The First Triangular Representation of The Symmetric Groups when $\mathbf{n}=6$

Ali Abdul Sahib M.Al-Butahi
Department of Mathematics and computer applications, College of Sciences/ Al-Nahrian University, Baghdad, Iraq

Email:aliabdulsahib202@yahoo.com

Abstract

In this paper we study a special case of the first triangular representation of the symmetric groups when $n=6$ over a field K of characteristic p.

Keywords: symmetric group, group algebraK $S_{n}, K S_{n}$-module, Specht module , exact sequence.
(الخلاصة

I. Introduction

In 1962 H.K. Farahat studied the representation which deals with the partition $\lambda=(n-1,1)$ of the positive integer n and called it the natural representation of the symmetric groups [1].

In 1969 M. H. Peel renamed the natural representation of the symmetric groups by the first natural representation of the symmetric groups and studied the second representation of the symmetric group which deal with the partition $\lambda=(n-2,2)$ of the positive integer $n\left[{ }^{r}\right]$.

In 1971 Peel introduced the $r^{\text {th }}$ Hook representations which deals with the partitions $\lambda=(n-$ $\left.r, 1^{r}\right) ; \mathrm{r} \geq 1$. $\left.{ }^{[r}\right]$

In 2016 we introduced the $r^{\text {th }}$ triangular representations which deals with the partition $\lambda=$ $\left(n-\frac{(r+2)(r+1)}{2}, r+1, r, \ldots, 1\right) ; \mathrm{r} \geq 1$, and study the first of them which call it the first triangular representation of the symmetric groups when p divides ($\mathrm{n}-1$) [${ }^{\varepsilon}$].

Through this paper let \mathbf{K} be the field of characteristic p and $\mathrm{n}=6$.

II. Preminaries

Definition 1: [Peel:1969] Let S_{n} be the set of all permutations τ on the set $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $\mathrm{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be the ring of polynomials in $x_{1}, x_{2}, \ldots, x_{n}$ with coefficients in K . Then each permutation $\tau \in \mathrm{S}_{\mathrm{n}}$ can be regarded as a bijective function from $\mathrm{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ onto $\mathrm{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$
defined by $\left(f\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)=f\left(\tau\left(x_{1}\right), \tau\left(x_{2}\right), \ldots, \tau\left(x_{n}\right)\right) \forall f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathrm{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. Then KS_{n} forms a group algebra with respect to addition of functions, product of functions by scalars and composition of functions which is called the group algebra of the symmetric group S_{n}.

Definition2: [0] Let n be a positive integer then the sequence $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right)$ is called a partition of $n \quad$ if $\quad \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{l}>0 \quad$ and $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{l}=n$. Then the set $D_{\lambda}=\left\{(i, j) \mid i=1,2, \ldots, l ; 1 \leq j \leq \lambda_{i}\right\}$ is called λ-diagram .And any bijective function $t: D_{\lambda} \rightarrow$ $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is called a λ-tableau. A λ-tableau may be thought as an array consisting of l rows and λ_{1} columns of distinct variables $t((i, j))$ where the variables occur in the first λ_{i} positions of the $i^{\text {th }}$ row and each variable $t((i, j))$ occurs in the $i^{\text {th }}$ row and the $j^{\text {th }}$ column (($\left.i, j\right)$-position) of the array. $t((i, j))$ will be denoted by $t(i, j)$ for each $(i, j) \in D_{\lambda}$. The set of all λ-tableaux will be denoted by T_{λ}. i.e $T_{\lambda}=\{t \mid t$ is a λ-tableau $\}$. Then the function $g: T_{\lambda} \rightarrow K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ which is defined by $g(t)=\prod_{i=1}^{l} \prod_{j=1}^{\lambda_{i}}(t(i, j))^{i-1}, \forall t \in T_{\lambda}$.is called the row position monomial function of T_{λ}, and for each λ-tableau $t, g(t)$ is called the row position monomial of t.So $M(\lambda)$ is the cyclic $K S_{n}$-module generated by $g(t)$ over $K S_{n}$. [0]

III. The First Triangular Representation of $\mathbf{S}_{\mathbf{n}}$

In the beginning, we define some denotations and state some theorems which we need them in this paper.
1)Let $\sigma_{1}(n)=\sum_{i=1}^{n} x_{i}$.
2)Let $\sigma_{2}(n)=\sum_{1 \leq i<j \leq n} x_{i} x_{j}$.
3)Let $C_{l}(n)=x_{l}^{2}\left(\sigma_{2}(n)-\sum_{\substack{j=1 \\ j \neq l}}^{n} x_{l} x_{j}\right) ; l=1,2, \ldots, n$.

