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Abstract: In this paper we define a new method for speed (velocity) computation,
named mixt profile. The mixt profile of speed variation assures an accurate positioning
at the end of motion (movement), in a well determinate time lapse. The method is
linked with computation of location (position) matrix, about an industrial robot.
Mixt profile of speed may be applied about motion on linear or circular trajectories.
The paper continues the explanation from [6]a regarding this method.
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1 Introduction

This paper contains others explanation regarding mixt profile of speed, published in [6], those
are: more detailed explanations about the computation method named mixt profile of speed; the
adaptation of mixt profile method of computation for a circular trajectory and a concrete example
of computation; a graphic about deceleration stage explaining software implementation of this
computation method; formulas of reverse kinematics about RRRRRR robotic arm, which was
done for illustrate the method of computation, figure 1; formulas of direct kinematics about
this robotic arm; explanations about the solid kinematics principles that establish the direct
kinematics; enunciation of Or algorithm about determining the direct kinematics of an robotic
arm (a simple algorithm defined in this paper; it analyses only those two relative positions:
parallel or perpendicular).

Concerning movement command of an industrial robot, [1]- [6] it is necessary to define the next
location of it. The industrial robot location is defined by the location matrix. Starting with the
values of location matrix, the values of kinematics joints parameters of the industrial robot may be
computed. Those computation formulas are named, reverse kinematics. The reverse kinematics
is the solution of an equation system formed by forward kinematics. Forward kinematics of an
industrial robot is the result of a kinematics analysis. An example of kinematics analysis about
an industrial robot, (more precise, about a robotic arm type RRRRRR) is illustrated in figure
1 [3].

In figure 1, the notations defines several Cartesian coordinate systems with its axles: Xi, Yi,
Zi and its origins: Oi (index i goes from 1 to 6; i = 1..6); then six rotation driving kinematics
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Figure 1: Kinematics analysis of robotic arm, type RRRRRR

couples (d.c.c.) of robotic arm: Ci (i = 1..6); variable parameters of d.c.c.: Θi (i = 1..6);
constant parameters of the robotic arm: d1; a2; d4; d6; the versors: −→n ; −→o ; −→a (about sense and
direction of axles OX6; OY6 and OZ6), the Cartesian coordinate system of index 6 has the origin
in the tool centre point (TCP) of the robotic arm. All Cartesian coordinate systems have the
position of axles according with Denavit-Hartenberg convention. [3], [6]

About industrial robot movement (motion), if the motion time is defined, the positioning
precision at the end of the motion is not very good. A very good positioning precision, at the
motion end, can’t be obtained, in a defined motion time. Both conditions are very hard to
accomplish. The mixt profile speed variation, defined in this paper, during industrial robots
motion, may accomplish those two conditions. The method is linked with the location matrix
computation of an industrial robot. [6]

2 The location matrix of an industrial robot

The industrial robot location, (position and orientation) is defined by the location matrix
that contains axles components of position vector: −→p and orientation versors: −→n ; −→o ; −→a ; figure
2, [3]; a versors have the module equal to 1.

Figure 2: The position vector and orientations versors that define the location matrix of an
industrial robot

A versor describes only the orientation; about an industrial robot, the orientation versors:
−→n ; −→o ; −→a ; describe the orientation of tool centre point, TCP, regarding the Cartesian coordinate
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system considered.
The location matrix of the industrial robot contains three components of those versors and

the position vector (three components along well known three axles of a Cartesian coordinate
system: OX; OY ; OZ).

