
INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL
ISSN 1841-9836, e-ISSN 1841-9844, 14(2), 199-211, April 2019.

Optimal Data File Allocation for All-to-All Comparison in
Distributed System: A Case Study on Genetic Sequence

Comparison

L.X. Li, J. Gao, R. Mu

Leixiao Li
1. College of Computer and Information Engineering,
Inner Mongolia Agricultural University, Hohhot 010018, China
2. College of Data Science and Application,
Inner Mongolia University of Technology, Hohhot 010080, China
3. Inner Mongolia Autonomous Region Engineering & Technology
Research Center of Big Data Based Software Service, Hohhot 010080, China
llxhappy@126.com

Jing Gao*
College of Computer and Information Engineering,
Inner Mongolia Agricultural University, Hohhot 010018, China
*Corresponding author: gaojing@imau.edu.cn

Ren Mu
State key laboratory,
Beijing Jiaotong University, BeiJing 100044, China
568387304@qq.com

Abstract: In order to solve the problem of unbalanced load of data files in large-scale
data all-to-all comparison under distributed system environment, the differences of
files themselves are fully considered. This paper aims to fully utilize the advantages of
distributed system to enhance the file allocation of all-to-all comparison between the
data files in a large dataset. For this purpose, the author formally described the all-
to-all comparison problem, and constructed a data allocation model via mixed integer
linear programming (MILP). Meanwhile, a data allocation algorithm was developed
on the Matlab using the intlinprog function of branch-and-bound method. Finally,
our model and algorithm were verified through several experiments. The results show
that the proposed file allocation strategy can achieve the basic load balance of each
node in the distributed system without exceeding the storage capacity of any node,
and completely localize the data file. The research findings can be applied to such
fields as bioinformatics, biometrics and data mining.
Keywords: distributed system, all-to-all comparison, mix integer linear program-
ming (MILP), file allocation, load balancing.

1 Introduction

The comparison between two random data files in a dataset is commonplace in bioinfor-
matics, biometrics and data mining [1]. However, the all-to-all comparison between data files
in a large dataset require special large scale computations. Previous solutions to such a prob-
lem mainly fall into two categories: those grounded on centralized computing or those using
distributed computing based on centralized storage [2]. The former requires access to supercom-
puter resources [3], while the latter is bottlenecked by limited storage capacity and task delay
caused by waiting for data transmission [4].

The distributed computing based on distributed storage provides an efficient, reliable and
scalable solution to large-scale computing problems like all-to-all comparison. By distributed

Copyright ©2019 CC BY-NC

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Agora University Editing House: Journals

https://core.ac.uk/display/236054092?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

200 L.X. Li, J. Gao, R. Mu

computing, a large-scale problem is decomposed into several small problems, which are then
handled separately on each node in a distributed system [5]. Nevertheless, the performance of
distributed computing depends heavily on data allocation, task decomposition and task schedul-
ing, and might be dampened by the irrational data allocation, poor data locality and computing
load imbalance in the distributed system [6].

There are two data allocation strategies for all-to-all comparison of data files in a large
dataset via distributed computing based on distributed storage, namely, allocating all input files
to each computing node, and allocating a number of copies of each input files randomly to the
system node (i.e. the Hadoop framework data allocation policy) [7–9]. Hadoop framework can
not guarantee the load balancing of the comparison task calculation of each node. Storing all
input files on each node is a common practice in centralized computing solutions, but it wastes
storage and network resources [10] For the latter strategy, the computing performance is poor
due to the frequency data movement between the nodes [11]. After all, Hadoop, as a general
distributed computing framework, is not designed specifically for all-to-all comparison [1, 12].

To solve the above problems, this paper establishes a model to optimize the data file allo-
cation optimization in all-to-all comparison of data files in a large dataset, puts forward a data
file allocation algorithm and a task scheduling strategy, and verifies the proposed methods via
experiments. The experimental results show that our model and algorithm can achieve data
localization and load balancing of comparative files under the storage constraints of distributed
system nodes, thus giving full play to the advantages of distributed system.

