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Abstract: We present a particular disaster response project scheduling problem
(DRPSP) motivated by Fukushima’s nuclear accident of Japan in 2011. We describe
the problem as MPS;R,N |prec, dn|

∑
ckf(rk(S)) by using Hartmann and Briskorn

scheme and formulate a mixed integer linear programming (MILP) model. Due to
the NP-hardness of the problem, we propose a resolution method based on game the-
ory. This method associates the DRPSP to a non-cooperative game model, such that
game solution is a feasible solution of the problem. In order to explore the potential
of the proposed model and the performance of the resolution method, computational
experiments are carried out. The results of resolution method show on average, that
the method finds a feasible solution with a difference of 15.44% with respect to op-
timal solution within one percent of the time required by the MILP over GAMS
22.7.2/CPLEX 11.0.
Keywords: Disaster response, project scheduling problem, resolution method, game-
theoretical model.

1 Introduction

Worldwide, disasters still continue to cause human casualties, damage and destruction of
infrastructure, instability in the economy and the order of the community. Nowadays, the prob-
lems of disaster operation management (DOM) are considered an important factor into policies
of national security [1]; thus, it is relevant to understand how one can face them effectively and
efficiently. In particular, there is increasing recognition of the need of applying of operations re-
search (OR) methods in DOM, because it develops a scientific approach to help decision making
before, during and after a disaster [2]. Indeed, DOM problems are considered as the opportunity
to re-visit and re-define OR, being a likely and worthwhile growing area in the next 50 years [3].

DOM problems arise in four phases: mitigation, preparedness, response and recovery [4].
An issue of particular interest in the disaster response phase is the project scheduling problem,
because it addresses a double dilemma: on the one hand, the urgent need for project completion
in the minimum possible time in order to prevent casualties and to reduce the impact on the
social, economic, and political order; on the other hand, the scarcity in the number of resources
with limited availability to carry it out. Some recent works of this area developed in the literature
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have been proposed by De Angelis et al. [5], Fukura et al. [6], Yan and Shih [7], Yan et al. [7],
Zhang et al. [9], Córdova and Yanine [10].

In general, a disaster response project scheduling problem (DRPSP) is considered as a com-
plex variation of the multi-mode resource-constrained project scheduling problem (MRCPSP),
simultaneously addressing both scheduling and assignment [11]. In this work, we study a par-
ticular DRPSP motivated by Fukushima’s nuclear accident of Japan in 2011, where the shortest
completion time was needed in order to avoid fatalities due to radiation exposition, besides of
minimizing the number of rescue workers exposed to radiation.

The paper is broken down as follows: in section two, the statement of the problem is exposed;
in section three, a mixed integer linear programming (MILP) model is formulated; in section four,
the resolution method is presented based on a game-theoretical model for the problem; in section
five, the performance analysis of resolution method is made by computational experiments; and
finally, in section six, the conclusions and directions for further research are given.

2 Statement of the problem

Our problem concerns a project scheduling with a completion time equal to the critical path
length in order to prevent loss of lives and to reduce the impact on the social, economic, and
political order. The processing time of activities is a function of the allocated resources, which
have an available workload as stipulated by a technical constraint or some other condition. The
goal is to determine a schedule of the project, where the number of resources is minimized.
Formally, the problem can be understood as a resource-constrained project scheduling problem
(RCPSP) and denoted as MPS;R,N |prec, dn|

∑
ckf(rk(S)) by using Hartmann and Briskorn

scheme [12].
MPS;R,N denotes the case of multi-mode problem with doubly constrained resources [13],

which means that the “consumed resource” will be at most to its available workload and the
“used resource ” will be one or zero in each time unit. prec and dn denote precedence relations
among the activities and the project deadline constraint, respectively.