Gi =


nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1

 (1)

Index i of the location matrix makes reference to index i Cartesian coordinate system.
According to Denavit-Hartenberg convention, a coordinate system, index i, is obtained by ho-

mogeneous transformations, from previous one, index i−1. Those homogeneous transformations
are (always in this order):

1. rotation of Θi(t) +β angle, around OZi−1 axle (the parameter t show that the angle varies
in time, it is programmable, because that d.c.c. is an rotation one);

2. translation of di distance, along OZi−1 axle;

3. translation of li distance, along OXi axle;

4. rotation of αi angle, around OZi−1 axle. [3], [6]

The previous homogeneous transformations define the transformation matrix, i−1Ai: [3]

i−1Ai = Rot(OZi−1, θi(t) + βi) · Trans(OZi−1, di) · Trans(OXi, li) ·Rot(OXi, αi) (2)

For example, the forward kinematics formulas of the robotic arm from figure 1 are (a robotic
arm is a particular kind of industrial robot, it is similar with the human arm):

0A1 = Rot(OZ0, θ1(t) + π/2) · Trans(OZ0, d1) ·Rot(OX1,+π/2)
1A2 = Rot(OZ1, θ2(t)) · Trans(OX2, a2)
2A3 = Rot(OZ2, θ3(t) + π/2) ·Rot(OX3,+π/2)
3A4 = Rot(OZ3, θ4(t)) · Trans(OZ3, d4) ·Rot(OX4,−π/2)
4A5 = Rot(OZ4, θ5(t)) ·Rot(OX4,+π/2
5A6 = Rot(OZ5, θ6(t) · Trans(OZ5, d6)

(3)

Let us discus about transformation matrix 0A1.
The kinematics joint, named C1, is a rotational one; so, relation 2 is useful and must be

adapted (index i is equal with 1):

0A1 = Rot(OZ0, θ1t+ βi) · Trans(OZ0, d1) · Trans(OX1, l1) ·Rot(OX1, α1) (4)

About relation 4, the variable parameter (programmable) is the angle: θ1(t); the constant
values are named: β1 ; k1 ; l1 and α1. In purpose to determine the constant value named β1,
the relative position of axle OX1 to axle OX0 must be analyzed, figure 3; it is perpendicular (it
is not parallel, it define an angle); this parameter has a different from zero value [3].

In purpose to determine the α1 constant value, it must be analyzed the axle OZ1 relative
position to axle OZ0; figure 4; it is perpendicular, this parameter has a non-zero value.

The translations are defined by relative position of origins O0 and O1; so, it is necessary a
translation along axle OZ1 with constant value named d1. [3] It result the 0A1 transformation
matrix, relation 3.
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Figure 3: Analysis about β1 value

Figure 4: Analysis about α1 value

Let us discuss other two examples [3]. From figure 5 graphical analysis, it results the 1A2

matrix. A constant value (equal with a2) characterizes a translation along axle OX2; the constant
value named β2 has a zero value, because axle OX1 is parallel with axle OX2; the constant value
named α2 has a zero value, because axle OZ1 is parallel with axle OZ2.

From figure 6 graphical analysis, it results 5A6 matrix, (relation 3); the significant constant
value, d6, is about a translation along axle OZ6; β6 and α6 have zero value.

Similar analyses are performed for determination of every transformation matrix (of forward
kinematics). It results all the transformation matrices (relation 4) and the location matrix of
the industrial robot. More precisely, the location matrix defines the position and the orientation
of the robotic arm tool center point, TCP.

Lets makes a clear distinction between parameters of a translational or a rotational kine-
matics joint of an industrial robot. About a rotational kinematics joint, relation 2, the variable
parameter is named: θi(t). About a translational kinematics joint, the variable parameter is
named: di(t); the i−1Ai transformation matrix is defined as follow:

i−1Ai = Rot(OZi−1, βi) · Trans(OZi−1, di(t)) · Trans(OXi, li) ·Rot(OXi, αi) (5)
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Figure 5: Analysis about 1A2 matrix

Figure 6: Analysis about 5A6 matrix

In relation 2 and 5, the constant values of forward kinematics computation are named: βi;
ki; li; αi, whatever the kinematics joint is a rotational or a translational one.

