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Abstract: Modified genetic algorithm with special phenotypes’ selection and
crossover operators with default specified rules is proposed in this paper thus refusing
the random crossover. The suggested crossover operator enables wide distribution
of genes of the best phenotypes over the whole population. During selection and
crossover, the best phenotypes of the newest population and additionally the genes
of the best individuals of two previous populations are involved. The effectiveness of
the modified algorithm is shown numerically on the real-life global optimization prob-
lem from civil engineering - the optimal pile placement problem under grillage-type
foundations. This problem is a fair indicator for global optimization algorithms since
the ideal solutions are known in advance but with unknown magnitudes of design
parameters. Comparison of the proposed algorithm with 6 other stochastic optimiza-
tion algorithms clearly reveals its advantages: at similar accuracy level the algorithm
requires less time for tuning of genetic parameters and provides narrower confidence
intervals on the results than other algorithms.
Keywords: genetic algorithm; crossover operator; grillage optimization.

1 Introduction

In this paper, we propose a new genetic algorithm with modified crossover operator and
compare it with other well-known stochastic optimization algorithms. As a benchmark the
problem of pile placement optimization under grillage-type foundations is chosen. The grillage
foundations consist of piles driven to the ground, and connected on the top with girders. The
in-plane configuration of girders may be complex, and the number of piles may reach several tens
(few examples of grillages are provided in the Appendix). Here we consider that the optimal
grillage is the grillage with minimal number of piles of given stiffness characteristics, and the
reactive forces in piles are equal. This can be achieved changing the positions of piles under
girders. In ideal case the reactive forces in all piles are distributed evenly and are equal to the
bearing capacity of pile. Practically this is hardly possible, since the theoretical number of piles
which is obtained dividing the total loading on the foundation (i.e., all active forces plus the dead
weight of the erection) by bearing capacity of pile, is common case not the integer number. Also,
some technological requirements can hinder achieving the ideal scheme, e.g., the given minimal

Copyright © 2006-2017 by CCC Publications

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Agora University Editing House: Journals

https://core.ac.uk/display/236054687?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


394 M. Ramanauskas, D. Sesok, R. Belevicius, E. Kurilovas, S. Valentinavicius

allowable distance between adjacent piles due to pile-driver characteristic, or the presence of the
given immovable piles that are introduced into placement scheme by a designer (usually at the
corners of girders) and do not change their position in the optimization process.

The pile placement problem is ideal for comparison of global optimization algorithms. Firstly,
the global solution - the reactive force that should be evened out in all piles is known in advance.
Secondly, the practical solution of the problem shows that the landscape of objective function
is complex and has many local extremes. Usually, the objective function is very sensitive to the
pile positions: even small changes position of one pile sometimes leads to a large alteration of
objective function. All this makes the problem a complex global optimization problem.
The mathematical models of optimization of grillage-type foundations were formulated and the
solution algorithms were suggested in [4], [3]. Three problems were solved: pile placement seeking
for even distribution of reactive forces in piles, pile placement seeking for least bending moments
in the connecting girders, and integrated problem for minimization of reactive forces and bending
moments. In case of two last problems the global solution cannot be obtained in advance,
therefore it is not a right choice for comparison of optimization algorithms. The first problem
was solved in [10] employing all popular at that time stochastic optimization algorithms. In all
these algorithms a phenotype, or an individual, is the approximate mathematical model of the
whole grillage. The fitness of a phenotype is measured by a maximum reactive force magnitude
among all piles, i.e., the fittest individual has the least reactive force. In [15], combination of the
sizing and topology optimization is observed, however the piles are aggregated to special groups
of pile. Exhaustive technical details on the design of grillages can be found, e.g. in [13]. Also,
this problem was solved by the new several dimension optimization method BAcoor [8], [9]. The
last method outperformed all other algorithms for the grillages where the piles have to be placed
at very uneven distances. At more even distribution of piles the classical stochastic algorithms
provided better results.

