]. Data

compression is mainly labeled into two kinds, if compressed data may be coming

back to the proper data form precisely, this kind recognized as lossless compression.

Otherwise, the other kind recognized as lossy compression due to compressed data

may not come back to the proper data form [13]. The scope of this paper only

focuses on lossless compression.

The lossless compression utilizes particular manner for a rebuilding the

precise shape of data from the result of compressed data. It applied in sensitive

applications where missing an individual bit may lead to a harmful failure like text,

data of sensor record in database and execution files [14], [15]. In lossless

compression, not all text is potential to be briefed. Hence, the execution of lossless

compression relies on the features of native data[16]. Lossless compression has been

acted on the claim that the data has to be storage completely [17].

In the lossless compression, many various theoretical procedures are existed. The 1st

procedure points to the likelihood distribution of the input stream are not importantly

calculated. It is called a dictionary depended algorithms. Examples of this procedure

are LZW and LZ77 [18]. It works by finding corresponds between input stream

that is needed to compress and a group of words that comprised in the dictionary.

The compressor discovers like to correspond, it replaces a reference to word's

indexing in dictionary[19].

Journal of University of Babylon, Pure and Applied Sciences, Vol.(26), No.(9): 2018

109

In contrast, the 2nd procedure is relying on the likelihood distribution of the

input stream prior compression process, it is called entropy depended algorithms.

Examples of this procedure are Run Length Encoding and Huffman Coding [18] .

For checking the performance of suggested approach ,Compression Ratio

(CR) is utilized, which indicates the volume of the distinction between Compressed

Data (CD) and Native Data (ND) as Eq.1 [20], [21].

There are various suggested procedures have been implemented to enhance the

efficiency of the sensor nodes of WSN, IoT by minify the sending input stream

volume utilizing the lossless compression procedures.

 [22] suggested a lossless compression procedure for small input stream on

embedded devices depend on context and arithmetic coding. To implement a

compression procedure, the suggested procedure needs former knowing of English

input features. In addition, the suggested procedure is intended for input stream which

are larger than a fifty - bytes. In [23] get a superior compression ratio by offering

lossless compression procedure by adjusting Adaptive Huffman coding. Furthermore,

the adjusting algorithm is effective and appropriate to job with different WSN nodes.

In spite of, the adjusting algorithm is not eligible to compress input data which has

minimum correlation. In [24] suggested lossless compression procedure to specialize

issues of energy effective transportation in IoT equipments with two modification

structure depend on an idea of the shaft the tables. These modifications make

improvements in performance of IoT equipment statistically important. The suggested

procedure is checked on air and surface temperatures, solar radiation and relative

humidity datasets which are computed by the sensor. Hence, preventing waste in

power of IoT equipments.

Concerning, the former literature review describes above, the contribution of

this research displays a suggested algorithm for lossless compression of IoE devices

to allow preventing waste of power, and thus extending the age of the sensor nodes in

IoT Devices.

2. Material and method

The suggested approach is a lossless compression according to dynamic

dictionary table work with IOE devices. The basic thought of the suggested approach

is compressing not only the text (messages, health care sensors), but also produces the

dynamic dictionary table. The major benefit of the suggested approach are capable to

compress the data without depending on the idea of character repetition, in addition, it

works adeptly even with a small size of the text. The suggested approach is formed by

a simple process in both dynamic dictionary constructing and data compression.

Journal of University of Babylon, Pure and Applied Sciences, Vol.(26), No.(9): 2018

110

The following steps to describe the suggested approach compression process:

 Preprocessing: The first step in the suggested approach is to process the text,

specially in person to person pattern of IoE pattern. Usually in a text file,

approximately 5 % to 15 % of symbols are blanks (spaces). In this step,

minimizing these blanks will consequence a text file with the compression ratio.

So, these blanks are compressed by analyzing phrases in a text file and finding is

scarce to have a word that begins with a small character and ends with a capital

character. Using this concept, the blanks between the phrases are compressed by

changing the last small character of a word and a followed blank with a respective

capital character. This changing is ignored, either the whole word is in capital

characters or the length of the word is two characters and begins with a capital

character. In addition, the changing is ignored if the word contains one character.

For example, the text file contains two statements "My name is Mohamed and I

am an Iraqi student" and "A dog is on the street". In the compress operation of

text preprocessing step minimizing blanks in the text file by changing it to "My

namEis MohameDand I aMaNiraqIstudent" and "A doGiSoNthEstreet". In

the decompression operation of text preprocessing step, it is done by encounters a

capital character, if a former character is small. Consequently, it is increased in

size into two letters, the first is the respective small character and the second is

blank. Finally, the preprocessing step is optional, especially when there are blanks

in the input text.