∑
ckf(rk(S)) denotes the

problem objective as cost minimization of the resources in order to meet the project deadline,
where ck is the cost per unit of resource k and f(rk(S)) is a function of the consumption rk
of resource k in scheduling S. Note that minimization of resource costs can be understood as a
general goal, since it may consider others objectives such as the the minimization of the resources
or the minimization of any non-monetary characteristic associated to them (e.g., utilized energy,
generated pollution, etc.).

Our problem is closely related to the Multi-mode double resource-constrained time/cost trade-
offs problem in the deadline version [14]. However, our problem adds a new set of constraints on
each double-constrained resource due to the use of dedicated resources [15]. In next section, we
formulate a MILP model for the DRPSP described above.

3 MILP Model

The MILP model is defined as follows. A disaster response project processes a set of n activi-
ties with a corresponding precedence directed acyclic graph G(V,A), where V is the set of nodes,
and A ⊂ V ×V is the set of immediate precedence constraints on the activities. It is noteworthy
that G also includes two dummy “start" and “end" nodes, indexed by 0 and n+1. Each identical
resource k ∈ R = {1, ...,m} has an available workload W , a monetary or non-monetary cost rate
ck = c; and it can only perform one activity at a time. Without loss of generality, we adopt c = 1
and define f(rk(S)) equal to 1 if the resource k is used and 0 otherwise. Each project activity



336 O.C. Vásquez, J.M. Sepúlveda, M.D. Alfaro, L. Valenzuela-Osorio

i ∈ V has a processing time pi, without pre-emption. By definition p0 and pn+1 are zero. The
objective is to find a scheduling S of the project, which minimizes the resources and finishes it
in a given completion time equal to the critical path length d, thus preventing casualties and
reducing the social, economic, and political impacts.

Decision variables:

Xk =

{
1 if resource k is used
0 otherwise

Yik =

{
1 if activity i is processed by resource k

0 otherwise

Uij =

{
1 if activity i can be processed before activity j ̸= i, by the same resource
0 otherwise

CTi = Completion time of activity i

Objective function:

min
m∑

k=1

Xk (1)

Subject to:

CTi ≤ CTj − pj ∀(i, j) ∈ A (2)

CT0 = 0 (3)

CTn+1 = d (4)

n∑
i=1

Yikpi ≤WXk ∀k (5)

m∑
k=1

Yik = 1 ∀i (6)

[(CTj − pj)− CTi] + ε ≤ N(Uij) ∀i, j ̸= i, (i, j), (j, i) /∈ A (7)

[CTi − (CTj − pj)] ≤ N(1− Uij) ∀i, j ̸= i, (i, j), (j, i) /∈ A, (8)

Yik + Yjk ≤ 1 + (Uij + Uji) ∀i, j < i, ∀k (9)

where ε is a small number and N is a large number. The objective function (1) minimizes
the number of resources used for the project. Constraint (2) defines the finish-start type of
precedence relations between the activities. Thus, if for starting activity j it is required that
activity i have been completed, then the processing time of activity j minus the completion time
of activity j should be greater than or equal to the completion time of activity i. Constraints (3)
and (4) allow the fictitious activities of the project to be incorporated so that they generate the
scheduling of the real activities. Thus, constraint (3) determines the project start time, while
constraint (4) imposes a duration deadline for the project. Constraint (5) indicates that if a
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machine is used, then the machine usage should be less than or equal to its workload available.
Constraint (6) establishes that an activity can be processed by only one machine. Constraints
(7), (8) and (9) are of the on-off type and ensure that if a resource is processing a given activity,
then it does not process another one at the same time. In the case of constraint (7), an ε is
incorporated that allows approaching the case in which an activity completion time is equal
to the start time of another one. It is important to point out that for all Uij it is true that
Uij + Uji ≤ 1. This inequality avoids duplicity in the processing of the real activities, because
if activities i and j can only be processed by machine k, they can be only processed in one
sequence, i.e. i and j or j and i.

It is easy to see that the existence conditions for a feasible solution are: the available workload
of resources W is greater than or equal to the maximum processing time of activities and the
number of resources available m is equal to the number of activities n. In what follows, we
assume these feasibility conditions.