In all cases genetic algorithm (GA) with carefully tuned genetic parameters provided best re-
sults or results close to the best solutions. Among these parameters, the crossover operator plays
significant role [4], [7] since it combines the information contained in the previous individuals in
order to obtain fitter phenotypes. Therefore, in this paper, the main attention is given to the
crossover operator. The crossover was investigated, e.g., in [5] where a gender was assigned to
each individual and the crossover was performed only between individuals of opposite genders.
In many cases the crossover operator is dedicated for a particular type of problems, e.g., operator
EAX for traveling salesman problems [15], [11].

There are five chapters and appendices in this paper. In the second chapter, the ideas of new
crossover operator and its implementation are described. The third chapter depicts the problem
under consideration - the analysis of grillage-type foundations via finite element method. In
the fourth chapter, the optimization problem along with all requirements for fair comparison of
optimization algorithms are given, and the obtained results are discussed. In the final section,
some general conclusions are drawn.

2 Modified crossover operator

In the classical genetic algorithm, the initial population of a given length N is created. Then,
using selection and crossover operators the new individual generations are generated. During the
selection, the fitter individuals have better chances to be included into the next generation. The
probability of an individual to be selected for a next generation is usually directly proportional
to the ratio of its objective function value with the best function value in the present population.
Instead of individuals that do not enter into the new generation, the new random individuals
are created. After the selection, the random individuals interchange genes between them during
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the crossover operation. This does not guarantee that after the selection all best genes will
survive and will get into the new generation. If the non-elitist strategy is employed, always a
certain probability exists that even the individual representing the global solution will not pass
the selection. It also should be noted, that in classical algorithm the crossover operator is applied
only to the individuals of newest generation. Thus, the individuals of previous generations are
completely lost. We suggest the following modified selection and crossover operations:

• The new population is created not only of crossbred individuals, but also of the best
individuals of two previous generations. Thus in the current population coexist parents
and grandparents.

• One-third of the best individuals participate in the crossover, and each individual is inter-
bred twice with in advance definite individuals.

• Thus, less random genetic parameters must be chosen for the algorithm; only the breeding
point and mutation probability have to be selected.

The crossover rules are summarized as follows:
1. Initial population of N individuals A0 = {a0, a1, ..., aN−1} .
2. The individual a′i of a succeeding population Aj (j 6= 0) is obtained breeding N best individ-
uals of the generation Aj−1 according to the equations:

• if i < N
2 , a

′
i = ai × ai+N

2

• if i > N
2 , a

′
i = ai × aN−i−1

where the × denotes the crossover operations.
3. Population Aj (j > 1) consists of 3 ·N individuals: N crossbred individuals of generation Aj−1
and two groups of size N of the best individuals from generations Aj−1 and Aj−2 .
Thus, the recursive function for creation of populations is: A0 = {a0, a1, a2, ..., aN−1} ,
A1 = A0

⋃
A×0 ,

A2 = A0
⋃
TOPN (A1)

⋃
TOPN

(
A×1
)
,

A3 = TOPN (A1)
⋃
TOPN (A2)

⋃
TOPN

(
A×2
)
,

· · ·
Ai = TOPN (Ai−2)

⋃
TOPN (Ai−1)

⋃
TOPN

(
A×i−1

)
,

where TOPN (Ai) is the set of N individuals of the ith generation with the best objective function
values A×i , is the crossover operator breeding the individuals of the ith generation according to
the rules shown. Thus, the proposed rules do not require tuning of selection parameters. The
third rule also guaranties a special elitist strategy, i.e., the individual with the best objective
function value is retained from generation to generation. On the other hand, passing into the
next generations only the fittest individuals of preceding populations may narrow the search
space. Sufficient diversity of a population therefore is achieved by a classical mutation with a
rather high probability that should be tuned for the problem under consideration.

