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Abstract  

      This paper represents the neutronic and thermal-hydraulic calculations for the conversion of BN-350 from 27% 

to 7% enriched Uranium fuel elements. Mixed enrichment cores has been studied where low enrichment uranium 

(LEU) cores fresh fuel elements substitute gradually the high enrichment uranium (HEU) depleted fuel elements in 

the equilibrium core. 

    Thermal hydraulic calculations have been carried out to determine changes in the characteristics of the 

converted reactor during steady state conditions and transient response to a coolant flow loss.  

 

1- Introduction 

       Several studies for the conversion of BN-350 loop type reactor have been studied. So they concluded that[1-

3], in order to match the cycle length of the current 27% high enriched uranium fuel design HEU with 20% 

enriched fuel LEU(low enriched uranium), an uranium density of about 11gm/cm3 is required.    

      The BN-350 reactor will be converted to use the 7% enriched uranium LEU fuel elements which have only 

minor changes of the fuel plates and no change in the design of the fuel element geometry. With the same element 

geometry, the thermal hydraulic characteristics of the core should be almost identical with both HEU and LEU 

fuels. Neutronic calculations have been performed using well verified computer codes, DAIXY code[4], [5], and 

another program established (JAM1) using a personal computer. 

       A thermal hydraulic program (JAM2) [6] has been developed to analyze the behavior of the reactor in steady 

conditions at nominal pond during primary pumps failure. Table (1) gives some important physical properties of 

the BN-350 reactor [3] [7]-[10]: 
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Table (1): Reactor and fuel element design descriptions with the HEU and LEU fuels 

Property          HEU           LEU 

Reactor type 

Steady –state power level, Mw 

U235 density in fuel element: 

External plate, g/cm3 

Internal plate, g/cm3 

Uranium enrichment, % 

Number of reference core configuration 

Control blade material 

Number of control blades 

Number of fuel assemblies 

Coolant 

Reflector 

Fuel mass(tHM) (tonnes of heavy metals) 

Lattice pitch,  mm 

Primary coolant  velocity, m/s 

Inlet temperature,  C0 

Outlet temperature, C0 

fuel rod thickness, mm 

fuel rod height, mm 

Active length, mm 

Clad thickness  SS316, mm 

Coolant flow area, cm2 

Fuel element composition   

Loop type 

1000 

 

8 

9.5 

27 

211 

B4C 

12 

120 

Na 

Depleted UO2 

1.170  235U  

98 

8 

300 

500 

6.1 

1060 

1060 

0.35 

5450 

UO2PuO2 

Loop type 

1000 

 

8.11 

9.523 

7 

211 

B4C 

12 

109 

Na 

Depleted UO2 

1.3851 235U  

98 

8 

300  

500 

6.1 

1182 

1060 

0.35 

5450 

UO2PuO2 

 

2-Neutronic calculations  

         Cross sections were prepared for different regions in the core using the reactor physics constantsANL-

5800[11], [12], reactor physics constants. Different cell models were needed to generate appropriate cross sections 

for the various reactor regions in the standard four group structure. Most of the results of this study are based on 

two dimension multigroup diffusion calculations using DAIXY code and JAM1 personal program, with buckling 

are imposed for the axial dimension [13]. 

       Fig.(1), shows the core arrangement of BN-350 reactor consisting of three regions of 898 fuel elements with 

depleted UO2 reflected, the experimental value of effective multiplication factor Keff [5] estimated for the reference 

HEU core using UO2PuO2 was 1.0288065. 
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Fig.(1) BN – 350 zones with assembly arrangements. 

 

         The DAIXY and JAM1 were used to calculate the Keff for both HEU and LEU reference core with 898 fuel 

elements using the same axial buckling [3]. The Keff  results are shown in table(2) for LEU and HEU cases,  in 

which the code predicts well the  Keff experimentally determined. 

 

Table (2): Effective multiplication factor calculated for BN-350 with HEU and LEU fuels. 

Case 

 

Daixy JAM1 References* 

Keff %Δk/k Keff %Δk/k Keff %Δk/k 

HEU 

LEU 

1.0321169 

1.0301165 

2.883400 

0.117022 

1.0329612 

1.0309513 

2.0806 

0.9040 

1.028806 

1.010101 

2.8 

0.9 

*References:[3][5][7][11].     

          The reactor kinetics parameters have been calculated for the reference core at the end of equilibrium cycle 

for both HEU and LEU fuels [3][14][15]. By using the two dimensional diffusion theory perturbation capability of 

JAM1, the values of neutron generation time (ʌ ), the prompt neutron lifetime (𝓁) and the effective delayed neutron 

fraction (βeff) were obtained and listed in table 3.  

 

Table (3): Kinetics parameters for the HEU and LEU cores. 

