
INT J COMPUT COMMUN, ISSN 1841-9836
Vol.7 (2012), No. 2 (June), pp. 377-387

A 2-level Metaheuristic for the Set Covering Problem

C. Valenzuela, B. Crawford, R. Soto, E. Monfroy, F. Paredes

Claudio Valenzuela, Broderick Crawford
Pontificia Universidad Católica de Valparaíso
Valparaíso, Chile
{claudio.valenzuela, broderick.crawford}@ucv.cl

Ricardo Soto
1. Pontificia Universidad Católica de Valparaíso
Valparaíso, Chile, and
2. Universidad Autónoma de Chile
ricardo.soto@ucv.cl

Eric Monfroy
Universidad Técnica Federico Santa María
Valparaíso, Chile
eric.monfroy@inf.utfsm.cl

Fernando Paredes
Escuela de Ingeniería Industrial
Universidad Diego Portales
Santiago, Chile
fernando.paredes@udp.cl

Abstract: Metaheuristics are solution methods which combine local improve-
ment procedures and higher level strategies for solving combinatorial and non-
linear optimization problems. In general, metaheuristics require an important
amount of effort focused on parameter setting to improve its performance. In
this work a 2-level metaheuristic approach is proposed so that Scatter Search
and Ant Colony Optimization act as “low level" metaheuristics, whose param-
eters are set by a “higher level" Genetic Algorithm during execution, seeking
to improve the performance and to reduce the maintenance. The Set Covering
Problem is taken as reference since is one of the most important optimization
problems, serving as basis for facility location problems, airline crew schedul-
ing, nurse scheduling, and resource allocation.
Keywords: metaheuristics, genetic algorithm, scatter search, ant colony op-
timization, set covering problem.

1 Introduction

The Set Covering Problem (SCP) is a classical problem in computer science and one of
the most important discrete optimization problems since it can model conveniently real world
problems. Some of these problems — which can be modeled as a set covering problem — include
facility location, airline crew scheduling, nurse scheduling, resource allocation, assembly line
balancing, vehicle routing, among others [6]. There are several studies which have implemented
a SCP solution using metaheuristics [1,2,12]. Depending on the algorithm that has been used, the
quality of the solution wanted and the complexity of the SCP chosen, it is defined the amount
of customization efforts required. Conveniently, this work proposes transferring part of this
customization effort to another metaheuristic (a “high level" metaheuristic) which can handle

Copyright c⃝ 2006-2012 by CCC Publications

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Agora University Editing House: Journals

https://core.ac.uk/display/236053894?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

378 C. Valenzuela, B. Crawford, R. Soto, E. Monfroy, F. Paredes

the task of parameters adjustment for a low level metaheuristic. This approach is considered as
a multilevel metaheuristic since there are two metaheuristics covering tasks of parameter setting,
for the former, and problem solving, for the latter [9].

The main design of the implementation proposed considers a Genetic Algorithm (GA) [10] at
online (Control) and offline (Tuning) parameter setting for a low level metaheuristic (Ant Colony
Optimization (ACO) or Scatter Search (SS)) using a Reactive Search approach and an Automatic
Parameter Tuning approach. In Reactive Search, feedback mechanisms are able to modify the
search parameters according to the efficiency of the search process, i.e. the balance between
intensification and diversification can be automated by exploiting the recent past of the search
process through dedicated learning techniques [13]. The Automatic Parameter Tuning is carried
by an external algorithm which searches for the best parameters in the parameter space in order
to tune the solver automatically. Ant Colony Optimization and Scatter Search techniques [11]
have shown interesting results at solving SCP [6] and similar problems [5]. For the purpose of
this work, the former is selected by its constructional approach for generating solutions, plus
its stochastic-based operators. The latter is considered as an evolutionary (population-based)
algorithm which uses, essentially, deterministic operators. Both of them provide good reference
metaheuristics in terms of their foundations, their problem solving approaches, their design
maturity, and in terms of how different one is from the other, making them highly suitable to
the development of this work.