We denote \bar{N} to be the $K S_{n}$ module generated by $C_{1}(n)$ over $K S_{n}$. The set $B=\left\{C_{i}(n) \mid i=1,2, \ldots, n\right\}$ is a K-basis for $\bar{N}=K S_{n} C_{1}(n)$ and $\operatorname{dim}_{K} \bar{N}=n$.
4)Let $u_{i j}(n)=C_{i}(n)-C_{j}(n) ; i, j=1,2, \ldots, n$.
we denote \bar{N}_{0} the $K S_{n}$ submodule of \bar{N} generated by $u_{12}(n)$.
5)Let $\quad \sigma_{3}(n)=\quad \sum_{1 \leq i<j \leq n} \sum_{\substack{k=1 \\ k \neq i, j}}^{n} x_{i} x_{j} x_{k}^{2} . \quad$ Then $\quad \sum_{l=1}^{n} C_{l}(n)=\sigma_{3}(n)$ and $\operatorname{dim}_{K}\left(K \sigma_{1}(n)\right)=\operatorname{dim}_{K}\left(K \sigma_{2}(n)\right)=\operatorname{dim}_{K}\left(K \sigma_{3}(n)\right)=1 . K \sigma_{1}(n), K \sigma_{2}(n)$ and $K \sigma_{3}(n)$ are all $K S_{n}$ modules, since $\tau \sigma_{k}(n)=\sigma_{k}(n) \forall k=1,2,3$.

Definition 3:The $K S_{n}$-module $M\left(n-\frac{(r+2)(r+1)}{2}, r+1, r, \ldots, 1\right)$ defined by
$M\left(n-\frac{(r+2)(r+1)}{2}, r+1, r, \ldots, 1\right)=K S_{n} x_{1} x_{2} \ldots x_{r+1} x_{r+2}^{2} \ldots x_{2 r+1}^{2} x_{2 r+2}^{3} \ldots x_{m}^{r+1}$
is called the $r^{\text {th }}$ triangular representation module of S_{n} over K, where $n \geq \frac{(r+3)(r+2)}{2}$ and $\mathrm{m}=\frac{(r+3)(r+2)}{2}$.
Remark: The first triangular representation module of S_{n} over K is the $K S_{n}$-module $M(n-3,2,1)$, the second triangular representation module of S_{n} over K is the $K S_{n}$ - module $M(n-6,3,2,1)$, the third triangular representation module of S_{n} over K is the $K S_{n}$-module $M(n-10,4,3,2,1)$, and so on.

Theorem1: The set $B_{0}(n-3,2,1)=\left\{x_{i} x_{j} x_{l}^{2}-x_{1} x_{2} x_{3}^{2} \mid 1 \leq i<j \leq n, 1 \leq l \leq n, l \neq i, j,(i, j, l) \neq\right.$ $(1,2,3)\}$ is a K-basis of $M_{0}(n-3,2,1)$, and $\operatorname{dim}_{K} M_{0}(n-3,2,1)=\binom{n}{2}(n-2)-1 ; n \geq 6[\varepsilon]$

Theorem2: $\bar{N}=K S_{n} C_{1}(n)$ and $M(n-1,1)$ are isomorphic over $K S_{n}$. [${ }^{\text {b }]}$
Proposition1: If p does not divide n then $\bar{N}=\bar{N}_{0} \oplus K \sigma_{3}(n) .[\xi]$
Proposition 2: If p does not divides n, then \bar{N} has the following two composition series

$$
0 \subset \bar{N}_{0} \subset \bar{N} \text { and } 0 \subset K \sigma_{3}(n) \subset \bar{N} .[\xi]
$$

Definitions 4:

1) The $K S_{n}$-homomorphism $d: M(n-3,2,1) \rightarrow M(n-2,2)$ is defined in terms of the partial operators by

$$
d\left(x_{i} x_{j} x_{l}^{2}\right)=\sum_{k=1}^{n} \frac{\partial^{2}}{\partial x_{k}^{2}}\left(x_{i} x_{j} x_{l}^{2}\right),
$$

2) The $K S_{n}$-homomorphism \bar{d} which is the restriction of d to $\quad M_{0}(n-3,2,1)$. i.e.

$$
\bar{d}: M_{0}(n-3,2,1) . \rightarrow M_{0}(n-3,2) .
$$

Theorem 3: The following sequence of $K S_{n}-$ modules is exact

$$
\begin{equation*}
0 \rightarrow \operatorname{Ker} d \stackrel{i}{\rightarrow} M(n-3,2,1) \xrightarrow{d} M(n-2,2) \rightarrow 0 \ldots \ldots \ldots(\tag{1}
\end{equation*}
$$

Corollary 2: The dimension of kerd over K of the $K S_{n}$ - homomorphism

$$
d: M(n-3.2 .1) \rightarrow M(n-2,2) \text { is } \frac{n(n-1)(n-3)}{2}
$$

Corollary 3: The following sequence of $K S_{n}-$ modules is exact

$$
0 \rightarrow \text { Kerd } \stackrel{i}{\rightarrow} M_{0}(n-3,2,1) \xrightarrow{\bar{a}} M_{O}(n-2,2) \rightarrow 0
$$