The remainder of this paper is organized as follows: Section 2 describes the all-to-all com-
parison problem and constructs a data file allocation model; Section 3 designs the data allocation
algorithm; Section 4 performs the experimental verification and discusses the results; Section 5
wraps up this paper with several conclusions.

2 Problem description and data file allocation model

2.1 Problem description

All-to-all comparison refers to the multiple contrasts of all data files in a dataset. This
problem can be illustrated by the graph in Figure 1, where each vertex is a data file to be
compared and each edge is a comparison task between two data files. If m is the number of
data files to be compared, then the total number of comparison tasks is m(m − 1)/2. Hence,
the all-to-all comparison problem can be expressed as a graph with m vertices and m(m− 1)/2
edges.

Figure 1: All-to-all comparison problem

In a distributed system with distributed storage, the all-to-all comparison of data files in
a large dataset is implemented in two steps: First, all data files in the dataset are allocated to
each computing node of the distributed system; then, the data files are compared in a pairwise
manner.

Optimal Data File Allocation for All-to-All Comparison in
Distributed System: A Case Study on Genetic Sequence Comparison 201

Table 1: Symbol description

Number Symbol Symbolic description
1 m Number of data files
2 n Number of computing nodes in dis-

tributed system
3 s M row 1 column matrix, representing

the size of each file
4 si, i = 1, 2, . . .,m Size of i data file
5 u N row 1 row matrix, representing the

maximum storage limit of each node in
a distributed system

6 ui, i = 1, 2, . . . , n The storage capacity of computing
nodesi

7 wij , i = 1, 2, . . . ,m, j = 1, 2, . . .,m The size of the task compares with file
i and file j.

8 cij , i = 1, 2, . . . ,m, j = 1, 2, . . .,m Amount of calculation of the task com-
pares with file i and file j.

9 xkt, k = 1, 2, . . . ,m(m− 1)/2, t = 1, 2, . . ., n whether or not allow the assignment of
item K allocated to the T node

10 Wkt = wijt Assign the size of item K to the T node
(the file number corresponding to item
K is i, j).

11 Ckt = cijt The amount of computation assigned to
item K of the T node (the file number
corresponding to itemK corresponds to
i, j).

12 taskno Task number
13 av_work The average amount of tasks per com-

puting node should be allocated in the-
ory,

14 deci Correspondence matrix between task
and file

15 result Task allocation result matrix
16 f Objective function variable coefficient

matrix
17 aeq Coefficient matrix of equality constraint

variables
18 beq Equality constrained variable resource

matrix
19 a Inequality constraint coefficient matrix
20 b Inequality constrained resource matrix
21 intcon Integer variable subscript sequence

number vector
22 LB Lower limit of variable
23 UB Upper limit of variable
24 [X,Y] X is the best solution for obtaining the

variable value. Y is the best solution.

202 L.X. Li, J. Gao, R. Mu

Before allocating the data files, it is necessary to fully consider how the system performance
is affected by node storage capacity, data transmission, network bandwidth, load balance and
other factors. A desirable allocation strategy must satisfy the following conditions:(1) The data
allocated to a node should not surpass the storage capacity of that node;(2) The two files to be
compared on a node must be saved on that node to localize the data files for each comparison
task;(3) The comparison tasks should be balanced among the computing nodes.

For simplicity, all the symbols used in this paper are listed in Table 1 below.
For better system speed and performance, our goal is to balance the comparison tasks among

the computing nodes under the storage capacity of each node.

2.2 Data file allocation model

The above description shows that all-to-all comparison is a typical constrained optimization
problem: maximizing or minimizing objective functions under multiple constraints. The most
effective solution to constrained problem is linear programming (LP), which works well when the
objective functions and constraints are all linear [13,14]. With a strong modelling ability, the LP
is also a desirable way to tackle control and programming problems. The main idea of the LP is
to find a control sequence that satisfies all constraints and minimizes the objective function [15].