2 Set Covering Problem

A general mathematical model of the Set Covering Problem can be formulated as follows:

(1) MinimizeZ =

n∑
j=1

cjxj j = {1, 2, 3, ..., n}

Subject to:

(2)

n∑
j=1

aijxj ≥ 1 i = {1, 2, 3, ...,m}

(3) xj = {0, 1}

Equation (1) is the objective function of set covering problem, where cj is the cost of j-
column, and xj is decision variable. Equation (2) is a constraint to ensure that each row is
covered by at least one column where aij is a constraint coefficient matrix of size m x n whose
elements comprise of either “1” or “0”. Finally, equation (3) is the integrality constraint in which
the value xj can be “1” if column j is activated (selected) or “0” otherwise. Different solving
methods have been proposed in the literature for the SCP. There exist examples using exact
methods [8], linear programing and heuristic methods [7], and metaheuristic methods [2]. Has
being pointed out, that one of the most relevant applications of SCP is given by crew scheduling
problems in mass transportation companies where a given set of trips has to be covered by a
minimum-cost set of pairings, a pairing being a sequence of trips that can be performed by a
single crew.

3 Multilevel Metaheuristics and Parameter Setting

Metaheuristics, in their original definition, are solution methods that orchestrate an interac-
tion between local improvement procedures and higher level strategies to create a process capable

A 2-level Metaheuristic for the Set Covering Problem 379

of escaping from local optima and performing a robust search of a solution space [3]. Over time,
these methods have also come to include any procedures that employ strategies for overcoming
the trap of local optimality in complex solution spaces, especially those procedures that utilize
one or more neighborhood structures as a means of defining admissible moves to transition from
one solution to another, or to build or destroy solutions in constructive and destructive processes.
A number of the tools and mechanisms that have emerged from the creation of metaheuristic
methods have proved to be remarkably effective, so much that metaheuristics have moved into
the spotlight in recent years as the preferred line of attack for solving many types of complex
problems, particularly those of a combinatorial nature.

Multilevel Metaheuristics can be considered as two or more metaheuristics where a higher
level metaheuristic controls de parameters of a lower level one, which is at charge of dealing
more directly to the problem. Therefore, parameter Setting is a key factor in the design of
Metaheuristics and Multilevel Metaheuristics [4], since they improve their solving performance
by modifying and adjusting themselves to the problem at hand, either by self-adaptation or
supervised adaptation.

3.1 Parameter Setting

Many parameters have to be set for any metaheuristic. Parameter setting may allow a larger
flexibility and robustness, but requires a careful initialization. Those parameters may have a
great influence on the efficiency and effectiveness of the search. It is not obvious to define a
priori which parameter setting should be used. The optimal values for the parameters depend
mainly on the problem and even the instance to deal with and on the search time that the user
wants to spend in solving the problem. A universally optimal parameter values set for a given
metaheuristic does not exist.

3.2 Tuning Before Solving

Also know as “Offline Parameter Initialization”. As previously mentioned, metaheuristics
have a major drawback; they need some parameter tuning that is not easy to perform in a
thorough manner. Those parameters are not only numerical values but may also involve the
use of search components [15]. Usually, metaheuristic designers tune one parameter at a time,
and its optimal value is determined empirically. In this case, no interaction between parameters
is studied. This sequential optimization strategy (i.e., one-by-one parameter) do not guarantee
to find the optimal setting even if an exact optimization setting is performed. Main flavors
of “tuning before solving” techniques include: Parameter Tuning on Preliminary Experiments,
Empirical Manual Tuning and Automatic Parameter Tuning by an External Algorithm.

3.3 Control During Solving

Also know as “Online Parameter Initialization”. The drawback of the offline parameter setting
approaches is their high computational cost, particularly if this approach is used for each input
instance of the problem. Indeed, the optimal values of the parameters depend on the problem
at hand and even on the various instances to solve. Then, to improve the effectiveness and the
robustness of offline approaches, they must be applied to any instance (or class of instances) of
a given problem. The control of the solverŐs behavior during the run can be achieved by either
modifying its components and/or its parameters. This corresponds, for instance, to an online
adjustment of the parameters or heuristics. Such control can be achieved by means of supervised
control schemes or by self adaptive rules. Of course, such approaches often rely on a learning
process that tries to benefit from previously encountered problems along the search or even

380 C. Valenzuela, B. Crawford, R. Soto, E. Monfroy, F. Paredes

during the solving of other problems. At this section are considered the approaches that change
the parameters during the search with respect to the current state and other parameters. Of
course, these parameters have a direct influence on the heuristics functions, but also these latter
functions stay the same during the solving process. Some remarkable approaches are introduced
as follows: Hyperheuristics and Reactive Search [16].