Lemma 2: $\operatorname{dim}_{K} S(n-3,2,1)=\frac{n(n-2)(n-4)}{3}$.
Proposition 3: $S(n-3,2,1)$ is a proper submodule of kerd. [乡]
Theorem4 :If $\mathrm{p}=5$ and $\mathrm{n}=6$, then we get the following series:

$$
0 \subset \overline{N_{0}} \subset \bar{N} \subset K S_{6} y, \quad 0 \subset K \sigma_{3} \subset \bar{N} \subset K S_{6} y
$$

Where $K S_{6} y=K S_{6}\left(x_{1} x_{4} x_{3}^{2}-x_{1} x_{2} x_{3}^{2}\right)$

Proof:

Since $\bar{N}=K S_{n}\left(C_{1}(n)\right)$, where $C_{1}(n)=\sum_{1<i<j \leq n} x_{i} x_{j} x_{1}^{2}$, then when $\mathrm{n}=6$ we get

$$
\begin{aligned}
C_{1}(6)=x_{2} x_{3} x_{1}^{2} & +x_{2} x_{4} x_{1}^{2}+x_{2} x_{5} x_{1}^{2}+x_{2} x_{6} x_{1}^{2}+x_{3} x_{4} x_{1}^{2}+x_{3} x_{5} x_{1}^{2}+x_{3} x_{6} x_{1}^{2}+x_{4} x_{5} x_{1}^{2}+x_{4} x_{6} x_{1}^{2} \\
& +x_{5} x_{6} x_{1}^{2}
\end{aligned}
$$

Thus if $\mathrm{p}=5$ and $y=x_{1} x_{4} x_{3}^{2}+x_{1} x_{2} x_{3}^{2}$ we get that

$$
\begin{aligned}
& \left(\left(x_{1} x_{2} x_{3}\right)+\left(x_{1} x_{3}\right)+\left(x_{1} x_{5} x_{3}\right)+\left(x_{1} x_{6} x_{3}\right)+\left(x_{1} x_{3}\right)\left(x_{4} x_{5}\right)+\left(x_{1} x_{3}\right)\left(x_{4} x_{6}\right)+\left(x_{1} x_{5} x_{3}\right)\left(x_{4} x_{6}\right)-\right. \\
& \left.\left(x_{1} x_{2} x_{3}\right)\left(x_{4} x_{5}\right)+\left(x_{1} x_{2} x_{3}\right)\left(x_{4} x_{6}\right)+4\left(x_{1} x_{2} x_{6} x_{3}\right)\left(x_{4} x_{5}\right)\right) y=\left(x_{1} x_{2} x_{3}\right) y+\left(x_{1} x_{3}\right) y+\left(x_{1} x_{5} x_{3}\right) y+ \\
& \left(x_{1} x_{6} x_{3}\right) y+\left(x_{1} x_{3}\right)\left(x_{4} x_{5}\right) y+\left(x_{1} x_{3}\right)\left(x_{4} x_{6}\right) y+\left(x_{1} x_{5} x_{3}\right)\left(x_{4} x_{6}\right) y-\left(x_{1} x_{2} x_{3}\right)\left(x_{4} x_{5}\right) y+ \\
& \left(x_{1} x_{2} x_{3}\right)\left(x_{4} x_{6}\right) y+4\left(x_{1} x_{2} x_{6} x_{3}\right)\left(x_{4} x_{5}\right) y=x_{2} x_{4} x_{1}^{2}-x_{2} x_{3} x_{1}^{2}+x_{3} x_{4} x_{1}^{2}-x_{2} x_{3} x_{1}^{2}+x_{4} x_{5} x_{1}^{2}-
\end{aligned}
$$

$x_{2} x_{5} x_{1}^{2}+x_{4} x_{6} x_{1}^{2}-x_{2} x_{6} x_{1}^{2}+x_{3} x_{5} x_{1}^{2}-x_{2} x_{3} x_{1}^{2}+x_{3} x_{6} x_{1}^{2}-x_{2} x_{3} x_{1}^{2}+x_{5} x_{6} x_{1}^{2}-x_{2} x_{5} x_{1}^{2}+x_{2} x_{3} x_{1}^{2}-$ $x_{2} x_{5} x_{1}^{2}+x_{2} x_{6} x_{1}^{2}-x_{2} x_{3} x_{1}^{2}+4 x_{2} x_{5} x_{1}^{2}-4 x_{2} x_{6} x_{1}^{2}=$
$x_{2} x_{3} x_{1}^{2}+x_{2} x_{4} x_{1}^{2}+x_{2} x_{5} x_{1}^{2}+x_{2} x_{6} x_{1}^{2}+x_{3} x_{4} x_{1}^{2}+x_{3} x_{5} x_{1}^{2}+x_{3} x_{6} x_{1}^{2}+x_{4} x_{5} x_{1}^{2}+x_{4} x_{6} x_{1}^{2}+x_{5} x_{6} x_{1}^{2}=$ $C_{1}(6)$