4 Resolution method

The development of a resolution method is based on the computational complexity of the
problem. In fact, our problem is NP-hard by using a trivial reduction from the multi-mode
resource-constrained discrete time-cost tradeoff problem [16]. Unfortunately, this NP-hard prop-
erty implies that even modest instances of the problem become intractable in practice, which is
specially expensive in disaster situations, where the decisions must be made quickly for preventing
casualties and reducing the social, economic, and political impacts.

Our resolution method is based on a game-theoretical model. This method associates the
proposed DRPSP to a non-cooperative game model, such that game solution is a feasible solution
of DRPSP. In the game, the activity or a set of them are the players with a utility, which
minimizes the remaining workload of the resource where it is performed; and the strategies are
to associate or not with other player in order to execute them in a specified schedule on the same
resource. In order to guarantee the precedence and workload constraints, a price mechanism is
defined. The solution concept will be a Nash equilibrium in pure strategies (PNE), which always
exists by definition of the game.

The resolution method generates new players, that is, a new set of activities from the PNE.
These new players are integrated to other new game. This process is repeated until new players
can not be generated. The description of the game, the algorithms and convergence of the
method are presented next.

4.1 A game-theoretical model.

Players

Players are activities or a set of them. Each player is characterized by α/Ω, where α =
{1, 2, 3} corresponds to the "type of player" and Ω is the set of activities. By definition a player
type α = 1 represents a project activity (e.g., activity 1 is defined by 1/{1}). Players of type 2
and 3 are formed by two players, a “predecessor" of features α′/Ω′ and “successor" of features
α′′/Ω′′; and a set of activities Ω = Ω′

∪∗Ω′′, where
∪∗ is the ordered union, i.e., if Ω′ = {i, .., l}

and Ω′′ = {j, ..., s}, then Ω = Ω′
∪∗Ω′′ = {i, .., l, j, ..., s}. Both players type 1 and type 2 are

differentiated by the time between the completion time of all activities of the “predecessor" player
and the start time of all activities of the “successor" player. Figure 1 illustrates the difference
between a player of type 2 and type 3. In the case of type 2 player, it shows that the time
of completion of all activities of the predecessor player with 1/{1} is equal to the start time of
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Figure 1: Difference between players of type 2 and 3.

all activities of the successor player with 1/{5}. Whereas in the case of the player type 3, it
has a time equal to ∆t > 0 between each activity. Notice that the players of type 1 and 2 are
determined only by the completion time of all activities of the predecessor player and the start
time of all the activities of the successor player. Therefore, a player of type 2 could have ∆t > 0
between some of its activities, because the predecessor and/or successor could be a player of type
3. Figure 2 shows an example of the situation.

Figure 2: Player of type 2 conformed by a player of type 3.

Strategies

Consider a game with M players. Each player i ∈ {1, ...,M} will have a set of strategies
Si = {1, ..., i − 1, i, i + 1, ...M, S}. The strategy si = {1, ..., i − 1, i + 1, ...M} means that the
player i want to be after player si in a schedule on a resource, shortly we say that the player i
"buys" to player si. The strategy si = i indicates that player i does not want to bind with any
player in a schedule on a resource, shortly we say that the player i does not want to "negotiate"
with any player. The strategy si = S means that player i is available to be before any player
in a schedule on a resource, shortly we say that the player is "placed on sale". If the player i
decides to "buy"‘, then a "buying price" equal to maximum time to start all the activities of
player i is calculated. On the other hand, if the player i decides to "sell", a "selling price" equal
to the time of completion of all activities of the player i is calculated. For the calculation of
prices, the free slack (FSi) and the earliest start time (ESi) of each activity i is needed, being
easily obtainable through the Critical Path Method (CPM). Table 1 presents the definition of
the buying and selling price for each of type of players.