4 Implementation Details

4.1 GA-SS Design

The design proposed for the multilevel implementation is based on documented standards
proposed for each metaheuristic. Both metaheuristics are looking to be as close as they can to
its origins. Obviously, a multilevel implementation with adaptive parameter control approach
forces some changes to the “high levelÓ metaheuristic, in this case, GA. This case will be similar
to both combinations: GA-SS and GA-ACO. Hence, the design of GA seems particularly faithful
to its basic design.

[Size of P , BestSet , DiverseSet , EnhanceTrials , MaxSol]

Figure 1: GA Chromosome Representation for SS.

The chromosome representation shows that the first gene, for this case the “Size of P ” is the
number of initial solutions for SS, will take values between 1 and n/2 where n number of variables.
Same way for the second gene “BestSet”, which is the size of the Best Solutions Reference
Set. Similarly, “DiverseSet” is the size of the Most Diverse Solutions Set. “EnhanceTrials”,
represents the number e of trials for the Improvement Method to try to enhance a solution,
where e = {1...n}. Finally, “MaxSol ” is the limit of solutions generated by a call to the Scatter
Search algorithm.

4.2 GA components

The main components of GA components are:
Initialization function: Initializes the values of genes within the variables bounds. It also

initializes (to zero) all fitness values for each member of the population. It takes upper and lower
bounds of each variable from user defined parameters. It randomly generates values between
these bounds for each gene of each genotype in the population.

Evaluation function: The upper level metaheuristic uses two criterions; (1) the same eval-
uation function of the lower level metaheuristic, this is the corresponding objective function of
SCP, and (2) a Objective Function of SCP penalized by the processing effort.

“Keep the best” function: This function keeps track of the best member of the population.
Elitist function: The best member of the previous generation is stored.
Selection function: Standard proportional selection for maximization/minimization problems

incorporating elitist model — makes sure that the best member survives.
Crossover selection: selects two parents that take part in the crossover. This work implements

a single point crossover.
Mutation: Random uniform mutation. A variable selected for mutation is replaced by a

random value between lower and upper bounds of this variable.

A 2-level Metaheuristic for the Set Covering Problem 381

4.3 SS components

A description of SS components included in GA-SS design:
Diversification Generation Method: This method generates diverse binary initial solutions,

it starts with an all-zero arbitrary solution, and then begins adding “1” in every position with a
jump of k bits, where k = {1...n} and n < (number_of_vars) − 1. In example, for k = 1 it
will generate a solution vector [1, 0, 1, 0, 1, 0, 1, 0...]. Should be noticed that this method always
starts placing a bit “1” at the first position. Together with the previously generated solution, the
method generates the complement of that solution, which will be [0, 1, 0, 1, 0, 1, 0, 1, 0, 1...]. The
quantity of solutions generated by this method is a parameter controlled by the GA.

Improvement Method: transforms a trial solution into a enhanced trial solution. If the trial
solution is not feasible, should be fixed until it turns feasible. The input solutions are not
required to be feasible. If the input trial solution is not improved as a result of the application
of this method, the “enhanced” solution is considered to be the same as the input solution. The
limit of enhancement trials (not the fix trials) is controlled by the GA. The duties of fixing
and enhancing are improved since a vector of ratios is calculated (the length of the vector is
the number of variables, or columns). This vector is then sorted from min to max ratio. Each
element represents a variable at the objective function. Then, when trying to fix a solution
should be followed in-order, so the first item will represent the column which covers more rows
of the incidence matrix. If this position is “0” at the solution, should be turned to “1", because
the method is wanting to add “1” for covering rows and turn the solution to feasibility. This
process continues until the solution is feasible. When trying to enhance a solution, the vector
of ratios should be accessed in post-order, trying to turn as many “1" to “0" as it can while the
solution keeps feasible. The method will try to enhanced until the limit l is reached, where l is
a parameter controlled by the GA.