Hence $C_{1}(6) \in K S_{6} y$ which implies that $K S_{6} C_{1}(6) \subset K S_{6} y$. i.e
$\bar{N} \subset K S_{6} y$. Moreover since $\mathrm{p}=5$ and $\mathrm{n}=6$ then p dose not divide n and by [Al-Aamily:2016] we get the following two composite series:
$0 \subset \bar{N}_{0} \subset \bar{N}$ and $0 \subset K \sigma_{3} \subset \bar{N}$
Therefore if $\mathrm{p}=5$ and $\mathrm{n}=6$ we get the following two series:
$0 \subset \bar{N}_{0} \subset \bar{N} \subset K S_{6} y$ and $0 \subset K \sigma_{3} \subset \bar{N} \subset K S_{6} y$.
Theorem5: We have the following series:

$$
0 \subset S(n-3,2,1) \subset K S_{n} w \subset k e r d \subset M_{0}(n-3,2,1) \subset M(n-3,2,1) .
$$

Where $w=x_{2} x_{5} x_{3}^{2}-x_{2} x_{4} x_{3}^{2}-x_{2} x_{5} x_{1}^{2}+x_{2} x_{4} x_{1}^{2}$
Proof: we have $S(n-3,2,1)=\Delta\left(x_{1}, x_{2}, x_{3}\right) \Delta\left(x_{4}, x_{5}\right)$.
Let $y=\Delta\left(x_{1}, x_{2}, x_{3}\right) \Delta\left(x_{4}, x_{5}\right)=\left(x_{3}-x_{2}\right)\left(x_{3}-x_{1}\right)\left(x_{2}-x_{1}\right)\left(x_{5}-x_{4}\right)$

$$
\begin{aligned}
& \quad=x_{2} x_{5} x_{3}^{2}-x_{2} x_{4} x_{3}^{2}-x_{3} x_{5} x_{2}^{2}+x_{3} x_{4} x_{2}^{2}+x_{1} x_{5} x_{2}^{2}-x_{1} x_{4} x_{2}^{2}-\quad x_{1} x_{5} x_{3}^{2}+x_{1} x_{4} x_{3}^{2}+ \\
& x_{3} x_{5} x_{1}^{2}-x_{3} x_{4} x_{1}^{2}-x_{2} x_{5} x_{1}^{2}+x_{2} x_{4} x_{1}^{2} \\
& =\left(x_{2} x_{5} x_{3}^{2}-x_{2} x_{4} x_{3}^{2}-x_{2} x_{5} x_{1}^{2}+x_{2} x_{4} x_{1}^{2}\right)+\left(x_{3} x_{4} x_{2}^{2}-x_{3} x_{5} x_{2}^{2}-x_{3} x_{4} x_{1}^{2}+x_{3} x_{5} x_{1}^{2}\right)+\left(x_{1} x_{5} x_{2}^{2}-\right. \\
& \left.x_{1} x_{4} x_{2}^{2}-x_{1} x_{5} x_{3}^{2}+x_{1} x_{4} x_{3}^{2}\right) \in K S_{n} w .
\end{aligned}
$$

Hence $S(n-3,2,1) \subset K S_{n} w$. Moreover by definition of w we get that $d w=0$,thus $K S_{n} w \subset$ kerd .Hence we get the following

$$
0 \subset S(n-3,2,1) \subset K S_{n} w \subset k e r d \subset M_{0}(n-3,2,1) \subset M(n-3,2,1) .
$$

Theorem6:If $\mathrm{n}=6$ then we get the following series:
$0 \subset S(3,2,1) \subset T \subset K S_{6} y \subset M_{0}(3,2,1) \subset M(3,2,1)$
Where $T=K S_{6}\left(x_{1} x_{3} x_{5}^{2}-x_{1} x_{4} x_{5}^{2}+x_{2} x_{4} x_{5}^{2}-x_{2} x_{3} x_{5}^{2}\right)$ and
$K S_{6} y=K S_{6}\left(x_{1} x_{4} x_{3}^{2}-x_{1} x_{2} x_{3}^{2}\right)$.
Proof: Let $y=x_{1} x_{4} x_{3}^{2}-x_{1} x_{2} x_{3}^{2}$.If $\tau_{1}=\left(x_{3} x_{5}\right), \tau_{2}=\left(x_{1} x_{3} x_{5}\right) \in S_{6}$.
Then we get that
$\left(\tau_{2}-\tau_{1}\right) y=x_{3} x_{4} x_{5}^{2}-x_{2} x_{3} x_{5}^{2}+x_{1} x_{2} x_{5}^{2}-x_{1} x_{4} x_{5}^{2}$ which implies that $x_{3} x_{4} x_{5}^{2}-x_{2} x_{3} x_{5}^{2}+x_{1} x_{2} x_{5}^{2}-x_{1} x_{4} x_{5}^{2} \in K S_{6} y$. Thus $T \subset K S_{6} y$.