3 Grillage optimization model

One individual of a routine population is the approximate mathematical model of the grillage-
type foundation. Grillage is discretized by the finite element method into 2D beam element
mesh with out-of-plane boundary conditions instead of piles. Out-of-plane active forces consist
of the self-weight of the erection, plus all active forces according to Eurocodes. The girders of
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a grillage are approximated as two-node beam elements with fixed cross-section and material
characteristics. The piles are represented as the supports with specified displacements (zero
displacements are the most common case). Alternatively, piles are regarded as supports with
specified stiffness characteristics. Generally, the maximum reactive force among all piles is treated
as the objective function.

Supports of the first type are rather non-realistic representations and sometimes yield mislead-
ing analysis results. For example, when multiple supports are needed to carry large concentrated
load, this kind of supports will lead to a logjam. If odd number of supports is placed under load,
the central support will be located just beneath the load and will take all the force. In case of
even number of supports the "saw-teeth" like distribution of reactions is observed, and the more
supports will be installed, the larger in absolute value reactions will arise.

The optimization problem is defined as in

min
x∈D

f (x) . (1)

Here f (x) is the objective function, D is the feasible shape of structure, which is defined by
the type of certain supports, the given number and layout of different crosssections as well as
different materials in the structure.

f (x) is defined by the maximum difference between vertical reactive force at a support and
allowable reaction for this support, thus allowing us to achieve different reaction at supports on
different beams, or even at particular supports on the same beam:

f (x) = max
x∈D

max
16i6Ni

|Ri − ciRallow| . (2)

Here Ns denote the number of supports, Rallow is allowable reaction, ci are factor to this
reaction and Ri are reactive forces in each support.

Finite element matrices and sensitivity analysis
The problem has to be solved in statics and in linear stage

[K] {u} = {F} . (3)

Here [K] is the stiffness matrix of grillage, {u} are the displacement of grillage nodes, and {F}
- the loadings. The reactive forces at a rigid supports are obtained using equation

Ri =
∑
j

Kijuj , i = 1, 2, ..., NS , (4)

where a part of nodal displacements (displacements of free nodes) are already obtained via, and
the displacements of nodes representing the rigid supports are specified (usually - zero). If the
supports have finite stiffness ki ,

Ri ≈ kiui, i = 1, 2, ..., NS . (5)

If the local search around the certain solution obtained by stochastic optimization algorithm
is implemented, the sensitivity information is the must. The sensitivity analysis is performed
using the pseudo-load approach; thus, the numerical calculation of derivatives can be avoided.
Denoting the support positions by xi, i = 1, 2, ..., NS

Ri,xi = [K],xi {u}+ [K] {u},xi . (6)
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Here the derivative of stiffness matrix is obtained analytically, while the derivative of displace-
ments supposes solution of the general sensitivity equation:

[K] {u},xi = {F},xi − [K],xi {u} . (7)

The derivatives of load vector are obtained also in a closed form, analytically. A simple two-
node beam element with 6 d.o.f’s at a node (three displacements and three rotations about local
element axes) is employed in the analysis. Details on the stiffness matrices of an element may
be found in many textbooks, e.g., [16].

Program. Original Fortran program is used for obtaining the objective function value. First
of all, the finite element mesh along with all needed data is prepared by a special pre-processor.
Some initial data for the pre-processor are constant and do change in the optimization process -
the configuration of the grillage, self-weight of the structure and active loadings, material char-
acteristics. The locations of piles are obtained from the guess of optimization algorithm. Since
supports have to be placed under the girders of grillage, first of all the grillage is "unfolded" to
one-dimensional construct, and locations of all supports are freely chosen along the whole length
of this construct. After that, the initial configuration is restored. From all this input, the pre-
processor automatically prepares the finite element mesh introducing nodes at support points,
discontinuities of material and cross-sections properties, etc. The third independent program
analyses the finite element results and provides the objective function value. Model transfor-
mation patterns are obtained by using the Formal Concept Analysis [10], where relations and
element meta-classes of target and source models are linked together based on model classification
group links that have similarities between them.