In this paper, node storage is added to the constraints of the all-to-all comparison problem,
and load balancing is treated as the objective function. All constraints were expressed as an
equality or inequality. As mentioned before, our problem involves m data files and n nodes in a
distributed system with distributed storage. For multiple comparisons of all data files, the m data
files should be distributed rationally to those nodes to fulfill load balancing, data localization
and node storage constraint.

As shown in Figure 1, the total number of comparison tasks of these data files can be
expressed as:

C2
m =

m(m− 1)

2
(1)

Let si(i = 1, 2, · · · ,m) be the size of each of the m data files. Then, the total size of the
two files in each comparison task can be calculated as:

wij = si + sj(i, j = 1, 2, · · · ,m, i < j) (2)

Then, the computing load of the comparison task between file i and file j can be obtained
as:

cij(i, j = 1, 2, · · · ,m, i < j) (3)

Thus, the total number of multiple comparison tasks between the m data files can be de-
scribed as:

m∑
i=1

m∑
j=i+1

cij (4)

If the tasks are allocated equally to n nodes, then the theoretical mean number of tasks
allocated to each computing node can be expressed as:

m∑
i=1

m∑
j=i+1

cij

n
(5)

Then, xkt(k = 1, 2, · · · , m(m−1)
2 , t = 1, 2, · · · , n) was introduced to specify whether data file

k is allocated to node n:

xkt = 0 or 1, k = 1, 2, · · · , m(m− 1)

2
, t = 1, 2, · · · , n (6)

Optimal Data File Allocation for All-to-All Comparison in
Distributed System: A Case Study on Genetic Sequence Comparison 203

Since a comparison task can only be allocated to one node, we have:

n∑
t=1

xkt = 1, k = 1, 2, · · · , m(m− 1)

2
(7)

Let uj(j = 1, 2, · · · , n) be the storage capacity of node n and Wkt = wijt be the total size of
the two files (file i and file j) in task k that are distributed to node t. Then, the total size of the
files distributed to each node in the distributed system should not exceed the storage capacity
of that node:

m(m−1)
2∑

k=1

Wktxkt ≤ ut, t = 1, 2, · · · , n (8)

Let Ckt = cijt be the computing load of the comparison task k between file i and file j that
are distributed to node t. Then, the computing load distributed to each node in the distributed
system can be expressed as:

m(m−1)
2∑

k=1

Cktxkt (9)

Then, the sum of the absolute difference between the actual and theoretical mean number
of tasks actually allocated to each computing node can be expressed as:

n∑
t=1

∣∣∣∣∣∣∣∣∣

m(m−1)
2∑

k=1

Cktxkt

−
m∑
i=1

m∑
j=i+1

cij

n

∣∣∣∣∣∣∣∣∣ (10)

Under the constraints of equations (6), (7) and (8), an optimal task allocation model [16]
was established to minimize the value of equation (10):

min
n∑
t=1

∣∣∣∣∣∣
m(m−1)

2∑
k=1

Cktxkt

−
m∑
i=1

m∑
j=i+1

cij

n

∣∣∣∣∣∣
s.t.

n∑
t=1

xkt = 1, k = 1, 2, · · · , m(m−1)
2

m(m−1)
2∑

k=1

Wktxkt ≤ ut, t = 1, 2, · · · , n

xkt = 0 or 1, k = 1, 2, · · · , m(m−1)
2 , t = 1, 2, · · · , n

(11)

If the objective function in Equation (11) contains nonlinear terms, then established model is
a nonlinear programming model. In this case, new decision variables d−t and d+

t were introduced
to Equation (11) to transform the model into the linear form. The variable d−t means the actual
computing load allocated to a node is greater than the theoretical mean computing load to
that node, while the variable d+

t has exactly the opposite meaning. The two variables are both
numbers greater than or equal to zero. In other words, if the actual computing load allocated
to a node is greater than the theoretical mean computing load to that node, the excess load d−t
should be removed from the node; in the opposite scenario, the insufficient load d+

t should be
added to the node. In this way, the objective function is changed into finding the minimum sum
of (d−t + d+

t) for each node.