Player BP (buying price) SP (selling price)
1/{i} ESi + FSi ESi + pi
2/{Ω = Ω′

∪∗
Ω′′} ESi +min(BPα′/Ω′ − ESi, BPα′′/Ω′′ − SPα′/Ω′) SPα′/Ω′ + (SPα′′/Ω′′ − ESj)

3/{Ω = Ω′
∪∗

Ω′′} ESi +min(BPα′/Ω′ − ESi, BPα′′/Ω′′ − ESj) SPα′′/Ω′′
For the player type 2 and 3, i and j are the index of the first activity in set Ω′ and Ω′′, respectively.

Table 1: Prices definition for types of players.

Note that if the “buying price" of player A is greater than or equal to the “selling price" of
player B, then the set of activities of player A can start after the set of activities of player B. In
practice, these prices allow to bind a set of activities, respecting the precedence constraints and
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deadline of the project. Figure 3 presents a illustration of the buying and selling price for each
of type of players.

Figure 3: Price illustration of types of players.

Payoffs

The payoff of each player i ∈ {1, ...,M} depends on his strategy and the strategies of other
players. The notation is ri(si, s−i) where si ∈ Si and s−i ∈ S−i =

⊗
j ̸=i Sj . The definition of

payoff for player i of feature α/Ω is presented in (10)

ri(si, s−i) =



∑
w∈Ω pw if ∀si = i, s−i ∈ S−i∑
w∈Ω

∪∗ Ω′ pw if
∑

w∈Ω
∪∗ Ω′ pw ≤W,Ω ∩ Ω′ = ∅ and

a)si = j, sj = S,BPi ≥ SPj , ∀sk ̸= j(k ̸= i, j) or
b)si = S, sj = i, BPj ≥ SPi, ∀sk ̸= i(k ̸= i, j)

where Ω′ is the set of activities of the player j

−∞ otherwise

(10)

Note that the payoff will be different to minus infinity if and only if the precedence constraints,
critical path time as deadline project and the available workload of the resource are satisfied.
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In fact, the relation of prices guarantee the precedence and deadline constraints; the relation of
the sum of processing time guarantees satisfaction of workload availability of resources, and the
relations between the activity set of player avoids the duplicity of activities. In the case si = i,
the payoff value will always be different to minus infinity by definition.

Solution concept

In this game, the interaction among players is modeled as non-cooperative and the solution
concept is a Nash equilibrium in pure strategies (PNE). The set of PNE of any game is always
nonempty, because the strategy profile where all players use the strategy "to negotiate" with no
player is a PNE by definition. Thus, any defined game has at least a PNE.

4.2 Algorithms

We define three algorithms, called ALGO 1, 2 and 3 respectively, which define our resolution
method. ALGO 1 finds a pure strategies profile for any game. Here, we prove that this strategies
profile is always a PNE. ALGO 2 generates new players as a new set of activities from PNE
generated by ALGO 1. Finally, ALGO 3 integrates ALGO 1 and ALGO 2 in a cyclic process,
until new players cannot be generated. In practice, the final solution yielded by ALGO 3 will be
the solution of the method.

We assume a game with M players and consider a matrix ΓM×M . Let Γij be the payoff of
player i and player j. The case Γij , i ̸= j means that the strategy of row player i is to buy
to column player j, the strategy of player j is placed on sale, and the strategies of all player
k ̸= i ̸= j is not to buy to player j. Note that by definition, both the payoff of player i and
the player j are equal. The case of Γii means the payoff of player i if his strategy is not “to
negotiate" with any player. This matrix Γ has two properties: a) it contains all payoffs of each
player that could be different to −∞ by definition; and b) at least, Γii for all i is different to
−∞ by definition.

Now, we define the ALGO 1 to find a strategies profile of the game.