Reference Set Update Method: builds and maintain two reference sets, consisting of the b
“best” solutions and the d “most diverse” solutions found (where the value of b and d is set by
the GA), organized to provide efficient accessing by other parts of the solution procedure. The
criteria for adding the “best” solutions to its set is the cost at the objective function, also, the
criteria for adding solutions at the “most diverse” set is the Hamming distance to all the solutions
at the “best set” and the “diverse set”.

Subset Generation Method: operates on the reference set, to produce a subset of its solutions
as a basis for creating combined solutions. The most common subset generation method will be
used, which generates all pairs of reference solutions (i.e., all subsets of size 2) from the “best
set" and the “diverse set" together.

Solution Combination Method: transforms a given subset of solutions produced by the Subset
Generation Method into one combined solution. The combination method is based in the cost
at objective function/ rows covered ratio, which is calculated per column. When combining two
solutions, the following procedure is used:

if (Sol_1[x] = Sol_2[x]) then

newSol[x] := Sol_1[x]

elseif (Ratio[x] < median) then

newSol[x] := 1

else newSol[x] := 0

where x is the position of the bit being evaluated with x = {1...maxColumns}, and the
median is the median of the vector of ratios for a given SCP instance.

382 C. Valenzuela, B. Crawford, R. Soto, E. Monfroy, F. Paredes

4.4 GA-ACO Design

For this implementation, the same structure of GA components presented at 4.2 is used.
Added to this, the implementation of ACO for SCP is very straightforward. The components
used by ACO are:

Pheromone. Denoted by t = τi, the matrix of pheromones will be used to consolidate in-
formation obtained by each ant, i.e. the amount of pheromone stored in each column i. τi(t)
specifies the intensity of the pheromone at column i in time t, and updates in a local way (ac-
cording to the path of the ants), and in a global way (the pheromone evaporates in every matrix
column). The matrix is initialized with a value t0 which will be 10−6 for this implementation.

Transition. For apply a transition between two columns, this should be done according to
the list of candidates. The list of candidates of a column contains the c more attracting columns,
and they are sorted in a sequential manner. The transition is carried according to:

If exists at least one column j ∈ candidate list, then, choose the next column j ∈ Jk
i , between

the c columns in the candidate list according:

j =

{
maxu ∈ Jk

i [τu(t)][ηu]
β if q ≤ q0

J if q > q0

where ηu represents the heuristic information, and J is chosen with the probability:

pkj (t) =
[τj(t)][ηj]

β∑
l∈Nk [τl(t)][ηl]β

where Nk is a possible neighbor of ant k.

After each selection of a column j, occurs a local modification of the level of pheromone of
that column, given by the equation:

τj(t) = (1− ρ)τj(t) + ρτ0

This evaporation is done so the visited column will not be interesting for the following ants,
stimulating in this way the exploration of solutions. At the equation above, ρτ0 is a stabiliza-
tion factor of the pheromone modification, used with the intention of not having less attractive
columns so quickly, allowing the exploration of a number even bigger of new solutions. When
every ant ended an iteration (a solution has been found), the pheromone level of the best solution
found is updated globally, loading pheromone to each column of the solution according to:

τj(t) = (1− ρ)τj(t) + ρ△τj(t)

where △τj(t) is the variation of pheromone left on column j by the best ant. This variation is
calculated as the frequency of column j in the routing of each ant, i.e. the number of times where
column j is in the solutions found by the ants. To operate, the following parameters controlled
by the GA will be defined: Number of Ants, ρ (the evaporation factor), β (the importance in the
choice of the next column, Length of the List (which will be used to limit the number of columns
that can be visited next), q0 (parameter which indicates if the exploration is supported at the
moment of next column election) and MaxIter (max number of iterations).