Core Fuel type ʌ  ( μs ) 𝓁 ( μs ) βeff 

Reference 

 

Calculated 

 

HEU 

LEU 

HEU 

LEU 

42.0 

39.0 

43.5 

40.3 

43.2098 

39.3939 

43.7618 

40.3472 

0.0158 

0.0146 

0.0149 

0.0141 

      

        The isothermal temperature and void coefficients of reactivity were computed separately as functions of 

temperature with noting the following effects: 

1- Hardening of the neutron spectrum caused by increasing the temperature of the coolant only.  

2 - Increasing in neutron leakage when the coolant density is decreased. 

3 - Increasing in U-238 epithermal resonances absorption due to the increasing of the fuel element temperature 

(Doppler effect) [16]. 

       The global temperature coefficient of reactivity is expressed in terms of -Δρ/ΔT*10-3 /C0 and obtain for the 

reference fresh fuel core with 1.761 for HEU fuel and 1.532 for the LEU fuel. The control worth calculations for 

the control blades (12 fully inserted B4C-SS316) and the fuels of both HEU and LEU, compared with the reference 

and equilibrium cases, are based on a diffusion calculation. Cross sections were used from ANL-5800 and from 

[11][12][17]. The reactivity ρ corresponding to the control blades using DAIXY code, are shown in table (4) for 

both reference and equilibrium cores using HEU and LEU fuels.   

Scram rods Burnup compensators 

Regulating rods 

Sockets for internal torage 

Outer shield bunles 

Core bundles 

Neutron shielding 

Inner shield bundles 
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Table (4): Control worth of the B4C control blades for HEU and LEU cores 

core Fuel type Kout 
* Kin

** Control worth 

Reference 

 

Calculated 

HEU 

LEU 

HEU 

LEU 

1.0288065 

1.0309132 

1.0321169 

1.0302966 

0.9153320 

0.8631890 

0.9831417 

0.9528554 

0.1134745 

0.1677242 

0.0489752 

0.0998154 

*  Kout: Keff when control rods up.  

** Kin: Keff when control rods down. 

          Mixed enrichment cores might be considered as an option for the conversion of the BN-350 reactor where 

LEU fresh elements substitute gradually the HEU fuel in the equilibrium core. This situation is expected to occur 

during the core conversion and in the planning of such conversion it has to predict the accurate behavior of the 

mixed cores. 

         For the mixed core calculations it will be used the same shuffling pattern that was utilized for the equilibrium 

core. 

 

3-Thermal – hydraulic calculations 

        The conversion of the BN-350 reactor from HEU fuel to LEU fuels was considered without changing the 

geometry of fuel element. The minor modifications in fuel plates were made in which the width of the fuel rod was 

changed from its actual values of 6.1mm to 7.256 mm in the LEU case. Thus, the thermal-hydraulic behavior of 

the converted core would be virtually identical to the HEU core [18]. 

        The thermal-hydraulic calculations have been carried out using a thermal-hydraulic subroutine program 

JAM2 in order to determine changes in the characteristic of the converted reactor during steady conditions and 

transient response to a loss of coolant flow (LOCA) for both HEU and LEU reference core. However, the 

calculations for both types of the reference core fuels, HEU and LEU, confirm that there are minor changes in the 

thermal-hydraulic behavior, see table (1), and for this reason it will only be shown the results for the fresh LEU 

reference core. 

       For steady state case, the results of temperature distribution at the surface of fuel rod and the center  were 

670C0 and 369C0 respectively as shown in fig(2), which is indicates that temperature was fixed after about 10 

seconds. 

 

 

Fig. (2): Temperature distribution with time for fuel rods. (Steady state). 

But for transient case, we show that after 151s the fuel fused because it reaches melting point, and the clad fused 

after 62s for the same reason, as shown graphically in fig.(3).      
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Fig. (3): Transient Temperature distribution in fuel rods (Fuel and Clad). 

 

4-Conclusions 

          In every aspect, the BN-350 reactor can be converted to use 7% enriched uranium without modification in 

the design of the fuel element geometry where the fuel density changed from its actual values of 9.5gm/cm3 to 

9.523 gm/cm3. 

       The most important neutronic effect in the equilibrium core performance as a result of the conversion, from 

27% to 7% enriched uranium fuel, is the increasing of thermal flux from 10.1653x1015n/cm2.s, to 

10.43668x1015n/cm2.s in the irradiation positions, and from 7.721287x1015n/cm2.s, to 8.156372x1015n/cm2.s for 

control rods.         

        Mixed enrichment cores might be considered as an option for the conversion of the reactor where LEU fuel 

elements substitute gradually the HEU fuels in the equilibrium core.  

       The thermal-hydraulic behavior for the reference core was identical to both HEU and LEU fuels. The effects 

of flow transient over the thermal-hydraulic characteristics of the reactor for the LEU reference core at beginning 

of life have demonstrated that it can operate at 1000Mwt. 

         For the equilibrium core, the flow through the fuel element channels has a reduction estimated in 10% in a 

relation with the reference core; consequently, the maximal heat flux is reduced for about 60% comparing the same 

configurations. It could be, thus, deduced that the reactor using equilibrium core is safer than the reference cores 

configuration, however, this conclusion must be confirmed.  
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