 Splitting: Read the data letter by letter from the output of text preprocessing step.

These letters converted to ASCII codes, multiplied each code by 0.1 (divided each

code by ten). Taking the integer number of output of the division code to create a

dictionary table as first part and taking the remainder from the output of the

division code as a second part

 Dynamic dictionary table: Creating a dynamic dictionary table by converting

number digit part (first part) of each code that are extracted in splitting step in a

decimal form and save it in the dictionary table (DT) without repetition. Order

the value of DT in ascending order. For each value in DT, allocating an index

value starting from 0. Change the decimal form with its particular index in

dictionary table. Dictionary table is dynamic due to the altered of the size and the

value of elements of the dictionary table in each session of compression. Figure

(1) shows creating dictionary table. The maximum dynamic dictionary table

decimal form ranged from 0 to 25 and cannot exceed 25, because the maximum

value of the byte is (255). Therefore, the maximum value will be 25.

Figure (1): Suggested Approach (Create Dictionary Table Part)

Journal of University of Babylon, Pure and Applied Sciences, Vol.(26), No.(9): 2018

111

 Compressed Data: Integrating the indexed of first part with the second part of the

splitting step to create modified code form (MCF). Discovering largest number in

these MCF numbers and calculating the number of bits required to represent the

max value of it. Computing the minimum value in MCF, called it min- MCF, and

subtract each value of MCF with min- MCF. Figure (2) shows the pseudo code of

compressed data. The compressed data include the following three fields:

1. Five bits act the number of bits used for min- MCF

2. Three bits act the maximum number of bits used for each character in MCF

3. Binary representation for each MCF numbers.

Figure (2): Suggested Approach (Compressed Data Part)

 Compress Dictionary Table: The dictionary table is compressed by subtracting

the particular item from TDi by its direct predecessor such as the followings:

 CDT [0] = DT [0] (Eq.2)

 CDT [i] = DT [i] – DT [i - 1] for i>=1 (Eq.3)

Discover the maximum value in Compressed Dictionary Table (CDT), called it

Max value, and for representation max value in bits called it bit-max-value. The Max

value cannot override 25. Thus, for representation requiring at the most five bits. The

bit-max-value is less or equal to five. In the subsequent, if the number of bits to

represents CDT [i] is lower than or same to (bit-max-value / 2). Placing ’0’ at the

starting then putting the binary representation of CDT [i] in (bit-max-value / 2) bits.

Otherwise, placing ’1’ then putting the binary representation of CDT [i] in (bit-max-

value). Figure (3) shows the pseudo code of the compressed dictionary table. The

compressed dictionary table comprises the following three points:

1. Five bits to act the number of values in CDT.

2. Five bits to act first value in CDT

3. Binary representation for each value from CDT [i]) bits.

Journal of University of Babylon, Pure and Applied Sciences, Vol.(26), No.(9): 2018

112

Figure (3): Suggested Approach (Compressed Dictionary Table Part)

The decompressed package is identical steps of compression text but in reverse way.

Figure (4) shows the pseudo code of the decompressed package (dictionary table and

original data) .

Journal of University of Babylon, Pure and Applied Sciences, Vol.(26), No.(9): 2018

113

Figure (4): Suggested Approach (Decompressed package Part)

3. Case Study

Suppose, the input data is a text file, which contains "hgfedcba". The following

steps illustrated the suggested algorithm for compressing text files.

S1: There are no blanks in the text file. Therefore, it is still the same.

S2: Transform the output of step1 to its ASCII code form. Each item of ASCII

code is divided by ten and partition to first part (FP) and second part (SP):

Letter: h g f e d c b a

ASCII 104 103 102 101 100 99 98 97

ASCII*0.1 10.4 10.3 10.2 10.1 10.0 9.9 9.8 9.7

FP 10 10 10 10 10 9 9 9

SP 4 3 2 1 0 9 8 7

S3: Taking the first part of step 2 without recurrence. Sorting these items and

allocating each item an index begin from 0.

FP 9 10

index 0 1

S4: Change the first part of step 2 with its index, and then combine with the

values of the second part from step. Therefore, that means modified code

form (MCF).