204 L.X. Li, J. Gao, R. Mu

After introducing the new decision variables, Equation (11) can be transformed into a linear
programming model below.

min
n∑
t=1

(d−t + d+
t)

s.t.

n∑
t=1

xkt = 1, k = 1, 2, · · · , m(m−1)
2

m(m−1)
2∑

k=1

Wktxkt ≤ ut, t = 1, 2, · · · , nm(m−1)
2∑

k=1

Cktxkt

−
m∑
i=1

m∑
j=i+1

cij

n

− d−t + d+
t = 0, t = 1, 2, · · · , n

xkt = 0 or 1, k = 1, 2, · · · , m(m−1)
2 , t = 1, 2, · · · , n

d−t , d
+
t ≥ 0, t = 1, 2, · · · , n

(12)

Since the values of d−t and d+
t cannot be integers, the model of Equation (12) is a mixed

integer linear programming (MILP) model.

3 Design of file allocation algorithm

The MILP model can be solved by commercial solvers like CPLEX [17] and Gurobi [18]
and non-commercial approaches like branch and bound method, cutting plane method, branch-
cutting plane method and heuristic method [19–21]. Here, the intlinprog function of branch-and-
bound steps [16] in the Matlab is selected to solve the MILP in Equation (12). Table 2 lists the
comparison tasks and data files in the problem. Among them, branch and bound method is an
effective method to solve combinatorial optimization problems. It can get the optimal solution,
and the average speed is very fast. Therefore, the idea of branch and bound method is adopted
in this paper.

Table 2: Comparison tasks and data files

Task Number File1 Number File2 Number
1 1 2
2 1 3
.
m− 1 1 m
M 2 3

m+ 1 2 4
.

2 ∗m− 3 2 m
.

m(m− 1)/2 m− 1 m

Then, a file allocation algorithm was designed to cover the following steps [16,22,23]:

4 Experimental verification

Four file allocation experiments were carried out in the environment of matlab 2018a [24,25],
with the aim to verify our model and algorithm.

Optimal Data File Allocation for All-to-All Comparison in
Distributed System: A Case Study on Genetic Sequence Comparison 205

Algorithm 1 File allocation algorithm
1 step 1: define and initialize variables
2 define and initialize variables m,n, s, u : m ← the total number of files, n ← the total number of nodes, s ←
[s1, s2, . . . , sm], u← [u1, u2,←, un];
if s.length==0 or u.length==0 then

s← unit matrix whose values are all 1 with m rows and 1 column;
u← unit matrix whose values are all infinite with n rows and 1 column.

end if
3 step 2: calculate the corresponding matrix deci between the tasks and the files
4 define task ordinal variables: taskno← 1;
5
for all i = 1 to m do

for all j = i+ 1 to m do
deci(taskno, 1 : 4)← [taskno, i, j, s(i) + s(j)];
taskno+ +;

end for
end for
6 calculate the theoretical mean number of tasks per node: av_work sum (deci(, 4))/n;
7 Step 3: set the values for general form of MILP parameters
I) set the value for the objective function variable coefficient matrix f .
Define temporary variables i, j; i←length(deci(:, 1)) ∗ n; j ← 2 ∗ n;
f ← the matrix with i+ j rows and 1 column, the former i row elements are 0, and the latter j row elements are 1.
II) set the value of the variable coefficient matrixaeqfor the corresponding equality constraint.
for all i = 1 to length(deci(:, 1)) do

for all j = 1 to n do
aeq(i, (i− 1) ∗ n+ j)← 1;

end for
end for
for all j = 1 to n do

for all i = 1 to length(deci(:, 1) do
aeq(length(deci(:, 1)) + j, (i− 1) ∗ n+ j)← deci(i, 4);
aeq(length(deci(:, 1)) + j, n*length(deci(:, 1)) + (j − 1) ∗ 2 + 1)← −1;
aeq(length(deci(:, 1)) + j, n*length(deci(:, 1)) + j ∗ 2)← 1;

