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Abstract:
This paper states a novel, Evolutionary Metaheuristic Based on the Automata The-
ory (EMODS) for the multiobjective optimization of combinatorial problems. The
proposed algorithm uses the natural selection theory in order to explore the feasible
solutions space of a combinatorial problem. Due to this, local optimums are often
avoided. Also, EMODS exploits the optimization process from the Metaheuristic of
Deterministic Swapping to avoid finding unfeasible solutions. The proposed algo-
rithm was tested using well known multi-objective TSP instances from the TSPLIB.
Its results were compared against others Automata Theory inspired Algorithms using
metrics from the specialized literature. In every case, the EMODS results on the
metrics were always better and in some of those cases, the distance from the true
solutions was 0.89%.
Keywords: Combinatorial Optimization, Multi-objective Optimization, Automata
Theory, Metaheuristic of Swapping.

1 Introduction

As well known, Combinatorial Optimization is a branch of the Optimization. Its domain
is optimization problems where the set of feasible solutions is discrete or can be reduced to a
discrete one, and the goal is to find the best possible solution [8]. In this field it is possible to
find a large number of problems denominated NP-Hard, that is mean that the problem does not
have a solution in polynomial time. One of the most classical problems in the combinatorial
optimization field is the Traveling Salesman Problem (TSP), it has been analyzed for years [6]
either in a mono or multi-objective manner. Formally, TSP is defined as follows:

min

n∑
i=1

n∑
j=1

Cij ·Xij , (1)

subject to:
n∑

j=1

Xij = 1, ∀i = 1, . . . , n, (2a)

n∑
j=1

Xij = 1, ∀j = 1, . . . , n, (2b)

∑
i∈κ

∑
j∈κ

Xij ≤ |κ| − 1, ∀κ ⊂ {1, . . . , n} , (2c)

Xij = 0, 1∀i, j, (2d)
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where Cij is the cost of the path Xij and κ is any nonempty proper subset of the cities 1, . . . ,m.
(1) is the objective function. The goal is the optimization of the overall cost of the tour. (2a),
(2b) and (2d) fulfill the constrain of visiting each city only once. Lastly, Equation (2c) set the
subsets of solutions, avoiding cycles in the tour.

TSP has an important impact on different sciences and fields, for instance in Operations
Research and Theoretical Computer Science. Most problems related to those fields, are based
in the TSP definition. For instance, The Hard Scheduling Optimization [5] had been derived
from TSP. Although several algorithms have been proposed for the solution of TSP, there is not
one that optimal solves it. For this reason, this paper discuss novel metaheuristics based on the
Automata Theory in order to approach the solution of the Multi-objective Traveling Salesman
Problem. This paper is structured as follows: in section 2 important definitions about the multi-
objective combinatorial optimization and the metaheuristics based on the automata theory are
given, section 3 discusses an evolutionary metaheuritic based on the automata theory for the
multi-objective optimization of combinatorial problems, lastly, in section 4 and 5 experimental
results are given for each algorithm in order to estimate their performance using multi-objective
metrics from the specialized literature.

2 Preliminaries

2.1 Multi-objective Optimization

The multi-objective optimization consists in two or more objectives functions to optimize
and a set of constraints. Mathematically, the multi-objective optimization model is defined as
follows:

optimize F (X) = {f1(X), f2(X), . . . , fn(X)} , (3)

subject to:
H(X) = 0, (4a)

G(X) ≤ 0, (4b)

Xl ≤ X ≤ Xu, (4c)

where F (X) is the set of objective functions, H(X) and G(X) are the constraints of the problem.
Lastly, Xl and Xu are the bounds for the set of variables X.