FP 1 1 1 1 1 0 0 0

Journal of University of Babylon, Pure and Applied Sciences, Vol.(26), No.(9): 2018

114

MCF 14 13 12 11 10 09 08 07

S5: Calculate the lowest item in MCF, called it min-MCF that is represented

by 7 and subtract each item of MCF with 7.

MCF 14 13 12 11 10 09 08 07

MCF 7 6 5 4 3 2 1 0

S6: The maximum value from step 5 is 7, so items requiring three bits to

represent it. Thus, at starting adding five bits (00111) that acts the number

of bits, which used for min- MCF. Also, adding three bits (111) that acts

the maximum number of bits that used for letters in MCF. The whole

quantity of bits would be 5+3+ (3 * 8) = 32 bits. Later, binary form of bits

that are used to act the compressed data.

Binary 00111 111 111 110 101 100 011 010 001

S7: Compressing the dictionary table according to step 3. Occupying the 1st

part as it and place in new table, then subtract each item from the former

ancient item (as eq. 1)

9 10-9

9 1

S8: Putting five-bits at the starting of the dictionary table to act the number of

item in the dictionary (in this case study 2 items so it is 00010 in binary).

Act the first item in five bits to be (01001). The real quantity of bits which

is used for first item (9) is 4 bits so divided 4 by 2 and neglected the

floating so will be (2). that's mean needing either five-bits for each item

more than (2) or two-bits for each item less or equal than (2) plus one bit

(0,1) as indicator

S9: Now, act each next item as binary: 1= (1)2 less than (2) which is the

integer value of step8. So it will be (001)2. Repeat this step with all item

and the definitive outcome of a dictionary table in binary be:

Binary 00010 01001 001 The total number of bits is 16 bits.

S10: The compressed package is a mixture of bits, which it contains bits that are

represent the dictionary table and data compressed. The Final compressed

package bits are:

00010 01001 001 00111 111 111 110 101 100 011 010 001

S11: So, the entire quantities of bits for text file and compression ratio.

Compressed Package = compressed data + compressed dictionary

Compressed Package =32+ 13= 45 bits

Compression ratio = 100 * (1 - (Compressed Package / original

text file))

Compression ratio = 100 * (1- (45/64)) = 30%

The decompressed package is identical steps of compression text but in reverse

way as following steps

S1: Assume, the input for decompressed package is

00010 01001 001 00111 111 111 110 101 100 011 010 001 000 from

above steps.

S2: Bring the initial five bits (00010) and transform it to decimal format.

00010 2, so, it refer to number of elements in dictionary table.

S3: Create a dictionary table, bring the subsequent five bits (01001) and

transform it to decimal format. 01001 9. Add 9 to the dictionary table.

Journal of University of Babylon, Pure and Applied Sciences, Vol.(26), No.(9): 2018

115

9 require 4bits to act it. Check the following bit if it begins with (0) led

to get (4 / 2) bits after it, however, if it begins with (1) led to get (4)

bits.

S4: Discover '0' led to bring two bits (01). So, 011 and add 1 to the

dictionary table. the final dictionary table values are: 9 , 1

S5: Modify the second element of dictionary table by following formula
second element = second element +first element

9 , 1+9 9 , 10

S6: Bring the subsequent 5 bits (00111) and transform them to decimal

format. 00111 --> 7 which is acting max-element (max-element length of

bits is 3 bits). Bring the following 3 bits 111 and 111 --> 7 , which is

acting min-element .Then added min-element to all following data

stream after transformation to decimal format.

111 110 101 100 011 010 001 000 7 6 5 4 3 2 1 0 7+7 6+7 5+7

4+7 3+7 2+7 1+7 0+7 14 13 12 11 10 9 8 7

S7: Multiply each element by 0.1 and substitute the integer portion with its

element in dictionary table.in accordance with utilizing the integer portion

as an indicator(index), Getting ASCII by multiply the elements by 10

14 14/10 1.4 (table[1] = 10) 10.4 * 10 = 104=h

13 13/10 1.3 (table[1] = 10) 10.3 * 10 = 103=g

12 12/10 1.2 (table[1] = 10) 10.2 * 10 = 102=f

11 111/10 1.1 (table[1] = 10) 10.1 * 10 = 101=e

10 10/10 1.0 (table[1] = 10) 10.0 * 10 = 100=d

9 9/10 0.9 (table[0] = 9) 9.9 * 10 = 99=c

8 8/10 0.8 (table[0] = 9) 9.8 * 10 = 98=b

7 7/10 0.7 (table[0] = 9) 9.7 * 10 = 97=a

And its equal to hgfedcba which is refers to the original data

4. Results of Suggested Approach

The suggested approach is implemented utilizing C++ Arduino

microcontroller; two tests are utilized as a benchmark. The 1st test measures

compression ratio of messages, which are between person to person patterns of IoE.