Moreover we have if $\sigma_{1}=\left(x_{3} x_{4}\right)\left(x_{2} x_{5}\right), \sigma_{2}=\left(x_{3} x_{4}\right)\left(x_{1} x_{5}\right) \in S_{6}$. Then

$$
\left(i+\sigma_{1}+\sigma_{2}\right)\left(x_{1} x_{3} x_{5}^{2}-x_{1} x_{4} x_{5}^{2}+x_{2} x_{4} x_{5}^{2}-x_{2} x_{3} x_{5}^{2}\right)=
$$

$x_{1} x_{3} x_{5}^{2}-x_{1} x_{4} x_{5}^{2}+x_{2} x_{4} x_{5}^{2}-x_{2} x_{3} x_{5}^{2}+x_{1} x_{4} x_{2}^{2}-x_{1} x_{3} x_{2}^{2}+x_{3} x_{5} x_{2}^{2}-x_{4} x_{5} x_{2}^{2}+x_{4} x_{5} x_{1}^{2}-x_{3} x_{5} x_{1}^{2}+$ $x_{2} x_{3} x_{1}^{2}-x_{2} x_{4} x_{1}^{2}=$
$\left(x_{2}-x_{1}\right)\left(x_{5}-x_{1}\right)\left(x_{5}-x_{2}\right)\left(x_{4}-x_{3}\right)=\Delta\left(x_{1}, x_{2}, x_{5}\right) \Delta\left(x_{3}, x_{4}\right)$
Which implies that $\Delta\left(x_{1}, x_{2}, x_{5}\right) \Delta\left(x_{3}, x_{4}\right) \in T$.Thus $S(3,2,1) \subset T$. By definition of y we have $K S_{6} y \subset$ $M_{0}(3,2,1)$.Hence we get the following series $0 \subset S(3,2,1) \subset T \subset K S_{6} y \subset M_{0}(3,2,1) \subset M(3,2,1)$.

Theorem7: If $\mathrm{n}=6$ then we have the following series:

1) $0 \subset K S_{6} y_{3} \subset K S_{6} y_{6} \subset K S_{6} y_{7} \subset M_{0}(3,2,1) \subset M(3,2,1)$
2) $0 \subset K S_{6} y \subset K S_{6} y_{2} \subset K S_{6} y_{4} \subset K S_{6} y_{7} \subset M_{0}(3,2,1) \subset M(3,2,1)$
3) $0 \subset K S_{6} y_{1} \subset K S_{6} y_{5} \subset K S_{6} y_{7} \subset M_{0}(3,2,1) \subset M(3,2,1)$.
4) $0 \subset K S_{6} y \subset K S_{6} y_{2} \subset K S_{6} y_{5} \subset K S_{6} y_{7} \subset M_{0}(3,2,1) \subset M(3,2,1)$

Where

$$
\begin{aligned}
& y=x_{1} x_{4} x_{3}^{2}-x_{1} x_{2} x_{3}^{2}, y_{1}=x_{1} x_{2} x_{4}^{2}-x_{1} x_{2} x_{3}^{2}, \\
& y_{2}=x_{2} x_{4} x_{6}^{2}-x_{1} x_{2} x_{3}^{2}, y_{3}=x_{2} x_{3} x_{1}^{2}-x_{1} x_{2} x_{3}^{2}, \\
& y_{4}=x_{2} x_{4} x_{1}^{2}-x_{1} x_{2} x_{3}^{2}, y_{5}=x_{4} x_{5} x_{1}^{2}-x_{1} x_{2} x_{3}^{2}, \\
& y_{6}=x_{5} x_{6} x_{4}^{2}-x_{1} x_{2} x_{3}^{2}, y_{7}=x_{3} x_{5} x_{4}^{2}-x_{1} x_{2} x_{3}^{2} .
\end{aligned}
$$