Usually, about forward kinematics of industrial robots, the explanations work with a single
formula (relation 6), without a clear distinction (regarding the parameter name), concerning
variable and constant values:

i−1Ai = Rot(OZi−1, θi) · Trans(OZi−1, di) · Trans(OXi, li) ·Rot(OXi, αi) (6)

The relations 2 and 5, described in this paper, make a clear distinction between constant and
variable values, involved in forward kinematics computation. According with Denavit-Hartenberg
convention, the algorithm explained in this paper, determines the constant values involved in
forward kinematics computations, based on observation: two axles are parallel or are not parallel.

The first step of the algorithm consists in Cartesian coordinate systems settlement, identical
with Denavit-Hartenberg convention. Every kinematics joint, named Ci, is characterized by a
Cartesian coordinate system, named OXY Zi properly settled; index i goes from 1 value to n, n is
the number of kinematics joints. The axle OZi is settled along the axis of index i+ 1 kinematics
joint, named Ci+1 ; the axle OXi is settled perpendicular of the plane formed by axles OZi−1
and OZi. The OXY Zn Cartesian coordinate system is settled linked with TCP position and
orientation; in figure 1 n = 6. Every Cartesian coordinate system is obtained from the previous
one, by several homogenous transformations; those define the transformation matrices, i−1Ai.

The next step of the algorithm consists on the characteristics identification of each Ci kine-
matics joint and determination of each i−1Ai matrix. Regarding a rotational kinematics joint,
relationship 2 is useful for transformation matrix determination; the variable (programmable)
parameter is θi(t); the others values are constant. Regarding a translational kinematics joint,
relationship 5 is useful for transformation matrix determination; the variable (programmable)
parameter is di(t); the others values are constant.
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Concerning industrial robot motion, the speed variation (as it is defined by mixt profile of
speed), had influence (it changes the parameters values, in time) upon programmable (variable)
parameters of kinematics joints.

The third step of the algorithm consists on transformation matrixes determination, i−1Ai,
(several analysis about determination of each transformation matrix, were explained on graphical
analysis in figures 4, 5 and 6) it may be described as follow: the variable parameter is defined
by the kinematics joint type, on step two of the algorithm; about constant values, there is a
rotation, named βi, around axle OZi−1, if axle OXi−1 and axle OXi are not parallel (those axle
may be perpendicular, according with the construction of the industrial robot and the angle may
be ±π/2; there are translations along axle OZi−1 or along axle OXi if the Cartesian coordinate
systems origins, Oi−1 and Oi, are not identical (very simple to be identified); there is a rotation
around axle OXi, named αi, if axle OZi−1 and axle OZi are not parallel, (those axle may be
perpendicular and the angle may be ±π/2).

The previous explanations develop an algorithm about forward kinematics determination, (it
asks about each kinematics joint of the robotic arm: is it a translational or a rotational one; it
asks about two axles: are those axles parallel or not; this algorithm may be named algorithm Or).
It analysis only those two relative positions: parallel or perpendicular; the analysis described by
Denavit-Hartenberg convention analysis any relative position about similar Cartesian coordinate
axles involved.

The formulas of forward kinematics, to compute position vector components of an industrial
robot, more precise, about the robotic arm type RRRRRR from figure 1, are [3] (notations Si;
i = 1..6, means sine of θi angle and Ci means cosine of same angle, the others notation are
identical with those explained):

px = (S1 · C2 · S3 + S1 · S2 · C3) · C4 · S5 · d6 + C1 · S4 · S5 · d6 − S1 · C2 · a2+
+(S1 · S2 · S3 − S1 · C2 · C3) · (C5 · d6 + d4)

py = (−C1 · C2 · S3 − C1 · S2 · C3) · C4 · S5 · d6 + S1 · S4 · S5 · d6+
+C1 · C2 · a2 + (C1 · C2 · C3 − C1 · C2 · S3) · (C5 · d6 + d4)

pz = (−S2 · S3 + C2 · C3) · C4 · S5 · d6 + (S2 · C3 + C2 · S3) · (C5 · d6 + d4)+
+S2 · a2 + d1