2.2 Metaheuristic of Deterministic Swapping (MODS)

Metaheuristic Of Deterministic Swapping (MODS) [4] is a local search strategy that explores
the feasible solution space of combinatorial problems based on a data structure named Multi
Objective Deterministic Finite Automata (MDFA) [3]. A MDFA is a Deterministic Finite Au-
tomata that allows the representation of the feasible solution space of combinatorial problems.
Formally, a MDFA is defined as follows:

M = (Q,Σ, δ,Q0, F (X)), (5)

where Q represents all the set of states of the automata (feasible solution space), Σ is the
input alphabet that is used for δ (transition function) to explore the feasible solution space of a
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combinatorial problem, Q0 contains the initial set of states (initial solutions) and F (X) are the
objectives to optimize. MODS explores the feasible solution space represented through a MDFA
using a search direction given by an elitist set of solutions (Q∗). The elitist solution are states
that, when were visited, their solution dominated at least one solution in Qϕ. Qϕ contains all
the states with non-dominated solutions.

Lastly, the template algorithm of MODS is defined as follows:

1. Create the initial set of solutions Q0 using a heuristic relative to the problem to solve.

2. Set Qϕ as Q0 and Q∗ as ϕ.

3. Select a random state q ∈ Qϕ or q ∈ Q∗

4. Explore the neighborhood of q using δ and Σ. Add to Qϕ the solutions found that are not
dominated by elements of Qf . In addition, add to Q∗ those solutions found that dominated
at least one element from Qϕ.

5. Check stop condition, go to 3.

2.3 Simulated Annealing Metaheuristic of Deterministic Swapping (SAMODS)

Simulated Annealing & Metaheuristic Of Deterministic Swapping [2] (SAMODS) is a hybrid
local search strategy based on the MODS theory and Simulated Annealing algorithm for the
multi-objective optimization of combinatorial problems. Its main propose consists in optimizing
a combinatorial problem using a Search Direction and an Angle Improvement. SAMODS is based
in the next Automata:

M = (Q,Q0, P (q), F (X), A(n)), (6)

Alike MODS, Q0 is the set of initial solutions, Q is the feasible solution space, F (X) are the
functions of the combinatorial problem, P (q) is the permutation function (P (q) : Q → Q) and
A(n) is the weighted function (A(n) : N → ℜn). n represents the number of objective for the
combinatorial problem.

SAMODS exploits the search directions given by MODS and it proposed an angle direction
given by the function A(n). Due to this, SAMODS template is defined as follows:

1. Setting sets. Set Q0 as the set of Initial Solutions. Set Qϕ and Q∗ as Q0.

2. Settings parameters. Set T as the initial temperature, n as the number of objectives of the
problem and ρ as the cooler factor.

3. Setting Angle. If T is equal to 0 then got to 8, else set Ti+1 = ρ × Ti, randomly select
s ∈ Qϕ, set W = A(n) = {w1, w2, · · · , wn} and go to 4.

4. Perturbing Solutions. Set s′ = P (s), add to Qϕ and Q∗ according to the next rules:

Qϕ = Qϕ ∪
{
s′
}
⇔ (̸ ∃r ∈ Qϕ)(r is better than s′), (7a)

Q∗ = Q∗ ∪
{
s′
}
⇔ (∃r ∈ Q∗)(s

′ is better than r), (7b)

then, if Qϕ has at least one element that dominated to s′ go to step 5, otherwise go to 7.
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5. Guess with dominated solutions. Randomly generated a number n ∈ [0, 1]. Set z as follows:

z = e(−(γ/Ti)), (8)

where Ti is the temperature value in moment i and γ is defined as follows:

γ =

n∑
i=1

wi · fi(sX)−
n∑

i=1

wi · fi(s′X), (9)

where sX is the vector X of solution s, s′X is the vector X of solution s′, wi is the weight
assigned to the function i and n is the number of objectives of the problem. If n < z then
set s as s′ and go to 4 else go to 6.