end for
end for
III) set the value of the resource matrix beq for the corresponding equality constraint
Define temporary variable i; i← length(deci(:, 1));
beq ← (1 + n row 1 row matrix, the former i row element is 1, and the latter j row element is av_work;
IV) set the value of the coefficient matrix a for the corresponding inequality constraint
Define temporary variable i; i←length(aeq(1, :));
a← Unit matrix whose values are all 0 with n rows and 1 column.
for all i = 1 to n do

for all j = 1 to length(deci(:, 1)) do
a(i, i+ (j − 1) ∗ n)← deci(j, 4);

end for
end for
V) set the value of the resource matrix b for the corresponding inequality constraint: b← u;
VI) set the value of the vector intcon for integer variable subscript sequence:
intcon←1: length(deci(:, 1)) ∗ n;
VII) set the value of LB for the lower bound and the value of UB for the upper bound. Define the temporary variable
i, j; i←length(deci(:, 1)) ∗ n; j ← 2 ∗ n;
LB ← unit matrix whose values are all 0 with i+j rows and 1 column;
UB ← the matrix with i+ j rows and 1 column, where the former i row elements are 1, and the latter j row elements
are + infinity.
8 use the branch and bound intlinprog function to solve the MILP problem, we can get the optimal solution:
[X,Y]← intlinprog(f , intcon, a, b, aeq, beq, LB, UB);
9 step 4: matrix of comparison task allocation result
Define temporary matrix variables sum, sum← unit matrix whose values are all 0 with n rows and 1 column.
for all i=1 to length(deci(:, 1)) do

for all j = i+ 1 to n do
if X((i− 1) ∗ n+ j) > 0.99999 then

sum(j)← sum(j) + 1;
result(j, sum(j))← i;

end if
end for

end for

206 L.X. Li, J. Gao, R. Mu

(1) Experiment 1 (Same file size and equal distribution of comparison tasks)
Ten genetic sequence files of the same size (100M) were allocated to five nodes for sequence

alignment. As shown in Figure 2, the comparison task distributed to each node has the same
computing load and achieves full load balancing. Since m = 10 and n = 5, we have m(m −
1)%(2 ∗ n) = 0, that is, each node was distributed with the same number of tasks. The detailed
results of experiment 1 are shown in Table 3 below.

Figure 2: Load distribution to each node in experiment 1

Table 3: Detailed results of experiment 1

Node Number Task Number File Number Task Amount Calculation
Amount

Node1 6, 7, 22, 27, 30,
34, 35, 41, 43

1, 3, 4, 5, 7, 8, 9,
10 9 1800

Node2 3, 9, 13, 16, 17,
25, 28, 31, 36

1, 2, 4, 5, 6, 7, 8,
9, 10 9 1800

Node3 2, 10, 11, 19, 20,
23, 26, 33, 37

1, 2, 3, 4, 5, 6, 8,
9 9 1800

Node4 1, 4, 12, 15, 18,
21, 29, 39, 42

1, 2, 3, 4, 5, 6, 7,
8, 9, 10 9 1800

Node5 5, 8, 14, 24, 32,
38, 40, 44, 45

1, 2, 3, 5, 6, 7, 8,
9, 10 9 1800

(2) Experiment 2 (Same file size and unequal distribution of comparison tasks)
Ten genetic sequence files of the same size (100M) were allocated to four nodes for sequence

alignment. Since m = 10 and n = 4, we have (m − 1)%(2 ∗ n)! = 0, that is, the nodes cannot
achieve complete load balance. In this case, the load distribution to each node is shown in
Figure 3. The experimental results (Table 4) show that three of the four nodes were distributed
with 2200 tasks while the remaining one was distributed with 2400 tasks. The load between the
nodes is basically balanced.