(7)

The formulas to compute the orientation versors components of the same robotic arm, figure
1, are:

nx = (S1 · C2 · S3 + S1 · S2 · C3) · (C4 · C5 · C6 − S4 · S6)+
+C1 · (S4 · C5 · S6 + C4 · S6)− S5 · C6 · (S1 · S2 · S3 − S1 · C2 · C3)

ny = (−C1 · C2 · S3 − C1 · S2 · C3) · (C4 · C5 · C6 − S4 · S6)+
+S1 · (S4 · C5 · C6 + C4 · S6)− S5 · C6 · (C1 · C2 · C3 − C1 · S2 · S3)

nz = (−S2 · S3 + C2 · C3) · (C4 · C5 · S6 − S4 · S6)− S5 · S6 · (S2 · C3 + C2 · S3)

(8)

ox = (S1 · C2 · S3 + S1 · S2 · C3) · (−C4 · C5 · S6 − S4 · C6)+
+C1 · (−S4 · C5 · S6 + C4 · C6) + S5 · S6 · (C1 · C2 · C3 − C1 · S2 · S3)

oy = (−C1 · C2 · S3 − C1 · S2 · C3) · (−C4 · C5 · C6 − S4 · C6)+
+S1 · (−S4 · C5 · S6 + C4 · C6) + S5 · C6 · (C1 · C2 · C3 − C1 · S2 · S3)

oz = (−S2 · S3 + C2 · C3) · (−C4 · C5 · S6 − S4 · C6) + S5 · S6 · (S2 · C3 + C2 · S3)

(9)
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ax = (S1 · C2 · S3 + S1 · S2 · C3) · C4 · S5 + S1 · S4 · S5+
C5 · (S1 · S2 · S3 − S1 · C2 · C3)

ay = (−C1 · C2 · S3 − C1 · S2 · C3) · C4 · S5 + S1 · S4 · S5+
+C5 · (C1 · C2 · C3 − C1 · S2 · S3)

az = (−S2 · S3 + C2 · C3) · C4 · S5 + C5 · (S2 · C3 + C2 · S3)

(10)

The reverse kinematics (as a result of forward kinematics) computes the d.c.c. parameters
starting with position matrix elements values; it is the solution of the equations system (12
equations and 12 unknown values) defined by direct kinematic. It results this conclusion: in
order to command an industrial robot motion, it is necessary to compute the position matrix
components, for every sampling period of time; those components describe the position and
orientation of the robotic arm. The speed (velocity) of motion is defined by vector −→p (position
vector) variation. [6]

3 Acceleration, motion on trajectory and deceleration

About motion on a trajectory, a condition could be a certain speed profile. This speed profile
may be trapezoidal or parabolic, figure 7 and figure 8 (graphics consider continuous time).

Figure 7: Trapezoidal profile (of speed)

Figure 8: Parabolic profile

The motion of an industrial robot may contain three stages:

1. the acceleration from zero motion speed to the programmed motion speed;

2. the motion with programmed motion speed (constant);

3. the deceleration from programmed speed to zero. [6]
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Commonly, acceleration and deceleration depend on the speed profile that was selected. This
paper describes another method about deceleration; the method describes another speed profile,
named mixt profile of speed, figure 9. [6]

Figure 9: Mixt profile of motion speed

If the trajectory is imposed (linear or circular), it must be computed the position of the
intermediary points, named waypoints, (on the trajectory), during acceleration stage, motion on
trajectory stage and deceleration stage.

Intermediary positions of the robotic arm are defined by different location matrix. If the
trajectory is imposed, we must compute location matrices for every waypoint. Considering
reverse kinematics, it results the motion commands for kinematics joints of the robotic arm;
starting with location matrix of every waypoint that composes the trajectory, the parameter of
every kinematics joint may be computed.