6. Change the search direction. Randomly select a solution s ∈ Q∗ and go to 4.

7. Removing dominated solutions. Remove the dominated solutions for each set (Q∗ and Qϕ).
Go to 3.

8. Finishing. Qϕ has the non-dominated solutions.

2.4 Genetic Simulated Annealing Metaheuristic of Deterministic Swapping
(SAGAMODS)

Simulated Annealing, Genetic Algorithm & Metaheuristic Of Deterministic Swapping [2]
(SAGAMODS) is a hybrid search strategy based on the Automata Theory, Simulated Annealing
and Genetics Algorithms. SAGAMODS is an extension of the SAMODS theory. It comes
up as result of the next question: could SAMODS quickly avoid local optimums? Although,
SAMODS avoids local optimums guessing, it can take a lot of time accepting dominated solutions
for finding non-dominated. Thus, the answer to this question is based on the Evolutionary
Theory. SAGAMODS proposes crossover step before SAMODS template is executed. Due to
this, SAGAMODS supports to SAMODS for exploring distant regions of the solution space.
Formally, SAGAMODS is based on the next automata:

M = (Q,QS , C(q, r, k), F (X)), (10)

where Q is the feasible solutions space, QS is the initial solutions and F (X) are the objectives
of the problem. C(q, r, k) is defined as follows:

C(q, r, k) : Q → Q, (11)

where q, r ∈ Q and k ∈ N . q and r are named parents solutions and k is the cross point. Lastly,
SAGAMODS template is defined as follows:

1. Setting parameters. Set QS as the solution set, x as the number of solutions to cross for
each iteration.

2. Set QC (crossover set) as selection of x solutions in QS , QM (mutation set) as ϕ and k as
a random value.

3. Crossover. For each si, si+1 ∈ QC/1 ≤ i < ∥QC∥ : QM = QM ∪ {C(si, si+1, k)}

4. Mutation. Set Q0 as QM . Execute SAMODS as a local search strategy.

5. Check stop conditions. Go to 2.
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3 Evolutionary Metaheuristic of Deterministic Swapping (EMODS)

Evolutionary Metaheuristic of Deterministic Swapping (EMODS), is a novel framework that
allows the Multiobjective Optimization of Combinatorial Problems. Its framework is based on
MODS template therefore its steps are the same: create initial solutions, improve the solutions
(optional) and execute the core algorithm. Unlike SAMODS and SAGAMODS, EMODS avoids
the slowly convergence of Simulated Annealing’s method. EMODS explores different regions
from the feasible solution space and search for non-dominated solution using Tabu Search. The
core algorithm is defined as follows:

1. Set θ as the maximum number of iterations, β as the maximum number of state selected
in each iteration, ρ as the maximum number of perturbations by state and Qϕ as Q0.

2. Randomly select a state q ∈ Qϕ or q ∈ Q∗.

3. Mutation - Tabu Search Set N as the new solutions found as result of perturbing q. Add
to Qϕ and Q∗ according to the next equations:

(Qϕ = Qϕ ∪ {q}) ⇐⇒ (̸ ∃r ∈ Qϕ/r is better than q) (12a)

(Q∗ = Q∗ ∪ {q}) ⇐⇒ (∃r ∈ Qϕ/q is better than r) (12b)

and then, the states with dominated solutions for each set are removed.

4. Crossover. Randomly, select states from Qϕ and Q∗. Generate a random point of cross.

5. Check stop condition, go to 3.

Step 2 and 3 support the algorithm in removing dominated solutions from the set of solutions
Qϕ as can be seen in figure 3. However, one of the most important steps in the EMODS algorithm
is 4 where new solutions are found after the crossover step.

4 Experimental Analysis

4.1 Experimental Settings

The algorithms were tested using well-known instances from the multi-objective TSP taken
from TSPLIB [1]. The test of the algorithms was conducted using a dual core computer with 2
Gb RAM. The optimal solutions were constructed based on the best non-dominated solutions of
all algorithms in comparison for each instance used. The instances were constructed using the
combination of the mono-objective instances KROA100, KROB100, KROC100, KROD100 and
KROE100. For instance, KROAB100 is a bi-objective instance whose matrices of distance are
given by the instance KROA100 and KROB100. We full combine the instances (KROAB100,
KROAC100, . . ., KROABCDE100) and then we run the experiments. The metrics used for the
measurement of the different algorithms are described below, most of them use two Pareto fronts.
The first one is PFtrue and it refers to the real optimal solutions of a combinatorial problem.
The second is PFknow and it represents the optimal solutions found by an algorithm. In all the
cases ∥ · ∥ represents the number of elements.

