
INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL
ISSN 1841-9836, 10(2):222-229, April, 2015.

Logging for Cloud Computing Forensic Systems

A. Pătraşcu, V.V. Patriciu

Alecsandru Pătraşcu*
1. Military Technical Academy, Computer Science Department
39-40 George Coşbuc Street, Bucharest, Romania
alecsandru.patrascu@gmail.com
2. Advanced Technologies Institute
10 Dinu Vintila, District 2, 021102, Bucharest, Romania
ati@dcti.ro

*Corresponding author: ati@dcti.ro

Victor Valeriu Patriciu
Military Technical Academy, Computer Science Department
39-40 George Coşbuc Street, Bucharest, Romania
victorpatriciu@yahoo.com

Abstract: Cloud computing represents a different paradigm in the field of dis-
tributed computing that involves more and more researchers. We can see in this
context the need to know exactly where, when and how a piece of data is processed
or stored. Compared with classic digital forensic, the field of cloud forensic has a lot
of difficulties because data is not stored on a single place and furthermore it implies
the use of virtualization technologies.
In this paper we present a new method of monitoring activity in cloud computing
environments and datacenters by running a secure cloud forensic framework. We
talk in detail about the capabilities that such system must have and we propose an
architecture for it. For testing and results we have implemented this solution to our
previous developed cloud computing system.
Keywords: cloud computing; data forensics; logging framework; distributed com-
puting; binary diff

1 Introduction

Cloud Computing to put it simply, means Internet Computing. It is a model for enabling
convenient, on-demand network access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider interaction.

The cloud computing model offers the promise of massive cost savings combined with in-
creased IT agility. It is considered critical that government and industry begin adoption of this
technology in response to difficult economic constraints. However, cloud computing technol-
ogy challenges many traditional approaches to datacenter and enterprise application design and
management. Cloud computing is currently being used. However, security, interoperability, and
portability are cited as major barriers to broader adoption.

In this context, a new need for IT experts is increasing: the need to know exactly how, where
and in what condition is the data from the cloud stored, processed and delivered to the clients.
We can say with great confidence that cloud computing forensics has become more and more a
need in todays distributed digital world.

In this paper we are going to present a new way in which we can integrate a full forensics
framework on top of a new or existing cloud infrastructure. We will talk about the architecture
behind it and we will present its advantages for the entire cloud computing community. We will
present also the impact that our technology proposal will have on existing cloud infrastructures

Copyright © 2006-2015 by CCC Publications

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Agora University Editing House: Journals

https://core.ac.uk/display/236054081?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Logging for Cloud Computing Forensic Systems 223

and as a proof of concept we will present some particular implementation details over our own
cloud computing framework that we have already developed in [6].

The rest of the document is structured as follows. In section 2 we present some of the related
work in this field, that is linked with our topic and in section 3 we present in detail our proposed
cloud forensics logging framework. Section 4 is dedicated to presenting our results from our
implementation made so far, and in section 5 we conclude our document.

2 Related work

The integration of cloud computing logging in the field of forensics is not new and we find
thesis in this directions, such as the one of Zawoad et al [1] which present an architecture for a
secure cloud logging service that collects information from various sources around the datacenter,
both software (hypervisors) and hardware (network equipments)in order to create a complete
image of the operations done in a datacenter.

The same challenges are evidenced by Marty [2] and Sibiya et al [3]. In their papers they
present a perspective over a custom logging framework and talk about the way in which forensics
investigators can be provided with reliable and secure data using a standardized way. They
propose using a single centralized log collector and processor, in order to save business’s and
users time.

In order to face the many challenges involving digital forensics in general, but also to take
benefits from the opportunities cloud computing is offering, we have to rethink most of the
classic network established principles and re-organize well-known workflows, even include and
use tools not previously considered viable for forensic use, such as machine learning or large
scale computing. Furthermore we must submit to the classic digital forensic main rule and keep
all digital evidence intact. All of our investigation is done on a digital copy of the original data.

In our previous research [10] we have also focused on choosing a proper data representation
format that will be used between the modules of our framework and between the modules and
the central forensic processing core. In the next paragraphs we present a brief comparison of two
existing proposals in this directions, that are applicable in our context.

The first one is the “Management metalanguage” [12] proposed by the UnixWare community.
Its advantage is that it can be used as a transparent API in the kernel modules as it provides an
interface for an external host. The downside is that it needs a lot of auxiliary binary data to be
sent in order to re-create the entire picture at the other end, and using it we get quickly a traffic
larger than the one that can be obtained by sending only the basic snapshots.