Algorithm 2 ALGO 1
Data: Instance data of problem
Result: Strategies profile
Step 0: Generate Matrix Γ
Step 1: Select the maximum value of matrix Γ.
Step 2:
a) Assign the strategies of row and columns players of maximum value.
b) Fix the strategies to component players of the row-column players found.
Step 3: Redefine Γ such that
a) Delete the row and column equal to index row-column players found.
b) Delete the row and column equal to index of component players of row-column players found.
c) Delete the row and column equal to index of player, whose component players are some row-column
players found.
Step 4:
If Γ ̸= ∅ then
Return Step 1
End if
Step 5: Generate the strategies profile.

Theorem 1. ALGO 1 finds a PNE for the proposed game.
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Proof: We consider a game with M players and a strategies profile found by ALGO 1. Without
loss of generality, we assume that 2L players have a one-to-one correspondence between buy-sale
strategies and M − 2L players are not no correspondence. Let {sin = jn, sjn = S}Ln=1 be the
notation for a correspondence between the "buyer" player in and the on "sale" player jn. Let
{skn = kn}Mn=2L+1 be the notation for the case with no correspondence. In addition, we define
the strategy index p ∈ {1, 2...M}. We show that the strategies profile found by ALGO 1 is PNE
by definition, i.e., a unilateral deviation in strategy by any single player is not profitable for that
player. Formally, we prove:

1. rin(sin = jn, s−in) ≥ rin(sin = in, s−in) ∀in

2. rin(sin = jn, s−in) ≥ rin(sin = S, s−in) ∀in

3. rin(sin = jn, s−in) ≥ rin(sin = p, s−in), ∀p ̸= jn, in, S ∀in

4. rjn(sjn = S, s−jn) ≥ rjn(sjn = jn, s−jn) ∀jn

5. rjn(sjn = S, s−jn) ≥ rjn(sjn = p, s−jn), ∀p ̸= jn, S ∀jn

6. rkn
(skn

= kn, s−kn
) ≥ rkn

(skn
= S, s−kn

) ∀kn

7. rkn(skn = kn, s−kn) ≥ rkn(skn = p, s−kn),∀p ∈ {1, ...,M}\kn ∀kn
For the conditions 1 and 4, we have a proof by a contradiction. Without loss of generality, suppose
that the condition 1 and 4 are false for some players pair in and jn with correspondence between
buy-sale strategies and that ALGO 1 selected this correspondence in the step k. Now, we note
that ALGO 1 in the step k fixed the "buy" and "on sale" strategies for the players, when they
obtain a payoff value greater than the obtained payoff value for them with the "alone" strategy.
Therefore, we have a contradiction with the assumption case. For conditions 2, 3, 5, 6 and 7,
we have a proof by the definition of payoff. In fact, for the case 2 given that the “buyer" player
p ̸= in with sp = in does not exist, then rin(sin = S, s−in) is equal to −∞. For the case 6, a
similar argument is hold. For the case 3, if the player p ̸= jn, in, S is “on sale", it is bought by
another player, then rin(sin = p, s−in) is equal to −∞; else the player p is not "on sale", then
the player p is a “buyer" player or a "alone" player, therefore rin(sin = p, s−in) is equal to −∞.
For the case 5 and 7, we have a similar argument. 2

The input of ALGO 2 considers a PNE of the game. This PNE can have one-to-one corre-
spondences between buy-sale strategies of players. If there are one-to-one correspondences, then
a new player is generated by each of them. These new players will have the above definition of
prices, considering the "buyer" and "on sale" players.

Algorithm 3 ALGO 2
Data: PNE of game
Result: New players
Step 0:
While one-to-one correspondences exists in PNE do
a) Generate a new player and compute sale and buy prices, considering the “buyer" and “on sale" players.
b) Extract the players with one-to-one correspondences of PNE.
End while

Finally, we present the ALGO 3. We consider a sequence of games SG. Let PNEk be the
Nash Equilibrium of the game k ∈ SG. Let NPk the new players generated in the game in the
position k of sequence SG, shortly game k.