GNDV = ∥PFknow∥ , (13)
ReGNDV = ∥{y|y ∈ PFknow ∧ y ∈ PFtrue}∥ , (14)
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where Generation of Non-dominated Vectors (GNDV) and Real Generation of Non-dominated
Vectors (ReGNDV) measure the number of solutions and the number of true solutions found by
an algorithm respectively. On the other measures the number of true solutions generated. On
the other hand, Generational Distance (GD) and Inverse Generational Distance (IGD) measure
the distance between FPknow and FPtrue:

GD =

(
1

∥PFknow∥

)
·

∥PFknow∥∑
i=1

di

(1/p)

, IGD =

(
1

∥PFtrue∥

)
·

∥PFknow∥∑
i=1

di

, (15)

where di is the smallest Euclidean distance between the solution i of FPknow and the solutions of
FPtrue and p is the dimension of the combinatorial problem. For the measurement of the range
variance of neighboring solutions in PFknow the Spacing (S) is proposed:

S =

(
1

∥PFknow∥ − 1

)2

·

∥PFknow∥∑
i=1

(
d− di

)2(1/p)

(16)

where di is the smallest Euclidean distance between the solution i and the rest of solutions in
PFknow. d = 1

∥PFtrue∥
∑∥PFtrue∥

i=1 di. The Error Rate (ε) depicts the error rate respect to the
precision of the solutions as follows:

ε =

(∣∣∣∣∥PFtrue∥ − ∥ReGNDV ∥
∥PFtrue∥

∣∣∣∣) · 100% (17)

4.2 Experimental Results

The average of the metrics applied to each algorithm are shown in table 1. Furthermore, a
graphical comparison for tri-objectives instances is shown in figure 1.

Figure 1: Graphical comparison between MODS, SAMODS, SAGAMODS and EMODS for tri-
objective TSP instances.
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Table 1: Average performance for the algorithms in comparison using multi-objective instances
of TSP with multi-objective optimization metrics.

INSTANCE ALGORITHM GNDV ReGNDV
(

ReGNDV
GNDV

)
% S GD IGD ε

Bi-objective TSP

MODS 262.7 0 0% 0.0286 21.6672 2329.4338 100%
SAMODS 6487.2 1425.7 22.03% 0.0016 0.2936 265.8974 89.47%
SAGAMODS 6554.5 1581.8 23.97% 0.0015 0.3062 286.547 88.3%
EMODS 19758.6 10671.8 54.89% 0.0003 0.0492 75.2773 22.23%

Tri-objective TSP

MODS 1992.5 63.9 3.21% 0.1508 0.302 3206.7459 99.91%
SAMODS 12444.2 269.3 2.16% 0.0727 0.0434 2321.5258 99.6%
SAGAMODS 12332.5 271.1 2.2% 0.0743 0.0437 2312.3389 99.6%
EMODS 68969.1 67097 97.3% 0.0468 0.0011 6.3914 0.89%

Quad-objective TSP

MODS 5364.8 3273.2 60.99% 0.3468 0.0252 5810.4824 94.31%
SAMODS 27639.6 11594.2 41.94% 0.2325 0.0043 3397.7495 79.87%
SAGAMODS 35649.6 14754.8 41.4% 0.2231 0.0032 3013.1894 74.39%
EMODS 200420.6 27991.6 13.97% 0.176 0.0005 1891.9864 51.43%

Quint-objective TSP

MODS 7517 7517 100% 0.5728 0.0125 15705.6864 98.41%
SAMODS 26140 26140 100% 0.4101 0.0033 10801.6382 94.46%
SAGAMODS 26611 26611 100% 0.4097 0.0033 10544.8901 94.36%
EMODS 411822 411822 100% 0.3136 0.0001 950.4252 12.77%