On the other side, the CEE (Common Event Expression) organization [11] proposes a set of
specifications using the JSON and XML markup languages for event logging on disk or in transit
over a network. These requirements are designed for maximum interoperability with existing
event and interchange standards to minimize adoption costs. The advantage of this approach is
that CEE expresses its interfaces and does not promote an actual implementation.

After thoroughly analyzing these two proposals we have chosen to use a combination between
them, meaning that we want to full details that the management metalanguage encapsulates,
under the form of JSON data representation.

3 Logging framework architecture

In the following section we will talk about the top view architecture of our cloud computing
enabled forensic system. We will present the main building blocks and modules and then we



224 A. Pătraşcu, V.V. Patriciu

focus on the logging sub-system. The entire architecture will follow also the perspective from
the forensic investigator part.

3.1 General forensics architecture

The framework presented in this paper has a modular architecture and each of the modules
is presented in the following paragraphs in detail. It is also easy to see that the entire framework
can be extended with other modules or plugins to support various workloads and even processing
elements. In order to have a working platform, we must first introduce the concept of a cloud
computing framework. In Figure 1 we can see that the top view of a cloud computing framework
contains two main layers: a virtualization layer and a management layer.

Figure 1: Basic cloud computing architecture Figure 2: Forensic enabled cloud architecture

In the Virtualization layer we find the actual platforms/servers that host the virtual ma-
chines and have virtualization enabled hardware. In the Management layer we find the modules
responsible for enabling the entire operations specific to the cloud. These modules are, in order:
Security (responsible with all security concerns related to the cloud system - intrusion detection
and alarming module), Validation engine (receives requests to add new jobs to be processed),
Virtual jobs (creates an abstraction between the data requested by the user and the payload
that must be delivered to the cloud system), Scheduler (schedules the jobs to the virtualization
layer), Hypervisor interface (acts like a translation layer that is specific to a virtualization
software vendor), Load distribution (responsible with horizontal and vertical scaling of the
requests received from the scheduler), Internal cloud API (intended as a link between the
virtualization layer and the cloud system), External cloud API (offers a way to the user for
interacting with the system).

Now that the notion of a cloud computing framework was presented, we will talk about the
modifications that must be made to it in order to create an forensic enabled cloud computing
architecture. As can be seen in Figure 2 the modification affects all the existing modules and
includes two new modules, the Cloud Forensic Module and the Cloud Forensic Interface. Their
main goal is to gather all forensic and log data from the virtual machines that are running inside
the virtualization layer and it represents the interface between the legal forensic investigator and
the monitored virtual machines. The investigator has the possibility to monitor one or more
virtual machine for a targeted user for a specific amount of time.

3.2 Cloud logging architecture

In this section we present how our framework is working and how it is created in order
to run on top of new or existing cloud computing infrastructures. As example for it we will



Logging for Cloud Computing Forensic Systems 225

present the integration with our previously implemented Cloud Computing framework. The
cloud architecture presented in our previous work makes use of the concept of leases, in which
we can specify the amount of time the job must run, or specify between what hours in a day it
is running.

Figure 3: Cloud Forensics Logging Framework

The cloud logging system architecture is a layered one, containing five layers, each with its
own purpose. We will present each of them in detail in the following paragraphs. We also used a
graphical representation, in Figure 3, where the whole layers and the relationship between them
can be seen. The layers are all implemented using the distributed computing paradigm and they
represent jobs in our cloud computing environment.

The first layer, as presented in our previous work [4], represents the management layer
in a cloud computing deployment. All the modules that are responsible with all cloud specific
operations can be found at this level, together with the forensic targeted ones, such as "Cloud
Forensic Module".

The second layer represents the virtualization layer in a cloud computing implementation.
At this level we can find the workstations and servers that host the virtual machines. The
fact that the main building blocks are represented by the virtual machines, the hardware must
also have virtualization enabled. Inside the Cloud Forensic Interface, a dedicated “Local logging
module” must be installed into the existing physical machine. It is responsible with the RAW
data gathering from the monitored virtual machines. The data quantity can be adjusted by the
investigator and he can choose to monitor a particular virtual machine or monitor the entire
activity existing inside that machine.

In order to gather data reliably from the virtual machines the local logging module must be
integrated fully with the running hypervisor inside the physical machine. In this paper we focus
on the integration with the “KVM” virtualization technology that exists in modern Linux kernel
releases. We have chosen it because it is a full open-source virtualization solution, integrated
with the Linux kernel since 2007 and it is actively used by many companies across the world.