A 2-level Metaheuristic for the Set Covering Problem 383

4.5 Penalizing function

An aid to the Parameter setting function is needed so the Genetic Algorithm can handle
a trade-off between keep improving a solution — ergo more resources applied — or to quit a
solution and try another search. A penalizing function is a very good solution to this problem.
The direct comparison is between a Parameter Tuning version and a Parameter Control one. As
a penalizing function we propose:

fitness(sol) = ObjFuncV alue(sol) + TimeTaken(sol) ∗ FCT

where sol is a solution and ObjFuncV alue is the value — or cost — of the solution generated
evaluated at the SCP Objective Function of the corresponding benchmark. Also, TimeTaken is
the amount of time taken to generate that solution. FCT is a correction factor which makes it
possible to compare the time with the cost.

4.6 Parameter Control Considerations

Designs introduced in sections 4.1 and 4.4 were directly coded into the Parameter Tuning
versions. To obtain the counterparts to the Parameter Control versions, some changes were intro-
duced between transitions of the metaheuristics. GA was modified to enabling an intermediate
results memory taking feedback of the performance of the lower level metaheuristic.

5 Experimental Results

5.1 Performance Measurement

The performance measures evaluated will are:

• Best Solution Found (value at SCP’s Objective Function)

• Time Taken to find the Best Solution (best represented by “Calls to Objective Function
made before best solution is found”)

• Average Fitness (penalized) and its Standard Deviation

The quality of the solutions is taken measuring its closeness to the Optimal value of a certain
instance (OR-Library SCP file). The average fitness is also an aid to evaluating quality in
combination with the Standard Deviation. The computational effort is measured by: the number
of calls to objective function needed to generate the best solution.

5.2 Reference Benchmarks

Each implementation — i.e. GA-SS and GA-ACO — are tested using the benchmarks pro-
vided by [17] which are widely used by Operation and Optimization Researchers. The files used
are Set Covering Problem instances denoted by series SCP4x, SCP5x and SCP6x. To obtain
more experimental results — and to compare the performance of each implementation — such
benchmarks will be tested against both versions of parameter setting configurations. The bench-
marks presented are minimization problems, where the idea is to find the lowest cost at the
Objective Function. Each benchmark is based on a matrix of 200 rows and 1000 columns, which
makes them a fairly large set of problems.

384 C. Valenzuela, B. Crawford, R. Soto, E. Monfroy, F. Paredes

5.3 Environment

All the algorithms required for testing will be coded under standard C language and compiled
with GNU GCC. The Xcode 3.2 IDE was selected for coding and depuration task, and as reference
computer an Intel Core 2 Duo CPU with 4Gb of DDR3 RAM was used. To notice, testing
implementation code does not allow the use of multiples cores as is the case of current CPU.

5.4 Robustness based on GA’s parameters

The first table of this section shows the results for GA-SS with Parameter Tuning. These
results are important since accomplish two objectives: to allow to evaluate the measures at
this offline parameter setting configuration and to represent the execution of several single SS
metaheuristic executions. As was explained before, a Parameter Tuning configuration runs a
whole instance of SS metaheuristic with parameters defined — by GA — before its execution.
When the SS execution finish, the best result is given as feedback to GA, which might continue
its process of experimenting with other SS parameters. Hence, the results obtained consider a
neutral parameter configuration — a random one — representing a human trial-and-error testing,
where best results might be as good as the ones with GA-SS, but surely requiring more Human
work in terms of defining those parameters and to experiment with them.

PXOVER PMUT BestFound CallsOF Average Fit-StDev
0.25 0.25 1009 5778578 3017 433
0.5 0.5 1009 4698886 2915 675
0.75 0.75 1007 5750974 3104 571
0.25 0.75 1008 4545205 2803 458
0.75 0.25 1009 4698886 2644 578

Table 1: Different GA-SS parameters configurations using Parameter Tuning. Benchmark:
SCP41.

First results (Table 1) show a considerable variability. The overall look represent what a
human can expect when experimenting — no good luck considerations. As will be seen in
the next tables, PXOVER and PMUT tend to lose its impact, being this instance the most
unexpected.