The 2nd test measures compression ratio of healthcare sensors (HeartRate and Body

Temperature) which are between machines to person pattern of IoE. Actually, with

the two tests, messages test includes higher recurring values than healthcare sensors

test. For suggested approach, Table (1) and Table (2) show the effect of compression

for person to person and machine to person pattern of IoE respectively.

In these tables, notice that, suggested approach at 8 bytes begins with a 14.06

% reduction for person to person pattern and 10.39 % reduction in machine to person

pattern. Then it illustrates a sudden enhancement of its evaluation and its value

appears to settle outputs.

Journal of University of Babylon, Pure and Applied Sciences, Vol.(26), No.(9): 2018

116

Table 1: The Effect of Compression for person to person pattern of IoE

Input Data Size Compression Ratio (%)

8 bytes 14.06

16 bytes 32.04

32 bytes 41.01

64 bytes 45.05

128 byte 47.75

256 bytes 48.85

512 bytes 49.43

Table 2: The Effect of Compression for machine to person pattern of IoE

Input Data Size Compression Ratio (%)

8 bytes 10.39

16 bytes 24.21

32 bytes 30.85

64 bytes 34.17

128 byte 35.39

256 bytes 36.66

512 bytes 37.08

5. Conclusion

This paper suggested lossless compression approach, according to dynamic

dictionary table and lightweight procedure. From the concluding outcomes of

implementing the suggested approach, which is improving the IoE efficiency in three

layers. The 1st layer, enhanced the sensor node effectively of IoE by minify energy

exhaustion and resource utilizing. Hence, provision power and expanding the age of

IoE sensor. The 2nd layer, enhanced the net effectively by minifying the size of

transmission of input stream without impacting the accuracy of the input stream when

using suggested lossless compression. The 3rd layer, enhanced the processing

effectively by minifying the calculation overhead on input stream. Hence, it works

effectively even with a low-performance equipment.

CONFLICT OF INTERESTS.

There are non-conflicts of interest.

References

[1] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,” Comput.

networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[2] D. Giusto, A. Iera, G. Morabito, and L. Atzori, The internet of things: 20th Tyrrhenian

workshop on digital communications. Springer Science & Business Media, 2010.

[3] ITU-T, “, ‘Ubiquitous Sensor Networks (USN),’” ITU-T Technol. Watch Brief. Rep.

Ser., vol. 4, 2008.

[4] D. Fitton, G. Kortuem, F. Kawsar, and V. Sundramoorthy, “Smart Objects as Building

Blocks for the Internet of Things,” Internet Comput. IEEE 14, pp. 44 – 51, 2010.

[5] A. J. Jara, L. Ladid, A. Skarmeta, I. Comsoc, and I. Etc, “The Internet of Everything

Journal of University of Babylon, Pure and Applied Sciences, Vol.(26), No.(9): 2018

117

through IPv6 : An Analysis of Challenges , Solutions and Opportunities,” Networks

Ubiquitous Comput., pp. 97–118, 2013.

[6] A. Abdelwahab, S., Hamdaoui, B., Guizani, M., Rayes, “Enabling smart cloud services

through remote sensing: An internet of everything enabler.,” Internet Things Journal,

IEEE, vol. 1, no. 3, pp. 276 – 288, 2014.

[7] X. Jordi, M. , George, M. and Constandinos, “,‘Beyond the Internet of Things:

Everything Interconnected’, -,” Springer Int. Publ. Jan 9, Technol. Eng., p. 408 pages.,

2017.

[8] K. Hung, N. Jeung, H. and Aberer, “‘An evaluation of model- based approaches to

sensor data compression,’” IEEE Trans. Knowl. Data Eng., pp. 2434 – 2447, 2013.

[9] L. Misra, V. Goyal, V. and Varshney, “‘Distributed scalar quantization for computing:

High-resolution analysis and extensions,’” IEEE Trans. Inf. Theory, vol. 57, no. Aug,

pp. 5298–5325, 2011.

[10] K. Ekhlas, “Text Compression & Encryption Method Based on RNA and MTF,” Iraqi

J. Sci., vol. 58, no. 2, pp. 1149–1158, 2017.

[11] S. Khalid, “Introduction to Data Compression,” Third Edit. Elsevier, 2000.