An important thing that must be taken in consideration is what data are we intercepting from
the virtual machine and send it to further processing. Since all the activity can be intercepted,
there is the risk of severe time penalties and processing speed. In order to solve this problem,
at this point we will offer the possibility for an investigator to choose the logging level for a
certain virtual machine. This is helpful considering that, for example, an investigator only wants
to analyze the virtual memory for its contents, and it is not interested in virtual disk images or
virtual network activity. Also at this step we must consider the problem of network transmission
overhead.

The third layer represents a storage layer for the RAW data sent from the local logging
modules existing in the virtualization layer. The logging modules will send RAW data, in the



226 A. Pătraşcu, V.V. Patriciu

form they are gathered from the hypervisor. Thus, this layer has the function of a distributed
storage and it contains a series of nodes, each running a database. We have chosen this approach
in order to create a flexible and scalable layer architecture that can face the data traffic coming
from the upper layer.

Since the data that is going to be sent from the physical virtualization host to the central
forensic management unit can reach important size, we will implement a mechanism of “diff”
between two pieces of data. For example, if an investigator will want to analyze a virtual machine
memory over a period, the local forensic module will sent only one initial memory snapshot and
after that only what has been changed will be sent. Of course we can use the full potential of
the host and provide a local aggregation module that will pre-process the data collected before
sending it to the central forensic module. This approach is new to the field of cloud computing
forensics and we consider it a great way to reduce the impact over the network.

The process will run in the following manner. Initially the logging modules will send a
reference file and then, at an user defined time period, the modules will send a delta file, that
represents the difference between the previous reference file and the current state. Thus, it will
implement a snapshot mechanism at the hypervisor level. We have chosen this approach because
we want to offer to the forensic investigator the possibility to have an image of what is happening
inside a virtual machine between two snapshots. This feature is currently not available in other
hypervisors, such as VMware’s; in their case we can have a snapshot at time t0 and one at time
ti, but we cannot know the state of the virtual machine between the 0 and i step.

This layer has also another purpose. In case of extreme emergency, the forensic investigator
can “see” a real-time evolution of the monitored virtual machine by issuing a direct connection
to this layer. This feature is made available through the Cloud Forensic Module, which has the
ability to by-pass normal RAW data processing.

The fourth layer has the purpose of analyzing, ordering, processing and aggregating the
data stored in the previous layer. Since all these steps are computing intensive, the entire analysis
process will be made in an offline manner and will be available to the investigators as soon as the
job is ready. After this entire process the investigator will have a full image of what happened
over the monitored remote virtual machine in a manner such as the one encountered in software
source code version tools, thus permitting him to navigate back and forth into the history of the
virtual machine.

This layer is implemented also as a distributed computing applications. We have chosen this
approach due to the processing power needs that our framework demands, more exactly it needs
to do correlations between different snapshots in a fair amount of time.

Finally, the fifth layer represents the storage of the results published by the previous layer.
An forensic investigator will interact with the monitored virtual machine snapshots at this layer,
by using the Cloud Forensic Module from the Management layer.

4 Results

In this section we are going to present details regarding the results collected after the imple-
mentation of our Cloud Logging modules.

4.1 Network configuration

For testing, the modules have been implemented and split across multiple workstations, as
can be seen in Figure 4.

They are represented as a cluster of servers, each having the functionality presented in detail
in the architecture section. As it can be seen, the entire modules found in the dotted perimeter,



Logging for Cloud Computing Forensic Systems 227

Figure 4: Mapping modules to workstations.

called “Cloud Computing Forensic System”, can also be ran all on one workstation. Elements
like network switches are not represented in order not to burden the graphic, but the IP address
of the hosts are kept. In our configuration we have used three distinct workstation, each having
the functionalities and network addresses presented in the figure.

The hardware platform used was composed from an AMD Phenom II X6, 6 cores, 8GB RAM,
RAID0 configured hard-disks running KVM as hypervisor and QEMU as a hypervisor interface,
an Intel DualCore, 4GB RAM as the storage layer and an AMD C-60 DualCore, 4GB RAM as
the management layer. The network used is 10/100 MB.

4.2 Experimental results

The experiments were made using KVM as a hypervisor and QEMU and libvirt as drivers
for the hypervisor. The tests had the target set on the virtual machine used memory (RAM
snapshot) and the virtual machine storage (DISK snapshot).