4 Numerical results and discussion

10 different grillages possessing from 17 to 55 piles, i.e., the optimization variables were opti-
mized. Data for these problems (see Appendix 1) are obtained from several Dutch design bureaus
which use the professional software package MatrixFrame (http://www.matrix-software.com/Uk
/structuralengineering/matrixframe/index.html) for structural engineering. Seven different op-
timization algorithms are compared. 28 independent numerical experiments were performed
with each algorithm. In order to have fair comparison, the objective function was evalu-
ated 5000 times in each experiment. The following algorithms were employed [10]: modified
random search (MRS), simulated annealing (SA), simplex (SM), the variable metric method
NEWUOA [10], [12], [14], BAcoor, and the proposed genetic algorithm with modified crossover
(MCGA).

Comparison of all algorithms is provided in the Fig.1. Since total number of objective function
evaluations is 5000, small populations of 15 individuals were created in 333 generations. The
mutation probability after few numerical experiments was set to 15%. All numerical results of
28 independent experiments are rendered in Appendix 2. Thus, in three cases the proposed
algorithm outperforms all other algorithms. Compared to the classical genetic algorithm, the
results of MCGA is better for almost all problems considered. The ideal solution was not found
for any problem, however, the differences compared to the ideal solutions do not exceed 5% for
problems No. 2, 5 and 7. Results for problems No. 3, 4, 6, 7 and 9 differ from global solutions
till 8%. Summarizing, the SA showed the performance for the grillage optimization problems,
however, the NEWUOA, MCGA and GA (excluding the simplest structures No. 1 and 3) are
not far behind. GA outperforms the MCGA only for most complex grillages No. 8 and 10 with
34 and 55 design parameters. Better results may be expected with larger populations. However,
in this case we cannot fairly compare results with other algorithms. More important is, the
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Figure 1: The best objective function values in 28 runs obtained by MRS, SA, GA, SM,
NEWUOA, BAcoor and MCGA, normalized to Rideal .

confidence intervals of objective function value are much narrower for results of MCGA than for
results of BAcoor (we do not have the confidence intervals for other algorithms) (see in Fig. 2).
Also, for all problems the upper values of MCGA confidence intervals are better than ones of
BAcoor. In some problems the upper values are even better than the lower values of confidence
intervals of BAcoor. All numerical results - objective function values and confidence intervals
are provided in the Tables 1 and 2.

Figure 2: Confidence intervals.
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Table 1: Summary of numerical results

Problem No Best value found in MCGA Best value found in [10] Exact solution

1 337.15 339.30 307.47
2 105.34 106.36 104.12
3 115.02 107.25 101.85
4 113.29 106.80 101.24
5 100.00 101.05 97.51
6 120.28 115.45 97.53
7 301.48 298.11 287.35
8 404.29 286.22 236.28
9 263.12 253.00 244.71
10 556.11 463.34 349.05

Table 2: Summary of confidence intervals

Problem No MCGA lower MCGA upper BAcoor lower BAcoor upper

1 351.98 361.85 360.29 461.26
2 107.46 110.48 115.29 131.41
3 119.01 125.32 111.67 137.62
4 116.65 121.18 95.61 153.22
5 101.72 106.96 107.92 127.86
6 121.87 141.36 108.08 154.73
7 300.02 332.12 319.70 390.43
8 375.90 541.41 174.99 606.98
9 260.63 302.23 246.69 384.22
10 539.95 642.83 387.85 772.54

5 Conclusions

In rather simple configurations of grillages where the optimal distribution of piles due to
the geometry and given loadings is more or less even, the proposed method MCGA outperforms
other popular stochastic optimization algorithms. Additionally, this algorithm requires less effort
in tuning of algorithm parameters. The crossover and selection parameters are forecasted in
advance by recursive crossover rules. Also the confidence intervals for results of MCGA are
always narrower than those of BAcoor. Only for grillage configurations requiring larger number of
supports and their uneven distributions, it loses to NEWUOA and BAcoor. Thus, the proposed
method can be treated as a new global optimization algorithm that is simpler to use as the
classical genetic algorithm but providing better or similar level of accuracy.
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Appendices