PXOVER PMUT BestFound CallsOF Average Fit-StDev
0.25 0.25 509 3446206 2235 1075
0.5 0.5 509 3462702 2329 1078
0.75 0.75 509 3481599 2002 954
0.25 0.75 509 3502315 1735 797
0.75 0.25 509 3308283 1980 890

Table 2: Different GA-SS parameters configurations using Parameter Control. Benchmark:
SCP41.

At the second table (Table 2) best results found show no variation, mainly due to SS Im-
provement Function. The other measures show a low standard deviation specially in the overall
calls to Objective Function. As the average solution results are the ones with more variation,
there is logic in thinking that there was a good level of exploration between solution spaces.

A 2-level Metaheuristic for the Set Covering Problem 385

In the next table (Table 3) the performance with ACO is evaluated, using Parameter Tuning.
Aside of the better results obtained with ACO — and its best resources management — the
same fashion as in GA-SS is seen: very low variation at each measure.

PXOVER PMUT BestFound CallsOF Average Fit-StDev
0.25 0.25 449 1477894 781 236
0.5 0.5 434 1095816 768 240
0.75 0.75 449 1659306 896 274
0.25 0.75 449 1599972 862 260
0.75 0.25 449 1435961 762 220

Table 3: Different GA-ACO parameters configurations using Parameter Tuning. Benchmark:
SCP41.

Using an online parameter setting criteria (Table 4) shows no more variation at the results;
actually, a very low variation is obtained. Is clearer that the results under this configuration are
the best of all. This will be reviewed in following experiments show down.

PXOVER PMUT BestFound CallsOF Average Fit-StDev
0.25 0.25 436 673804 442 7
0.5 0.5 436 691756 442 8
0.75 0.75 436 743647 444 8
0.25 0.75 436 671342 444 8
0.75 0.25 436 703318 441 7

Table 4: Different GA-ACO parameters configurations using Parameter Control. Benchmark:
SCP41.

5.5 Convergence to the best solution

This experiments were selected between the most interesting results: which presented a
noticeable convergence through time. At first look, the temptation is to compare the obvious;
GA-ACO performed better than its counterparts. After a careful review, the comparison is unfair
fundamentally because ACO uses a more “intelligent” way of building solutions whereby SS is
more blind. A preliminary conclusion is that the constructive process of ACO is better than the
evolutive of SS. Anyway, the purpose of this graphics is to allow to observe how each version
converges through time to a better solution.

The plot is based on benchmark SCP48 and the clearest idea is that Parameter Control allows
to get better results in lesser time, which is mainly due to the intensification of the harvest of
certain solution space where “best looking” results are found, and to the saved time when quitting
to explore “bad looking” results. Also, a common item in each plot is that GA-SS (Tuning) tent
to obtain a better result than GA-SS (Control) when a great quantity of solutions are searched.

5.6 Wide comparison of best results found

Following table introduces the best results found through the various instances executed.
Faster convergence of Parameter Control versions has been considered in previous section —
which is not represented in this table. Same results obtained by both versions of ACO hide evi-
dently the efficiency factor. Every instance executed to obtain this results was using PXOV ER =

386 C. Valenzuela, B. Crawford, R. Soto, E. Monfroy, F. Paredes

Figure 2: Convergence analysis to a better solution. Benchmark: SCP48

0.5 and PMUT = 0.5 which seems a fair tradeoff between crossover and mutation at GA. Under
this circumstances, another criteria of robustness is handled: to perform well in a variety of
instances. The worse performer through all experiments was GA-SS with Parameter Tuning,
but, even with this issue, it was not an extremely bad perform.

SCP41 SCP42 SCP48 SCP61 SCP62 SCP63
Optimum 429 512 492 138 146 145
GA-SS-Offline 1007 981 561 154 155 166
GA-SS-Online 509 603 642 164 165 176
GA-ACS-Offline 434 529 497 142 154 148
GA-ACS-Online 434 529 497 142 154 148

Table 5: Table of best results.