5 Conclusion

SAMODS, SAGAMODS and EMODS are algorithms based on the Automata Theory for the
multi-objective optimization of combinatorial problems. All of them are derived from the MODS
metaheuristic, which is inspired in the Theory of Deterministic Finite Swapping. SAMODS is a
Simulated Annealing inspired Algorithm. It uses a search direction in order to optimize a set of
solution (Pareto Front) through a linear combination of the objective functions. On the other
hand, SAGAMODS, in addition to the advantages of SAMODS, is an Evolutionary inspired
Algorithm. It implements a crossover step for exploring far regions of a solution space. Due to
this, SAGAMODS tries to avoid local optimums owing to it takes a general look of the solution
space. Lastly, in order to avoid slow convergence, EMODS is proposed. Unlike SAMODS
and SAGAMODS, EMODS does not explore the neighborhood of a solution using Simulated
Annealing, this step is done using Tabu Search. Thus, EMODS gets optimal solution faster than
SAGAMODS and SAMODS. Lastly, the algorithms were tested using well known instances from
TSPLIB and metrics from the specialized literature. The results shows that for instances of two,
three and four objectives, the proposed algorithm has the best performance as the metrics values
corroborate. For the last instance worked, quint-objective, the behavior of MODS, SAMODS
and SAGAMODS tend to be the same, them have similar error rate but, EMODS has a the best
performance. In all the cases, EMODS shows the best performance. However, for the last test,
all the algorithms have different solutions sets of non-dominated solutions, and those form the
optimal solution set.

Acknowledgment

First of all, I want to thank to God for being with me in my entire life, He made this possible.
Secondly, I want to thank to my parents Elias Niño and Arely Ruiz and my sister Carmen Niño
for their enormous love and support. Finally, and not less important, to thank to my beautiful
wife Maria Padron and our baby Maria Gabriela for being my inspiration.

Bibliography

[1] University Of Heidelberg. Tsplib - office research group discrete optimization - university of
heidelberg. http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.



Evolutionary Algorithm based on the Automata Theory for the Multi-objective Optimization
of Combinatorial Problems 923

[2] Elias D. Niño. Samods and sagamods: Novel algorithms based on the automata theory for
the multi-objective optimization of combinatorial problems. Int. J. of Artificial Intelligence
- Special issue of IJAI on Metaheuristics in Artificial Intelligence, accepted, 2012.

[3] Elias D. Niño, Carlos Ardila, Yezid Donoso, and Daladier Jabba. A novel algorithm based on
deterministic finite automaton for solving the mono-objective symmetric traveling salesman
problem. Int. J. of Artificial Intelligence, 5(A10):101-108, 2010.

[4] Elias D. Niño, Carlos Ardila, Yezid Donoso, Daladier Jabba, and Agustin Barrios. Mods: A
novel metaheuristic of deterministic swapping for the multi objective optimization of combi-
natorials problems. Computer Technology and Application, 2(4):280-292, 2011.

[5] Elias D. Niño, Carlos Ardila, Adolfo Perez, and Yezid Donoso. A genetic algorithm for mul-
tiobjective hard scheduling optimization. INT J COMPUT COMMUN, 5(5):825-836, 2010.

[6] J.G. Sauer and L. Coelho. Discrete differential evolution with local search to solve the trav-
eling salesman problem: Fundamentals and case studies. In Cybernetic Intelligent Systems,
2008. CIS 2008. 7th IEEE International Conference on, pages 1-6, 2008.

[7] Yang Xiawen and Shi Yu. A real-coded quantum clone multi-objective evolutionary algo-
rithm. In Consumer Electronics, Communications and Networks (CECNet), 2011 Interna-
tional Conference on, 4683-4687, 2011.

[8] Qin Yong-Fa and Zhao Ming-Yang. Research on a new multiobjective combinatorial opti-
mization algorithm. In Robotics and Biomimetics, 2004. ROBIO 2004. IEEE International
Conference on, 187-191, 2004.