ALGO 3 generates a new game k+ 1, integrating each player of NPk into the game k+ 1, if
and only if this player is not in the game k. The game k will be the last game of SG if and only
if no new player is integrated.
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Algorithm 4 ALGO 3
Data: Instance data of problem
Result: Solution of instance
Step 0: Call to ALGO 1.
Step 1: Call to ALGO 2.
Step 2:
If New players generated are not in set of players k then
Incorporate the new players generated to game.
k := k + 1
Return Step 0
End if
Step 3: Generate the solution from PNE of game k.

5 Computational experiments

We analyze the resolution method performance by using computational experiments. For
this, we generate four projects by the following process:

• We define four intervals for the number of activities of the project: 1-10, 11-20, 21-40 and
41-80. For each interval i we define a project Pi with a number of activity ni by random
way.

• We determine ⌈ni
2 ⌉ as maximum value for the processing time of activities of project Pi.

For each activity of a project Pi, a integer value from the interval [1, ⌈ni
2 ⌉] is assigned as

processing time by random way.

• We fix three predecessor activities as maximum per activity. For each activity of a project,
a number of predecessor activities is defined, and later, the predecessor activity(ies) is (are)
assigned. Both processes by random way.

• For each project, we compute the number of feasible instances by changing the workload
availability of resources within the feasible interval (i.e., W between the maximum pro-
cessing time pmax and the critical path di of project Pi). Each instance is resolved in
optimal way by using the MILP proposed. This MILP is programmed and run in GAMS
22.7.2/CPLEX 11.0 (Intel Core i3, 3.10 GHz, 4.00 GB RAM) for each instance into time
window of two hours. Finally, we consider a total of 118 instances, in which the optimal
value is obtained.

Table 2 shows the features of generated projects.

Project i 1 2 3 4
Activities 10 18 30 75
pmax 4 8 12 27
d 14 30 47 99

Instances 11 23 36 48

Table 2: Principal features of generated projects.

Once the instances are defined, the resolution method is programmed in C++ in the same
hardware. In case of ties in the maximum value of the matrix, we adopt the priority rule: first
row, first column.

The metric of analysis considers: the differences between the solution given by the proposed
method resolution and the optimal solution (∆S) and, between the computation time in seconds
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required by the optimal solution and proposed method (∆t). Also, we compute the percentages
obtained by the ratios between the ∆S and the optimal solution (% ∆S), and between the
computation time required by the optimal solution and proposed method (% ∆t). The obtained
results are shown in Table 3 and Figure 4.

∆S % ∆S ∆t %∆t

Average 0.85 15.44 744.46 0.25
Stand.Dev. 0.94 23.36 1,123.59 0.27
Minimum 0.00 0.00 0.22 0.00
Maximum 4.00 100.00 3,402.86 0.88

Median 0.00 3.13 2.08 0.15
Hits 54 (45.76 %)

Table 3: Results of analysis.

Figure 4: Obtained results for projects.

6 Conclusions

In this paper we presented a particular disaster response project scheduling problem (DRPSP)
motivated by Fukushima’s nuclear accident of Japan in 2011. We described this problem by using
Hartmann and Briskorn scheme [12] and represented it by a mixed integer linear programming
(MILP).

By considering the NP-hardness of the problem, we developed a new resolution method based
on game theory. This method ensures feasibility of the solution and convergence. The compu-
tational experiments yielded good results in comparison with the optimal solution, specially
the computational times. On average, the method finds a feasible solution with a difference of
15.44% with respect to optimal solution within one percent of the time required by the MILP
over GAMS 22.7.2/CPLEX 11.0. This computational speed is worth in disaster situations where
decisions must be made quickly.

Further research is proposed in order to improve the resolution method results. In particular,
analysis of initial data and generation of subroutines for diversification. The first subject is very
important because it can give a best lower bound for the problem, whereas the latter fact allows
to jump the local solutions and to improve the final result.
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