(3) Experiment 3 (Different file sizes and equal distribution of comparison tasks)
Ten genetic sequence files of different sizes (150M; 220M; 180M; 300M; 190M; 95M; 200M;

160M; 320M; 260M) were allocated to five nodes for sequence alignment. Since m = 10 and
n = 5, we have m(m− 1)%(2 ∗ n) = 0. However, the nodes may not be able to achieve complete
load balance due to the difference in file size. In this case, the load distribution to each node is
shown in Figure 4. As shown in Table 5, four of the five nodes were distributed with 3735 tasks
while the other two with 3775 tasks. The load between the nodes is basically balanced.

Optimal Data File Allocation for All-to-All Comparison in
Distributed System: A Case Study on Genetic Sequence Comparison 207

Figure 3: Detailed results of Experiment 2

Table 4: Detailed results of Experiment 2

Node Number Task Number File Number Task Amount Calculation
Amount

Node1 3, 6, 9, 14, 17, 20,
23, 24, 29, 39, 45

1, 2, 3, 4, 6, 7, 9,
10 11 2200

Node2
7, 11, 13, 16, 18,
19, 21, 25, 27, 35,

37, 42

1, 2, 3, 4, 5, 6, 7,
8, 9, 10 12 2400

Node3 4, 5, 8, 22, 31, 33,
34, 38, 41, 43, 44

1, 3, 4, 5, 6, 7, 8,
9, 10 11 2200

Node4
1, 2, 10, 12, 15,
26, 28, 30, 32, 36,

40

1, 2, 3, 4, 5, 6, 7,
8, 10 11 2200

Figure 4: Load distribution to each node in experiment 3

(4) Experiment 4 (Different file sizes and unequal distribution of comparison tasks)
Ten genetic sequence files of different sizes (150M; 220M; 180M; 300M; 190M; 95M; 200M;

160M; 320M; 260M) were allocated to four nodes for sequence alignment. In this case, the load
distribution to each node is shown in Figure 5. As shown in Table 6, three of the four nodes
were distributed with 4670 tasks while the remaining one with 4665 tasks. The load between the
nodes is basically balanced.

The results of the four experiments reveal that our algorithm can always reach load balance
between the nodes, whether the files are of the same size, and ensure that the total size of the files
distributed to a node never exceeds the storage capacity of that node. Even if load balancing is

208 L.X. Li, J. Gao, R. Mu

Table 5: Detailed results of Experiment 3

Node Number Task Number File Number Task Amount Calculation
Amount

Node1 2, 22, 26, 28, 32,
40, 41, 42, 43

1, 3, 4, 5, 6, 7, 8,
9, 10 9 3735

Node2 5, 10, 12, 13, 18,
20, 31, 35, 36, 45

1, 2, 3, 4, 5, 6, 7,
9, 10 10 3735

Node3 3, 4, 7, 16, 19, 21,
23, 25, 39

1, 2, 3, 4, 5, 6, 7,
8, 9, 10 9 3775

Node4 1, 17, 24, 27, 29,
30, 34, 37

1, 2, 3, 4, 5, 6, 7,
8, 9, 10 8 3735

Node5 6, 8, 9, 11, 14, 15,
33, 38, 44

1, 2, 4, 5, 6, 7, 8,
9, 10 9 3735

Figure 5: Load distribution to each node in experiment 4

Table 6: Detailed results of Experiment 4

Node Number Task Number File Number Task Amount Calculation
Amount

Node1 1, 8, 11, 17, 19,
29, 32, 33, 41, 45

1, 2, 3, 4, 5, 7, 8,
9, 10 10 4670

Node2
4, 13, 16, 20, 24,
26, 30, 31, 35, 37,

39, 42

1, 2, 3, 4, 5, 6, 7,
8, 9, 10 12 4670

Node3
3, 5, 10, 15, 18,
22, 27, 28, 34, 43,

44

1, 2, 3, 4, 5, 6, 7,
8, 9, 10 11 4665

Node4
2, 6, 7, 9, 12, 14,
21, 23, 25, 36, 38,

40

1, 2, 3, 4, 5, 6, 7,
8, 9, 10 12 4670

theoretically impossible, our algorithm can minimize the load difference between the nodes and
approximate the load balance.