4 Acceleration and deceleration stages for mixt profile of speed

Usually, about acceleration stage, the acceleration variation depends of the maximum accel-
eration possible, on a sample period of time, considering a numerical computation system with
numerical processor.

About an robotic arm motion, the numerical process of command computation, is a discrete
one. [1] Variation of robotic arm position, variation of motions speed, acceleration and decelera-
tion values (and others values) depend of a discrete variable defined by relation: k ·T , where T is
the sampling period of time, and k is the number of the sample periods of time considered from
the commands beginning (for example, the variable had the value 11 · T after eleven sampling
periods of time from the start of motion). [6]

About computation described in this paper, the value of maximum possible acceleration in a
sample period of time is named amax. About this computation method described in this paper, in
the acceleration stage for mixt speed profile, the variation of speed is defined by the relation: [6]

v(kT ) = v0 + k · amax (11)

Often, the motion speed initial value is zero: v0 = 0; it results: v(kT ) = k · amax, figure 9,
but this speed increasing computation method may be applied for any initial value.

Considering the defined speed increase, relation 11, (in the acceleration stage of mixt profile),
the position varies with the values: T · v(kT ) = T · k · amax; after each sampling period of time.
The acceleration value may be considered about axle component of position vector, it results
the maximum possible acceleration along every axle, named aM (instead of amax); the position
vector axle components varies, during the acceleration stage: [6]
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pk,x = pk−1,x + k · T · aM ; k = 1..kA
pk,y = pk−1,y + k · T · aM
pk,z = pk−1,z + k · T · aM

(12)

Index k goes from 1 value to kA value, till the end of the motion stage. The computation
starts from axle components values of initial position vector, named: p0,x; p0,y; p0,z.

Let consider a motion with a programmed (imposed) speed value, named vP ; the acceleration
stage ends when the speed reach this programed speed value. The programed value of motion
speed defines the number of sampling periods of time necessary for the acceleration stage; named
kA, it results:

kA = vp/T · aM (13)

The variation is a discrete one, so, the value of kA must be an integer value; the kA value
must be adapted of this condition: it will be the next bigger integer value of the computed value.
Because of this aspect, the last step of speed increase value must be adapted, in purpose to reach
the programmed speed value (it is obvious that the last step of speed increase value will not be
bigger then: aM ).

If speed axle components, named: vP,x; vP,y; vP,z; have different values, the kA value is
determined by the maximum value of speed component:

kA = max(vP,x; vP,y; vP,z)/T · aM (14)

The acceleration may be different for each axle, the maximum value of speed component,
max(vP,x; vP,y; vP,z), defines the axle with maximum acceleration. About other axles, the accel-
eration is computed, in order to have o constant value for every sampling period of time. The
acceleration values are: vP,x/kA; vP,y/kA; vP,z/kA.

About next stage, the motion with a programmed speed, the position vector is described by
the relations: [6]

pk+1,x = pk,x + T · vP,x
pk+1,y = pk,y + T · vP,y
pk+1,z = pk,z + T · vP,z

(15)

In relation 15 index k starts from kA and goes till is necessary the deceleration stage. This
relation, rel. 15 defines those significant values: δx = T ·vP,x; δy = T ·vP,y; δz = T ·vP,z; its mean
the linear space steps (because the trajectory is linear), performed at each sampling period of
time, during motion with programed speed, on every axle. Those values are named axle steps.
Motion on a circular trajectory defines angle steps (about spherical coordinates).

About deceleration stage (the third stage of motion), the speed variation is not a linear one:

v(kT ) = vP − T · aD(kT ) = vP − b · k2; k = 1..kD (16)

In previous relation, the deceleration value, named aD, is a variable value and b is a constant
value. The b value defines the characteristics about robotic arm motion.