[12] R. Waghulde, H. Gurjar, V. Dholakia, and G. P. Bhole, “New Data Compression

Algorithm and its Comparative Study with Existing Techniques,” Int. J. Comput. Appl.,

vol. 102, no. 7, 2014.

[13] S. Porwal, Y. Chaudhary, J. Joshi, and M. Jain, “Data compression methodologies for

lossless data and comparison between algorithms,” Int. J. Eng. Sci. Innov. Technol.

Vol., vol. 2, pp. 142–147, 2013.

[14] N. Sharma, J. Kaur, and N. Kaur, “A review on various Lossless text data compression

techniques,” Res. Cell An Int. J. Eng. Sci., vol. 12, no. 2, pp. 58–63, 2014.

[15] A. S. Sidhu and M. Garg, “Research Paper on Text Data Compression Algorithm using

Hybrid Approach,” Int. J. Comput. Sci. Mob. Comput., vol. 3, no. 12, pp. 1–10, 2014.

[16] I. M. Pu, Fundamental data compression. Butterworth-Heinemann, 2005.

[17] B. Al-Himyari, “A Hybrid Compression Algorithm by Using Shannon-Fano Coding

and Oring Bits,” J. Kerbala Univ., vol. 6, no. 3, 2008.

[18] S. R. Kodituwakku and U. S. Amarasinghe, “Comparison of lossless data compression

algorithms for text data,” Indian J. Comput. Sci. Eng., vol. 1, no. 4, pp. 416–425, 2010.

[19] D. Salomon, Data compression: the complete reference. Springer Science & Business

Media, 2004.

[20] M. S. Mahdi and N. F. Hassan, “A Proposed Lossy Image Compression based on

Multiplication Table,” Kurdistan J. Appl. Res., vol. 2, no. 3, pp. 98–102, 2017.

[21] A. J. Santoso, L. E. Nugroho, G. B. Suparta, and R. Hidayat, “Compression ratio and

peak signal to noise ratio in grayscale image compression using wavelet,” Int. J.

Comput. Sci. Technol., vol. 2, no. 2, pp. 7–11, 2011.

[22] S. Rein, C. Gühmann, and F. Fitzek, “Compression of short text on embedded

systems,” J. Comput., vol. 1, no. 6, pp. 1–10, 2006.

[23] F. Marcelloni and M. Vecchio, “A Simple Algorithm for Data Compression in Wireless

Sensor Networks,” Commun. Lett. IEEE, vol. 12, no. 6, pp. 411–413, 2008.

[24] M. Vecchio, R. Giaffreda, and F. Marcelloni, “Adaptive Lossless Entropy Compressors

for Tiny IoT Devices,” vol. 13, no. 2, pp. 1088–1100, 2014.

Journal of University of Babylon, Pure and Applied Sciences, Vol.(26), No.(9): 2018

118

 ةصلاخلا

الصعبة مشاكلالطاقة هي عينات من الوكفاءة نقل متحسسمساحة التخزين، وارتفاع حركة مرور نقل بيانات ال محدودية
 انات،للبي بدون فقدان ضغط طريقة اقتراحمن خلال مشاكلهذه ال تم في هذا البحث معالجه. وقد كل شيء إنترنت في تطوير تطبيقات

ى ذلك، . وعلاوة علالمنخفض الأداء الاجهزة ذاتبكفاءة حتى مع تعمل المقترحة طريقةال. بالتعقيد والتي تقوم على عمليات خفيفة
توفير ، وارد المستخدمة. وبالتاليالطاقة والم تهلاكمن اس التقليل بواسطة الكل شيء إنترنت فيبشكل فعال المتحسسأجهزة تحسن
سبة نحسب اساسي، على مجموعتين من البيانات كمعيار ةالمقترح طريقةالاختبار تم .الكل شيء إنترنتعمر أجهزة اطالةو الطاقة

 دقات القلبة)طبيال اتلمتحسس. بالإضافة إلى ذلك، نسبة ضغط على االى شخصشخص نمط الضغط المحسوبة على الرسائل بين
 .على مقياس ضغط كبيرحصلت قد طريقةالختبارين، الا. في الكل شيء إنترنتمن والى شخص آلة نمط ودرجة حرارة الجسم(بين

 .إنترنت الكل شيء الاشياء،إنترنت القاموس،جدول للبيانات،ضغط بدون فقدان :ةلادالكلمات ال