Compared with Hadoop-based data allocation strategy, this algorithm can ensure that the
comparison tasks have 100% data locality, achieve load balancing between nodes, and improve
storage saving and overall computing performance.

Optimal Data File Allocation for All-to-All Comparison in
Distributed System: A Case Study on Genetic Sequence Comparison 209

5 Conclusions

This paper probes deep into the all-to-all comparison between data files in a large dataset
under the environment of a distributed system. After reviewing the problems existing in the
existing methods, the author gives a formal mathematical description of the whole comparison
problem. In order to achieve load balancing of each node in distributed system, a data file alloca-
tion model based on MILP is constructed by using the technology and method of mathematical
modeling. Meanwhile, a file allocation algorithm was set up on the Matlab using the intlinprog
function of branch-and-bound method. Finally, our model and algorithm were verified through
several experiments. The results show that the proposed file allocation strategy can achieve
the basic load balance of each node in the distributed system without exceeding the storage
capacity of any node, and completely localize the data file. The research findings help to fully
utilize the efficiency, stability and scalability of the distributed system to enhance the computing
performance of all-to-all comparison.

Acknowledgements. Funding

The work is funded in part by the National Natural Science Foundation of China (NSFC)
under Grant No. 61462070, the Doctoral research fund project of Inner Mongolia Agricultural
University under Grant No. BJ09-44 and the Inner Mongolia Autonomous Region Key Labora-
tory of big data research and application for agriculture and animal husbandry.

Author contributions. Conflict of interest

The authors contributed equally to this work. The authors declare no conflict of interest.

Bibliography

[1] Borodin, V.; Bourtembourg, J.; Hnaien, F., Labadie, N. (2018). COTS software integration
for simulation optimization coupling: case of ARENA and CPLEX products, International
Journal of Modelling and Simulation, (5), 1–12, 2018.

[2] Dai, Y.; Wu, W.; Zhou, H.B.; Zhang, J.; Ma, F.Y. (2018). Numerical Simulation and
Oprimization of Oil Jet Lubrication for Rotorcraft Meshing Gears, International Journal of
Simulation Modelling, 17(2), 318–326, 2018.

[3] Dai, Y.; Zhu, X.; Zhou, H.; Mao, Z.; Wu, W. (2018). Trajectory Tracking Control for
Seafloor Tracked Vehicle By Adaptive Neural-Fuzzy Inference System Algorithm, Interna-
tional Journal of Computers Communications & Control, 13(4), 465–476, 2018.

[4] Deng, J. (2014). Research and Improvement of Mixed Integer Linear Programming Model
for Unit Combination, Nanning: Guangxi University, 12–16, 2014.

[5] Gao, Y.J. (2017). Research on Data Allocation Strategy for All-to-all Comparison of Large
Data Sets, Taiyuan: Taiyuan University of Technology, 5–10, 2017.

[6] Guo, J.W.; Li, Y.; Du, L.P.; Zhao, G.F.; Jiang, J.Y. (2014). Research on distributed data
mining system based on hadoop platform, Advances in Intelligent Systems and Computing,
255, 629–636, 2014.

210 L.X. Li, J. Gao, R. Mu

[7] He, H.; Du, Z.H.; Zhang, W.Z.; Chen, A. (2016). Optimization strategy of Hadoop small
file storage for big data in healthcare, Journal of Supercomputing, 72(10), 3696–3707, 2016.

[8] Hess, M.; Sczyrba, A.; Egan, R.; Kim, T.W.; Chokhawala, H.; Schroth, G.; Luo, S.; Clark,
D.S.; Chen, F.; Zhang, T.; Mackie, R.I.; Pennacchio, L.A.; Tringe, S.G.; Visel, A.; Woyke,
T.; Wang, Z.; Rubin, E.M. (2011). Metagenomic discovery of biomass-degrading genes and
genomes from cow rumen, Science, 331(6016), 463–467, 2011.

[9] Hu, S.R. (1991). Modern supercomputer system, Journal of computer science, (1), 47–56,
1991.