The speed decreases till the motion end; considering the condition: 0 = vP − b · k2D; it results
the number of sampling period of time necessary for the deceleration stage, named kD (the axle
components of speed are: vP,x; vP,y; vP,z):
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kD =

√
max(vP,x; vP,y; vP,z)

b
(17)

About motion on trajectory (the second stage), the necessary distance for deceleration stage,
named DD, determine its end (the motion on trajectory ends in the point situated at distance
DD before the end point of motion). [6]

The resulting speed profile, named mixt profile, figure 9 (the graphic considers continuous
time) ensures a better precision about stop point proximity. Typically, for precise positioning at
the motion end, it can’t be specified the time needed; the mixt profile of speed specifies exactly
the time needed for precise positioning at the motion end. [6]

The described method, named mixt profile (of speed), was implemented at a flexible welding
cellule (for manufacture of mining machinery), and the agreed motion characteristics (with the
beneficiary) were ok. The maximum weight of processed pieces (with this welding cellule) was
2.5 tons. [6]

About deceleration stage, the software implementation considered 25 values about speed
decrease, from speed maximum value possible, those values were written in a table, named:
Deceleration table. Inertial reason imposes the number of table values (25). In purpose the
determine the deceleration start, the programed speed, vp, was compared with those values,
from Deceleration table; the comparison result defines the value of kD and every speed value, for
every sampling period of time, during deceleration stage; a graphical explanation of this process
is described in figure 10.

Figure 10: About software implementation of deceleration process

In figure 10, the example works with 4 steps till the end of the motion, (when the speed has
zero value).

The software implementation of deceleration stage considered a different Deceleration table
for OZ axle component of speed, because a vertical motion has different inertial characteristics,
comparing with a horizontal motion (about axle OX and OY the Deceleration table is identical).

5 Example of computation about a linear trajectory

For example, considering a linear trajectory and constant orientation of the robotic arm (along
the motion), the value of initial speed zero; the values of programed speed: vP = 5

√
2mm/s;

vP,x = 3mm/s; vP,y = 4mm/s; vP,z = 5mm/s; aM = 25mm/s2 and T = 10−2s; this method
of computation determines: kA = 20, the number of sampling periods of time necessary for
acceleration stage: [6]

kA = max(3; 4; 5)mm/s/(10−2s · 25mm/s2) = 20 (18)
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During acceleration stage, the speed increases with those values: δvx = 3/20mm/s; δvy =
4/20mm/s; δvz = 5/20mm/s; (because of inertial reasons, the acceleration have different values,
for each axle components).

Considering the initial values of position vector components: p0,x = 1, 1mm; p0,y = 2, 2mm;
p0,z = 3, 3mm, after first sampling period of time, the position vector has the axle components:

p1,x = p0,x + 1 · T · (v0,x + δvx) = 1, 1 + 10−2 · 3/20 = 1, 1 + 0, 0015 = 1, 1015mm
p1,y = p0,y + 1 · T · (v0,y + δvy) = 2, 2 + 10−2 · 4/20 = 2, 2 + 0, 002 = 2, 202mm
p1,z = p0,z + 1 · T · (v0,z + δvz) = 3, 3 + 10−2 · 5/20 = 3, 3 + 0, 0025 = 3, 3025mm

(19)

During acceleration stage, after 10 period of time the axle components of position vector
differs (from the previous one, in the previous period of time) with: δpx = 10 · T · δvx =
10 · 3/2000 = 0, 015mm; δpy = 10 · T · δvy = 10 · 4/2000 = 0, 02mm; δpz = 10 · T · δvz =
10 · 5/2000 = 0, 025mm.