Proof: Let $y_{7}=x_{3} x_{5} x_{4}^{2}-x_{1} x_{2} x_{3}^{2}$. Then $y_{7} \in M_{0}(3,2,1)$ which implies that $K S_{6} y_{7} \subset M_{0}(3,2,1)$. So if $\tau_{1}=\left(x_{3} x_{5} x_{6}\right), \tau_{2}=\left(x_{1} x_{6} x_{3} x_{2} x_{4} x_{5}\right), \tau_{3}=\left(x_{1} x_{6} x_{5}\right)\left(x_{2} x_{4} x_{3}\right) \in S_{6}$, then we get $\left(\tau_{1}+\tau_{2}-\tau_{3}\right) y_{7}=$ $x_{5} x_{6} x_{4}^{2}-x_{1} x_{2} x_{3}^{2}=y_{6}$ which implies that $y_{6} \in K S_{6} y_{7}$.Thus $K S_{6} y_{6} \subset K S_{6} y_{7}$.Moreover if $\tau=$ $\left(x_{1} x_{3}\right) \in S_{6}$ then $(i-\tau) y_{6}=x_{5} x_{6} x_{4}^{2}-x_{1} x_{2} x_{3}^{2}-x_{5} x_{6} x_{4}^{2}+x_{2} x_{3} x_{1}^{2}=x_{2} x_{3} x_{1}^{2}-x_{1} x_{2} x_{3}^{2}=y_{3}$. So $y_{3} \in K S_{6} y_{6}$, thus $K S_{6} y_{3} \subset K S_{6} y_{6}$ and we get the following series $0 \subset K S_{6} y_{3} \subset K S_{6} y_{6} \subset K S_{6} y_{7} \subset$ $M_{0}(3,2,1) \subset M(3,2,1)$
Now let $y_{4}=x_{2} x_{4} x_{1}^{2}-x_{1} x_{2} x_{3}^{2}$.Then if $\tau=\left(x_{2} x_{4}\right) \in S_{6}$ we get that
$(i-\tau) y_{4}=x_{1} x_{4} x_{3}^{2}-x_{1} x_{2} x_{3}^{2}=y$.Hence $y \in K S_{6} y_{4}$ which implies that
$K S_{6} y \subset K S_{6} y_{4}$.Moreover when $\tau=\left(x_{1} x_{5} x_{2} x_{3} x_{4}\right) \in S_{6}$ we get that
$(i+\tau) y_{7}=x_{2} x_{4} x_{1}^{2}-x_{1} x_{2} x_{3}^{2}=y_{4}$.Thus $y_{4} \in K S_{6} y_{7}$ which implies that $K S_{6} y_{4} \subset K S_{6} y_{7}$.Then we get $K S_{6} y \subset K S_{6} y_{4} \subset K S_{6} y_{7}$.From other side if $\tau_{1}=\left(x_{4} x_{6}\right), \tau_{2}=\left(x_{1} x_{6} x_{5} x_{3}\right) \in S_{6}$ we get $\left(\tau_{1}+\right.$ $\left.\tau_{2}\right) y_{4}=x_{2} x_{4} x_{6}^{2}-x_{1} x_{2} x_{3}^{2}=y_{2}$.Thus $K S_{6} y_{2} \subset K S_{6} y_{4}$. While when $\rho_{1}=\left(x_{1} x_{2} x_{4}\right)\left(x_{3} x_{6}\right), \rho_{2}=$ $\left(x_{1} x_{4}\right)\left(x_{3} x_{6}\right) \in S_{6}$ we get $\left(\rho_{1}-\rho_{2}\right) y_{2}=x_{1} x_{4} x_{3}^{2}-x_{1} x_{2} x_{3}^{2}=y$.Thus $y \in K S_{6} y_{2}$ which implies that $K S_{6} y \subset K S_{6} y_{2}$.Therefore we get the following series
$0 \subset K S_{6} y \subset K S_{6} y_{2} \subset K S_{6} y_{4} \subset K S_{6} y_{7} \subset M_{0}(3,2,1) \subset M(3,2,1)$.
If $\tau_{1}=\left(x_{1} x_{3} x_{4}\right)\left(x_{2} x_{6}\right), \tau_{2}=\left(x_{1} x_{2}\right)\left(x_{5} x_{6}\right), \tau_{3}=\left(x_{1} x_{2}\right) \in S_{6}$.Then we get that $\left(\tau_{1}+\tau_{2}\right) y_{7}=$ $x_{4} x_{5} x_{1}^{2}-x_{1} x_{2} x_{3}^{2}=y_{5}$ and $\left(i-\tau_{3}\right) y_{5}=x_{4} x_{5} x_{1}^{2}-x_{4} x_{5} x_{2}^{2}=\left(x_{1} x_{4}\right)\left(x_{2} x_{5} x_{3}\right) y_{1}$. Hence $y_{5} \in K S_{6} y_{7}$ and $y_{1} \in K S_{6} y_{5}$ which implies that $K S_{6} y_{1} \subset K S_{6} y_{5} \subset K S_{6} y_{7}$.Thus we get the following series $0 \subset K S_{6} y_{1} \subset K S_{6} y_{5} \subset K S_{6} y_{7} \subset M_{0}(3,2,1) \subset M(3,2,1)$.
Also we have $y_{2} \in K S_{6} y_{5}$ since $\left(i-\left(x_{2} x_{6}\right)+\left(x_{1} x_{6} x_{5} x_{2}\right)\right) y_{5}=y_{2}$ then
$K S_{6} y_{2} \subset K S_{6} y_{5}$.Thus we get the following series
$0 \subset K S_{6} y \subset K S_{6} y_{2} \subset K S_{6} y_{5} \subset K S_{6} y_{7} \subset M_{0}(3,2,1) \subset M(3,2,1)$.
Hence when $\mathrm{n}=6$ we get the following series