[10] Jiao, X.P.; Mu, J.J. (2013). Improved check node decomposition for linear programming
decoding, IEEE Communications Letters, 17(2), 377–380, 2013.

[11] Liao, J.; Trahay, F.; Xiao, G.; Li, L.; Ishikawa, Y. (2017). Performing initiative data prefetch-
ing in distributed file systems for cloud computing, IEEE Transactions on Cloud Computing,
5(3), 550–562, 2017.

[12] Mu, R.; Wu, J.J.; Li, N. (2018). MATLAB and mathematical modeling, Beijing: Science
Press, 63–78, 2018.

[13] MĂźller, E.R.; Carlson, R.C.; Junior, W.K. (2016). Intersection control for automated ve-
hicles with MILP, IFAC-PapersOnLine, 49(3), 37–42, 2016.

[14] Nayahi, J.J.V.; Kavitha, V. (2017). Privacy and utility preserving data clustering for data
anonymization and distribution on Hadoop, Future Generation Computer Systems, 74, 393–
408, 2017.

[15] Pitty, S.S.; Karimi, I.A. (2008). Novel MILP models for scheduling permutation flowshops,
Chemical Product and Process Modeling, 3(1), 35–42, 2008.

[16] Sun, J.Y. (2016). Simulation experiment of operation research model based on MATLAB,
Journal of Shenyang University (Natural Science Edition), 28(4), 337–339, 2016.

[17] Schulman, J.; Duan, Y.; Ho, J.; Lee, A.; Awwal, I.; Bradlow, H. (2014). Motion planning
with sequential convex optimization and convex collision checking, International Journal of
Robotics Research, 33(9), 1251–1270, 2014.

[18] Schmidt, B.; Hartmann, C. (2018). Wavepacket: a matlab package for numerical quantum
dynamics. ii: open quantum systems, optimal control, and model reduction, Computer
Physics Communications, 228, 229–244, 2018.

[19] Ubarhande, V.; Popescu, A.; González-Vélez, H. (2015). Novel Data-Distribution Technique
for Hadoop in Heterogeneous Cloud Environments, 2015 Ninth International Conference on
Complex, Intelligent, and Software Intensive Systems, 217–224, 2015.

[20] Wang, L.Z.; Tao, J.; Ranjan, R.; Marten, H.; Streit, A.; Chen, J.Y.; Chen, D. (2013). G-
Hadoop: MapReduce across distributed data centers for data-intensive computing, Future
Generation Computer Systems, 29(3), 739–750, 2013.

[21] Yang, X.P.; Zhou, X.G.; Cao, B.Y. (2015). Multi-level linear programming subject to
addition-min fuzzy relation inequalities with application in Peer-to-Peer file sharing sys-
tem, Journal of Intelligent and Fuzzy Systems, 28(6), 2679–2689, 2015.

Optimal Data File Allocation for All-to-All Comparison in
Distributed System: A Case Study on Genetic Sequence Comparison 211

[22] Zhang, Y.F.; Tian, Y.C.; Fidge, C.; Kelly, W. (2016); Data-aware task scheduling for all-
to-all comparison problems in heterogeneous distributed systems, Journal of Parallel &
Distributed Computing, 93(C), 87–101, 2016.

[23] Zhang, Y.F.; Tian, Y.C.; Kelly, W.; Fidge, C. (2017). Scalable and efficient data distribution
for distributed computing of all-to-all comparison problems, Future Generation Computer
Systems, 67, 152–162, 2017.

[24] Zhang, Y.F.; Tian, Y.C.; Kelly, W.; Fidge, C. (2014). A distributed computing framework
for All-to-All comparison problems, IECON 2014 - 40th Annual Conference of the IEEE
Industrial Electronics Society, 2499–2505, 2014.

[25] Zhou, J.X.; Shao, X.M.; Qiao, J.Y.; Zhang, Y.W. (2012). MATLAB from the introduction to
proficiency (2nd edition), Beijing: People’s Post and Telecommunications Publishing House,
35–92, 2012.