After 20 periods of time, begin the stage of motion on trajectory. In this moment (considering
the initial values of position vector components), the position vector has the axles components:
p20,x = 1, 1 + 10−2 · 3/20 · (1 + 2 + ... + 20) = 1, 1 + 0, 315 = 1, 415mm; p20,y = 2, 2 + 10−2 ·
4/20 · (1 + 2 + ...+ 20) = 2, 2 + 0, 42 = 2, 62mm; p20,z = 3, 3 + 10−2 · 5/20 · (1 + 2 + ...+ 20) =
3, 3 + 0, 525 = 3, 825mm.

The stage of motion on trajectory is described by relations relation 15, (it is similar with
acceleration stage, but speed has a constant value):

δpx = T · vP,x; δpy = T · vP,y; δpz = T · vP,z; (20)

For each axle, the axle steps have constant values. Because axle steps have constant values,
the algorithm is named: numeric difference analysis, more exactly: interpolate algorithm of
numeric difference analysis. [6]

For example, after 80 periods of time, on the stage of motion with constant speed (and
after 100 periods of time from the beginning of the motion) the components of position vector
have the values: px = 1, 415 + 80 · 10−2 · 3 = 3, 815mm; py = 2, 62 + 80 · 10−2 · 4 = 5, 82mm;
pz = 3, 825 + 80 · 10−2 · 5 = 4, 225mm.

Let apply this computation (mixt profile of speed), to the robotic arm from figure 1. Let
consider the orientation of robotic arm defined by those versors: −→n = 1·−→i ; −→o = 1·−→j ; −→a = 1·

−→
k

(where
−→
i ,
−→
j ,
−→
k are the versor defining the Cartesian coordinate axles, OX; OY and OZ). After

100 sampling period of time, the location matrix is:

G0(100 · T ) =


1 0 0 3, 815
0 1 0 5, 82
0 0 1 4, 225
0 0 0 1

 (21)

During the motion, the location matrix has different values, at every sampling period of time.
Knowing the location matrix, it results parameters of robotic arm kinematics joints, considering
the formulas of robotic arm reverse kinematics.

The value of θ1(100 · T ) parameter may be computed with this relationship (formula from
reverse kinematics of the robotic arm [3]):

θ1(100 · T ) = arctan
−(p100,x − d6 · sin r2 · cos r1)

p100,y − d6 · sin r2 · sin r1
(22)
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In previous relationships, the angle r1 is the polar angle and the r2 angle is the azimutal
angle, about −→a versor, figure 11.

Figure 11: Polar and azimutal angle

Those angles may be computed; the value of n1 and n2 depends of the sign of versor compo-
nents; let remember that arctan can have values in [−π;π]; but those angles may have values in
[0; 2π]:

r1 = n1 · π + arctan

∣∣∣∣ayax
∣∣∣∣ ; r2 = n2 · π + arctan

√
a2x + a2y

|az|
(23)

From the considered orientation of the robotic arm: −→a = 1 ·
−→
k ; it results the value of those

two angles are: r1 = 0; r2 = 0; the parameter value is:

θ1(100 · T ) = arctan
−(p100,x)

p100,y
= arctan(−3, 815/5, 82) = −33, 245 (24)

Previous relationship defines a negative angle, it means: the rotation sense of motion, about
C1 kinematics joint (the angle is the parameter of this kinematics joint) is opposite considering
the positive sense, as it is designed in figure 1.

In purpose to determine the end of the second stage (motion with constant speed), it is
necessary to compute the number of sampling period of time for deceleration; let considers
b = 5mm/900s; it results: [6]

kD =

√
max(3; 4; 5)mm/s

5mm/900s
= 30 (25)

During the deceleration, the computation of waypoints coordinates involves those speed val-
ues, from relation 16 it results:

vx(kT ) = vP,x −
vP,x
k2
D
· k2 = 3− 3

900 · k
2, k = 1..kD

vy(kT ) = vP,y −
vP,y
k2
D
· k2 = 4− 4

900 · k
2

vz(kT ) = vP,z −
vP,z
k2
D
· k2 = 5− 5

900 · k
2

(26)

For each sampling period of time, the position differs with values:

δpx = T · vx(kT ), k = 1..kD

δpy = T · vy(kT ) (27)
δpz = T · vz(kT )
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About deceleration stage, it must be computed the maximum value of distance axle compo-
nents (necessary for deceleration stage), named DDmax:

DDmax =

kD∑
k=1

T · [max(vP,x; vP,y; vP,z)− b · k2] (28)

The DDmax value considers the maximum distance of the three axles, necessary for deceler-
ation stage. The deceleration begins when it remains the distance DDmax, till the motion end,
on respective axle.