Table 3: Appendix 1: Characteristics of problems

Problem No Number of supports Foundation length Rallw Rideal

1 25 172,90 325 307,47
2 18 52,90 110 104,12
3 31 84,10 105 101,85
4 31 84,90 105 101,24
5 30 63,90 100 97,51
6 37 80,10 100 97,53
7 23 129,10 300 287,35
8 34 137,90 250 236,28
9 17 97,60 250 244,71
10 55 315,61 350 349,05

Table 4: Appendix 2: Optimization results for all 10 problems in 28 independent numerical
experiments

Probl/Exper 1 2 3 4 5 6 7 8 9 10

1 375,87 108,33 122,88 119,18 105,21 136,06 308,04 540,96 283,54 614,04
2 359,09 111,01 124,15 118,72 107,04 129,00 312,08 520,77 277,54 591,94
3 391,24 107,81 127,80 121,81 110,12 129,23 313,24 434,80 275,06 580,37
4 356,93 111,85 117,99 119,09 102,96 122,32 321,58 414,26 282,97 606,22
5 341,47 107,69 123,78 118,68 105,85 126,39 313,00 404,29 287,37 579,35
6 368,95 106,81 120,46 113,29 105,79 120,28 319,00 425,89 265,36 563,57
7 352,35 107,28 124,94 119,06 101,28 133,34 315,42 419,62 309,76 658,62
8 358,81 105,86 121,88 123,05 105,82 127,83 310,84 538,27 268,19 593,13
9 340,49 108,43 124,31 119,79 107,36 122,32 305,63 407,56 290,50 576,15
10 348,00 112,49 119,78 117,50 103,19 138,99 319,01 523,01 299,97 556,11
11 352,52 107,82 123,30 120,11 105,54 141,05 327,97 532,61 273,09 590,31
12 349,46 107,75 118,99 119,69 101,86 125,69 341,05 432,63 284,85 567,98
13 376,92 110,01 126,53 118,31 105,97 126,22 301,49 525,76 279,00 607,32
14 351,34 105,45 118,58 121,63 102,85 136,55 315,65 420,27 286,73 563,72
15 341,32 106,93 115,70 118,35 103,23 131,61 312,04 429,79 276,59 606,96
16 352,12 117,91 123,82 119,26 106,82 143,18 318,38 425,28 270,80 602,00
17 337,15 108,61 123,21 121,01 107,00 127,17 305,69 442,52 263,12 638,64
18 345,64 107,62 118,43 114,78 105,90 138,09 311,00 439,41 276,29 613,01
19 364,22 109,22 117,90 121,67 101,88 143,99 313,38 408,72 298,48 578,94
20 344,76 111,06 128,80 115,69 103,36 134,57 354,81 445,75 268,88 612,41
21 369,08 110,98 115,02 113,43 100,00 124,37 316,54 457,68 290,61 566,76
22 370,84 106,44 117,24 119,15 103,18 147,41 319,63 449,23 266,89 593,30
23 354,59 105,34 131,69 117,51 105,93 132,50 307,67 537,75 279,97 557,41
24 361,88 110,66 118,33 120,48 103,45 136,64 311,88 446,24 278,44 590,55
25 355,11 108,59 127,67 118,72 103,24 122,41 315,93 441,27 290,06 563,00
26 376,52 106,98 120,09 122,02 102,57 126,20 309,44 534,65 280,92 578,71
27 341,46 112,65 120,74 120,05 103,12 136,93 315,33 423,97 290,76 621,52
28 355,41 109,58 126,61 117,59 101,11 124,86 314,31 419,46 284,29 586,92
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Figure 3: Appendix 3: Best pile placement schemes found with MCGA