The process of recording the virtual machine activity was made over a period of several
hours, at a time step of 10 minutes. The CPU load when conducting records using all the 6 cores
was about 20%. The results are interesting, if we take in consideration the technologies used
internally by KVM. For example, RAM snapshots are made entirely from host machine RAM
and do not contain necessarily consecutive RAM location. Nevertheless, in our experiments the
RAM snapshots were the largest, reaching even gigabytes in size.

Bellow you can see the actual RAM tests that were made. We have split the tests in two
distinct zones, one up to 100 MB and one after this barrier. Table 1 and Figure 5 presents the
data collected from our modules and the time needed to process it. The transfer time between



228 A. Pătraşcu, V.V. Patriciu

the Cloud Forensic Interface module and the Storage module is not taken in consideration, as
being a constant time, of about 82 seconds for a 800 MB file. Table 2 and Figure 6 presents the
data collected from our modules and the time needed to process it.

Table 1: Tests up to 100 MB in size
Size (KB) Time (ms)
4 296
454 517
1227 1136
5505 4929
10813 8000

Table 2: Tests over 100 MB in size
Size (KB) Time (ms)
108036 58982
740032 401156
4251346 2277855

Figure 5: Tests up to 100 MB in size. Figure 6: Tests over 100 MB in size.

5 Conclusion

As we have seen in this paper, the topic of cloud computing forensics is very large and poses
great challenges in the field of logging. Due to the fact that together with incident response they
represent a new field for research, more and more scientists are trying to develop new methods
for assuring security in cloud systems. Furthermore, as the environment is purely distributed
offers new fields of development much larger than a regular workstation.

In this paper we presented a novel solution that provides to the digital forensic investigators
a reliable and secure method in which they can monitor user activity over a Cloud infrastructure.
Our approach takes the form of a complete framework on top of an existing Cloud infrastructure
and we have described each of its layers and characteristics. Furthermore, the experimental
results prove its efficiency and performance.

Acknowledgment

This paper has been financially supported within the project entitled "Horizon 2020 - Doctoral
and Postdoctoral Studies: Promoting the National interest through Excellence, Competitiveness
and Responsibility in the Field of Romanian Fundamental and Applied Scientific Research",
contract number POSDRU/159/1.5/S/140106. This project is co-financed by European Social
Fund through the Sectoral Operational Programme for Human Resources Development 2007 -
2013. Investing in people!



Logging for Cloud Computing Forensic Systems 229

Bibliography

[1] S. Zawoad, A.K. Dutta and R. Hasan (2013); SecLaaS: Secure Logging-as-a-Service for Cloud
Forensics, in ACM Symposium on Information, Computer and Communications Security,
DOI: 10.1145/2484313.2484342, 219-230.

[2] R. Marty (2011); Cloud Application Logging for Forensics, Proceedings of the 2011 ACM
Symposium on Applied Computing, 178-184.

[3] G. Sibiya, H. Venter, T. Fogwill (2012); Digital forensic framework for a cloud environment,
Proceedings of the 2012 Africa Conference, 1-8.

[4] A. Pătraşcu and V. Patriciu (2013); Beyond Digital Forensics. A Cloud Computing Per-
spective Over Incident Response and Reporting, IEEE International Symposium on Applied
Computational Intelligence and Informatics, 455-460.

[5] B. Grobauer and T. Schreck (2010); Towards incident handling in the cloud: challenges and
approaches, Proceedings of the 2010 ACM workshop on Cloud computing security workshop,
New York, DOI: 10.1145/1866835.1866850, 77-86.

[6] A. Pătraşcu, C. Leordeanu, C. Dobre and V. Cristea (2012); ReC2S: Reliable Cloud Com-
puting System, European Concurrent Engineering Conference, Bucharest, 1-9.

[7] M. Simmons and H. Chi (2012); Designing and implementing cloud-based digital forensics,
Proceedings of the 2012 Information Security Curriculum Development Conference, 69-74.

[8] T. Takahashi, Y. Kadobayashi and H. Fujiwara (2010); Ontological Approach toward Cy-
bersecurity in Cloud Computing, SIN’10 Proceedings of the 3rd international conference on
Security of information and networks, DOI: 10.1145/1854099.1854121, 100-109.

[9] NIST SP800-86 Notes, Guide to Integrating Forensic Techniques into Incident Response,
http://cybersd.com/sec2/800-86Summary.pdf

[10] A. Pătraşcu and V. Patriciu (2014); Logging system for cloud computing forensic environ-
ments, Journal of Control Engineering and Applied Informatics, 16(1): 80-88.

[11] http://cee.mitre.org/language/1.0-beta1/cls.html

[12] http://uw714doc.sco.com/en/UDI_spec/m_mgmt.html