According with the considered example, after 24 period of time on deceleration stage, the
axle components of speed have the values: [6]

vx(24 · T ) = vP,x −
vP,x
k2
D
· 242 = 3− 3

900 · 242 = 1.08[mm/s]

vy(24 · T ) = vP,y −
vP,y
k2
D
· 242 = 4− 4

900 · 242 = 1.44[mm/s]

vz(24 · T ) = vP,z −
vP,z
k2
D
· 242 = 4.0752[mm/s]

(29)

6 About computation for a motion on a circular trajectory, with
mixt profile of speed

The previous example considered a linear trajectory. A circular trajectory imposes the com-
putation of waypoints on spherical coordinates, named radium: R, polar angle: ϕ and azimuthal
angle: φ; figure 11, and conversion on Cartesian coordinates of those values. [6] The acceleration
and deceleration is similar with the method described about a linear trajectory, regarding tan-
gential speed. The variation of tangential speed defines the variation of angular speed, named ω,
figure 10. [6] Software implementation considered the maximum acceleration possible of motion
speed, about rotation around each Cartesian coordinate system axle. A table about deceleration
stage was defined about vertical rotations another table was defined about horizontal rotations.

An example of computation may consider kA = 3; this values is defined by imposed values
of motion speed. Let consider the motion a rotation of 2π/4 = 90◦ around axle OY . In the
first period of time, the motion speed is: v1 = v0 + aM , it result the angular speed of rotation
ω1 = ω0 + ∆ω; in the second and third period of time the angular speed increase with the same
value ∆ω; it results: ω2 = ω1 + ∆ω = ω0 + 2 ·∆ω and ω3 = ω2 + ∆ω = ω0 + 3 ·∆ω. In the fourth
period of time, (after motion beginning), the angular speed reaches the programed speed, ωp.

Comparing the angular programmed speed value with values from Deceleration table, it
may results the value kD = 5 and all the values of angular speed, about deceleration stage.
The distance necessary for deceleration stage on a circular trajectory, named DEC may be
computed, where ωDEC(k) are the smallest five values from deceleration stage (the Deceleration
table simplifies the software implementation of deceleration stage):

DEC =

kD=5∑
k=1

T · ωDEC(k) (30)

It results the number of sampling period of time for motion on trajectory stage (let consider
ω0 = 0):

kT =
2π/4− (∆ω + 2 ·∆ω + 3 ·∆ω) · T −DEC

T · ωP
(31)

A variable orientation of robot arm, during the motion, involves a similar computation as
described for a circular trajectory, but applied about computation of azimuthal and polar angle
of each orientation versor; (the orientation versors are: −→n ; −→o ; −→a ).
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Conclusions

About a robotic arms motion, those two conditions are very difficult to accomplish: best pre-
cision at the motion end and exact defined motion time. Those two conditions are accomplished
by mixt profile (of motion speed variation), described in this paper.

The advantages of mixt profile are: the best precision to reach the end point of robotic arms
motion, exact determination of motion time and minimum time of acceleration up to programed
motion speed.

The method may have others diverse applications, about motion on a linear or circular
trajectory; for example about turning or milling process.

Motion execution with exact speed gives processing quality; the described method of mixt
profile, about speed variation, was implemented on numerical control equipment and precision
was accurate (for example: numerical control equipment for workpieces of sintered metal car-
bides).
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