1. $0 \subset K S_{6} y_{3} \subset K S_{6} y_{6} \subset K S_{6} y_{7} \subset M_{0}(3,2,1) \subset M(3,2,1)$
2. $0 \subset K S_{6} y \subset K S_{6} y_{2} \subset K S_{6} y_{4} \subset K S_{6} y_{7} \subset M_{0}(3,2,1) \subset M(3,2,1)$
3. $0 \subset K S_{6} y_{1} \subset K S_{6} y_{5} \subset K S_{6} y_{7} \subset M_{0}(3,2,1) \subset M(3,2,1)$.
4. $0 \subset K S_{6} y \subset K S_{6} y_{2} \subset K S_{6} y_{5} \subset K S_{6} y_{7} \subset M_{0}(3,2,1) \subset M(3,2,1)$

Theorem8: If $\mathrm{n}=6$ and $\mathrm{p}=5$ then we get the following series:

1. $0 \subset \bar{N}_{0} \subset \bar{N}_{0} \oplus S_{6}(3,2,1) \subset \bar{N} \oplus S_{6}(3,2,1) \subset \bar{N} \oplus K S_{6} w \subset \bar{N} \oplus \operatorname{kerd} \subset M_{0}(3,2,1) \subset$ $M(3,2,1)$.
2. $0 \subset S_{6}(3,2,1) \subset \bar{N}_{0} \oplus S_{6}(3,2,1) \subset \bar{N} \oplus S_{6}(3,2,1) \subset \bar{N} \oplus \quad K S_{6} w \subset \bar{N} \oplus k e r d \subset$ $M_{0}(3,2,1) \subset M(3,2,1)$.
3. $0 \subset K \sigma_{3} \subset K \sigma_{3} \oplus S_{6}(3,2,1) \subset \bar{N} \oplus S_{6}(3,2,1) \subset \bar{N} \oplus K S_{6} w \subset \quad \bar{N} \oplus k e r d \subset M_{0}(3,2,1) \subset$ $M(3,2,1)$.
4. $0 \subset S_{6}(3,2,1) \subset K \sigma_{3} \oplus S_{6}(3,2,1) \subset \bar{N} \oplus S_{6}(3,2,1) \subset \bar{N} \oplus \quad K S_{6} w \subset \bar{N} \oplus k e r d \subset$ $M_{0}(3,2,1) \subset M(3,2,1)$.
5. $0 \subset \bar{N}_{0} \subset \bar{N}_{0} \oplus S_{6}(3,2,1) \subset \bar{N}_{0} \oplus K S_{6} w \subset \bar{N}_{0} \oplus \operatorname{kerd} \subset \bar{N} \oplus \operatorname{kerd} \subset M_{0}(3,2,1) \subset$ $M(3,2,1)$.
6. $0 \subset S_{6}(3,2,1) \subset \bar{N}_{0} \oplus S_{6}(3,2,1) \subset \bar{N}_{0} \oplus K S_{6} w \subset \bar{N}_{0} \oplus$ kerd $\subset \bar{N} \oplus$ kerd \subset $M_{0}(3,2,1) \subset M(3,2,1)$.
7. $0 \subset K \sigma_{3} \subset K \sigma_{3} \oplus S_{6}(3,2,1) \subset K \sigma_{3} \oplus K S_{6} w \subset K \sigma_{3} \oplus$ kerd $\subset \bar{N} \oplus$ kerd $\subset M_{0}(3,2,1) \subset$ $M(3,2,1)$.
8. $0 \subset S_{6}(3,2,1) \subset K \sigma_{3} \oplus S_{6}(3,2,1) \subset K \sigma_{3} \oplus K S_{6} w \subset K \sigma_{3} \oplus$ kerd $\subset \bar{N} \oplus$ kerd \subset $M_{0}(3,2,1) \subset M(3,2,1)$.

Proof: Since $\bar{N}=K S_{n}\left(C_{1}(n)\right)$, where $C_{1}(n)=\sum_{1<i<j \leq n} x_{i} x_{j} x_{1}^{2}$.Then the sum of coefficients is $\frac{n(n-1)(n-2)}{2}$ which implies that $\bar{N} \subset M_{0}(3,2,1)$.Moreover we have $d\left(C_{1}(n)\right)=2 \sum_{1<i<j \leq n} x_{i} x_{j} \neq$ 0. Thus we get that $\bar{N} \cap$ kerd $=0$.By [Al-Aamily:2016] we have if $p \neq 2$ and p divides $(n-1)$ then we have the following series:

1) $0 \subset \bar{N}_{0} \subset \bar{N} \subset \bar{N} \oplus \operatorname{ker} d \subset M_{0}(n-3,2,1) \subset M(n-3,2,1)$.
2) $0 \subset \bar{N}_{0} \subset \bar{N}_{0} \oplus \operatorname{ker} d \subset \bar{N} \oplus \operatorname{ker} d \subset M_{0}(n-3,2,1) \subset$ $M(n-3,2,1)$
3) $0 \subset K \sigma_{3} \subset K \sigma_{3} \oplus \operatorname{ker} d \subset \bar{N} \oplus \operatorname{ker} d \subset M_{0}(n-3,2,1) \subset M(n-3,2,1)$.
4) $0 \subset K \sigma_{3} \subset \bar{N} \subset \bar{N} \oplus \operatorname{ker} d \subset M_{0}(n-3,2,1) \subset M(n-3,2,1)$.
5) $0 \subset \operatorname{ker} d \subset \bar{N}_{0} \oplus \operatorname{ker} d \subset \bar{N} \oplus \operatorname{ker} d \subset M_{0}(n-3,2,1) \subset M(n-3,2,1)$.
6) $0 \subset \operatorname{ker} d \subset K \sigma_{3} \oplus \operatorname{ker} d \subset \bar{N} \oplus \operatorname{ker} d \subset M_{0}(n-3,2,1) \subset M(n-3,2,1)$.

Therefore by Theorem 1 and Theorem 2 we get the following series:
$1.0 \subset \bar{N}_{0} \subset \bar{N}_{0} \oplus S_{6}(3,2,1) \subset \bar{N} \oplus S_{6}(3,2,1) \subset \bar{N} \oplus K S_{6} w \subset \bar{N} \oplus \quad$ kerd $\subset M_{0}(3,2,1) \subset$ $M(3,2,1)$.
2. $0 \subset S_{6}(3,2,1) \subset \bar{N}_{0} \oplus S_{6}(3,2,1) \subset \bar{N} \oplus S_{6}(3,2,1) \subset \bar{N} \oplus \quad K S_{6} w \subset \bar{N} \oplus k e r d \subset$ $M_{0}(3,2,1) \subset M(3,2,1)$.
3. $0 \subset K \sigma_{3} \subset K \sigma_{3} \oplus S_{6}(3,2,1) \subset \bar{N} \oplus S_{6}(3,2,1) \subset \bar{N} \oplus K S_{6} w \subset \quad \bar{N} \oplus k e r d \subset M_{0}(3,2,1) \subset$ $M(3,2,1)$.
4. $0 \subset S_{6}(3,2,1) \subset K \sigma_{3} \oplus S_{6}(3,2,1) \subset \bar{N} \oplus S_{6}(3,2,1) \subset \bar{N} \oplus \quad K S_{6} w \subset \bar{N} \oplus k e r d \subset$ $M_{0}(3,2,1) \subset M(3,2,1)$.
$5.0 \subset \bar{N}_{0} \subset \bar{N}_{0} \oplus S_{6}(3,2,1) \subset \bar{N}_{0} \oplus K S_{6} w \subset \bar{N}_{0} \oplus \operatorname{kerd} \subset \bar{N} \oplus \quad$ kerd $\subset M_{0}(3,2,1) \subset$ $M(3,2,1)$.
$6.0 \subset S_{6}(3,2,1) \subset \bar{N}_{0} \oplus S_{6}(3,2,1) \subset \bar{N}_{0} \oplus K S_{6} w \subset \bar{N}_{0} \oplus \operatorname{kerd} \subset \quad \bar{N} \oplus \operatorname{kerd} \subset M_{0}(3,2,1) \subset$ $M(3,2,1)$.
$7.0 \subset K \sigma_{3} \subset K \sigma_{3} \oplus S_{6}(3,2,1) \subset K \sigma_{3} \oplus K S_{6} w \subset K \sigma_{3} \oplus$ kerd $\subset \bar{N} \oplus$ kerd $\subset M_{0}(3,2,1) \subset$ $M(3,2,1)$.
$8.0 \subset S_{6}(3,2,1) \subset K \sigma_{3} \oplus S_{6}(3,2,1) \subset K \sigma_{3} \oplus K S_{6} w \subset K \sigma_{3} \oplus \quad$ kerd $\subset \bar{N} \oplus$ kerd \subset $M_{0}(3,2,1) \subset M(3,2,1)$.

References

[1] H.K. Farahat 1962, On the Natural Representation of the Symmetric groups, Proc .Glasgow Math.Assoc.51962,121-136.
[2] M.H .Peel:1969, On the Second Natural Representation of the Symmetric groups. Glasgow Math .Journal vol. 10 part1(1969),25-37.
[3] M.H .Peel, Hook Representation of the Symmetric groups ,Glasgow Math .Journal vol. 12 part 2(1971),136-149.
[4] Eyad M.A.Al-Aamily, Ali Abdulsahib M.Al-Butahi,Abid Ali H.Al-Ta'ai. The First Triangular Representation of the Symmetric Groups with p divides ($\mathrm{n}-1$).ISOR-JM volume 12,Issue 2 Ver II(Mar-Apr.2016)pp 27-34.
[5] M.H .Peel, Specht Modules and Symmetric groups .Journal of Algebra.vol. 36 No.1(1975),88-97.