6 Conclusions

A 2-level metaheuristic has been tested on different SCP benchmarks showing to be very
effective. One of the main goals of a multilevel approach is to provide an unattended solving
method, for quickly producing solutions of a good quality for different instances. The overall work
was extended on several relevant issues and quality measures: quality of solutions, robustness in
terms of the instances and insensitivity to small deviation at parameters (GA parameters) solving
large-scale problems, easiness of implementation, easiness to combine with other algorithms,
automatic setting of parameters. All of them provided a fair approach to the core problem,
and many of them have already shown lights of been covered, producing a renovated energy for
keep working and admiring the synergy produced. Benchmarks have shown interesting results in
terms of robustness of every approach being the Parameter Control the most robust in terms of a
good performance in several instances using same parameters and in terms of stable results when
small deviations are made to parameters. Also, Parameter Control shown to converge faster to
better results than Parameter Tuning, but, when long running times are taken, both seem to
obtain equal results. Considering the particular performance of a Constructive approach and an
Evolutive one for the SCP, it seems to be more effective to “construct” intelligently a solution
rather than “blindly” get one and then evolve it. An interesting fact is that SS with Parameter
Control might get a performance closer to ACO. The overall implementation of a multilevel
metaheuristic is pretty straightforward, no big obstacles were found. Also, the implementation
of the GA using real numbers was a direct representation of what parameters a human user might

A 2-level Metaheuristic for the Set Covering Problem 387

choose to operate, therefore achieving an implementation which accomplished our requirements.

Bibliography

[1] B. Crawford, C. Lagos, C. Castro, F. Paredes, A Evolutionary Approach to Solve Set Cover-
ing, ICEIS 2007 - Proceedings of the Ninth International Conference on Enterprise Informa-
tion Systems, Volume AIDSS, Funchal, Madeira, Portugal, June 12-16, 2007 (2), pp.356-363,
2007

[2] U. Aickelin, An Indirect Genetic Algorithm for Set Covering Problems, Journal of the Oper-
ational Research Society, Vol.53, pp.1118-1126, 2002

[3] F. Tangour, P. Borne, Presentation of Some Metaheuristics for the Optimization of Complex
Systems, Studies in Informatics and Control, Vol.17, No.2, pp.169-180, 2008

[4] C-M. Pintea, D. Dumitrescu, The importance of parameters in Ant Systems, INT J COMPUT
COMMUN, ISSN 1841-9836, 1(S):376-380, 2006

[5] R. Martí, M. Laguna, Scatter Search: Diseño Básico y Estrategias, Revista Iberoamericana
de Inteligencia, Vol.19, pp.123-130, 2003

[6] D. Gouwanda, S. G. Ponnambalam, Evolutionary Search Techniques to Solve Set Covering
Problems, World Academy of Science, Engineering and Technology, Vol.39, pp.20-25, 2008

[7] A. Caprara, M. Fischetti, P. Toth, Algorithms for the Set Covering Problem, Annals of
Operations Research, Vol.98, 1998

[8] J. E. Beasley, K. Jornsten, Enhancing an algorithm for set covering problems, European
Journal of Operational Research, Vol.58, pp.293-300, 1992

[9] C. Cotta, M. Sevaux, K. Sörensen, Adaptive and Multilevel Metaheuristics, Springer, 2008

[10] Z. Michalewicz, Genetic algorithms + data structures = evolution programs, Springer, 1996.

[11] F. Glover, G. A. Kochenberger, Handbook of metaheuristics, Springer, 2003

[12] B. Crawford, C. Castro, Integrating Lookahead and Post Processing Procedures with ACO
for Solving Set Partitioning and Covering Problems, Proceedings of ICAISC, pp.1082-1090,
2006

[13] Y. Hamadi, E. Monfroy, F. Saubion, What is Autonomous Search?, Technical Report MSR-
TR-2008-80, 2008

[14] L. Lessing, I. Dumitrescu, T. Stützle, A Comparison Between ACO Algorithms for the Set
Covering Problem, it Proceedings of ANTS, pp.1-12, 2004

[15] E. Talbi, Metaheuristics: From Design to Implementation, Wiley Publishing, 2009

[16] R. Battiti, M. Brunato, F. Mascia, Reactive Search and Intelligent Optimization, Springer
Verlag, 2008

[17] J. E. Beasley, OR Library, http://people.brunel.ac.uk/ mastjjb/jeb/info.html

