On vague Order and Decomposition Mapping by α-Open Sets Using Nano

Saied A. Jhonny Al-Oadisivah Education – Iraq

Sanaa N. Mohammed

Education of Babylon – Iraq al.sharfawi @gmail.com

Abstract

In this paper the concept of nano topology is studied in a different way. The notation of nano α -open is established. Also the concept α -covering dimension is defined. The aim of this paper is to

introduce and define a new type of covering dimension by using nano α -open sets namely, a nano α covering dimension in a nano topological space and find some relations to other concepts. Some
properties and characterization of this covering dimension are obtained.

Keywords: Nano α -open , Nano α -closure , Nano α -interior , Nano α -normal , Nano α -continuous $Ndim_{\alpha}U$.

2000 Mathematics Subject classifications 54 A 20, 54 C08, 54 C10.

الخلاصة

بواسطة مفهوم المجموعات المفتوحة من النمط (nano topological spaces) في الفضاءات التبولوجية من النمط (nano ac open sets) في هذا العمل قدمنا موضوع جديد في نظرية البعد (حسب علمنا)هو (**Ndim**) و بالإضافة لذلك سوف سندرس سلوك هذه الفضاءات تحت تأثير نوع معين من الدوال المستمرة و التي تدعى -(nano ac continuous mapping) ومن خلال بحثنا في الخواص المقدمة في البحث رأينا ان هذه الخواص موازية الى بعض خواص نظرية البعد في التبولوجيا العامة.

الكلمات المفتاحية :- نانو , ar -open ، و نانو -closure ، و نانو interior ، و نانو normal ، و نانو -

α continuous. Ndim_aU

Introduction

The [Lellis and Carmel, 2013] introduced of nano topological space in relation to a subset X of a universal U around a lower and upper approximations of X. The boundary region of X with respect to an equivalence relation R is the set of all objects [Alias and HajiM, 2011].

The elements of a nano topological space are known nano open sets, and also close sets, nano interior and nano closure of a set[Cadas *et al.*,2003]. was also introduced by the same other the weak forms of nano open set namely, α -open set. Throughout this paper U and U' are non-empty sets, a finite universes $(X \subseteq U)$ and $(Y \subseteq U'; U/R)$ and $(\frac{U'}{R'})$; denote the families of equivalence classes by equivalence relations (R) and (R') respectively on (U) and (V. ($U, \tau_R(X)$) and ($U', \tau_R'(Y)$) are the nano topological spaces on U and U' with respect to X and Y resp. [Lellis and Carmel, 2013]. It is clear that each open set is α -open but the contrary is not true. [Najasted, 2013] has shown that the family of all α -open sets is a topology on U. The dimension function was investigated by Pears A. [Pears, 1975]. The aim of this paper is a new notation for nano α -open sets are discussed.

2. Basic definitions and notations:

We introduce some elementary concept which we need in our work.

2.1. Definition: [Lellis and Carmel,2013]

Let (U) be a non-empty finite set of objects called the universe and R be an equivalence relation on (U) named as the indiscernibility relation. Elements belonging to the same equivalence class are said to be indiscernible with one another, i.e. (U/R) denotes the family of equivalence classes of (U by R).

The pair (U, R) is said to be the approximation space. Let $(X \subseteq U)$.

(i) The lower approximation of X with respect to R is the set of all objects, which can be for certain classified as (X) with respect to R and it is denoted by $[L_R(X)]$.

 $[L_R(X)] = [\bigcup_{x \in U} \{R(x)][:R(x) \subseteq X] = \{x \in U: [x] \subseteq X\}, where R(x) denotes the equivalence class determined by x.$

(ii) The upper approximation of X with respect to R is the set of all objects which can be for possibly classified as X with respect to R and it is denoted by $U_R(X)$.

 $[U_R(X)] = (\bigcup_{x \in U}) \{ R(x) : R(x) \cap X \neq \emptyset \} = \{ x \in U : [x] \cap X \neq \emptyset \}$ That is (iii) The boundary region of X with respect to R is the set of all objects, which can be classified neither as X nor as not -X with respect to R and denoted by $[B_R(X), B_R(X)] = [U_R(X) - L_R(X)]$

2.2. Theorem :- [Lellis and Carmel, 2013]

If (U, R) is an approximation space and $(X, Y \subseteq U)$, then: (i) $[L_R(X) \subseteq X \subseteq U_R(X)]$; (ii) $[L_R(\emptyset) = U_R(\emptyset) = \emptyset; L_R(U) = U_R(U) = U]$; (iii) $[U_R(X \cup Y) = U_R(X) \cup U_R(X)]$; (iv) $[U_R(X \cap Y) \subseteq U_R(X) \cap U_R(X)]$; (v) $[L_R(X \cup Y) \supseteq L_R(X) \cup L_R(X)]$; (vi) $[L_R(X \cap Y) \subseteq L_R(X) \cap L_R(X)]$; (vii) If $[X \subseteq Y$, then $L_R(X) \subseteq L_R(Y)$ and $U_R(X) \subseteq U_R(Y)]$. (viii) $[U_R(X^c)] = [L_R(X)]^c$ and $L_R(X^c) = [U_R(X)]^c$. (ix) $[[U_RU_R(X)] = [L_RU_R(X) = U_R(X)]$; $[L_RL_R(X) = U_RL_R(X) = L_R(X)]$; i.e. The following diagram shows that the relations among the difference types of sets

above .

2.3. Theorem :- [Lellis and Carmel,2013]

Let(U) be the universe, R be an equivalence relation on U and $X \subseteq U$, $\tau_R(X) = \{\emptyset, U, L_R(X), U_R(X), B_R(X)\}$. Then satisfies the following axioms : $\{\emptyset, U \in \tau_R(X)\}(i) \}$

(ii) The union of the elements of any sub collection of $\tau_R(X)$ is in $\tau_R(X)$.

(iii) The intersection of the elements of any finite sub collection of $\tau_R(X)$ is in $\tau_R(X)$. Thus $[\tau_R(X)]$ is a topology called nano topology on U with respect to X. We call $(U, \tau_R(X))$ is a nano topological space. The elements of $[\tau_R(X)]$ are called nano open, $[\tau_R(X)]^c$ is called the dual nano topology of $[\tau_R(X)]$.

2.4. Example:

Let $(U) = \{a, b, c, d\}$ and $U/R = \{\{a\}, \{c\}, \{b, d\}\}$ where $(X) = \{a, b\}$ with the nano topology $[\tau_R(X)] = \{\emptyset, U, \{a\}, \{a, b, d\}, \{b, d\}\}$, then the nano closed sets are $(\emptyset, U0)$, $\{b, c, d\}, \{c\}$ and $\{a, c\}$.

2.5. Definition: [Lellis M.T.and Carmel R., 2013]

Let $(U, \tau_R(X))$ be a nano topological space with respect to(X) and if $(A \subseteq U)$, then the nano

interior of (A) is defined as the union of all nano open subsets of A and it is denoted by Nint(A).

Also, the nano closure of A is defined as the intersection of all nano closed sets containing (A) and it is denoted by Ncl(A). Now, we say that A is nano α -open set, if $(A \subseteq)Nint(Ncl(Nint(A)))$. The collection of all nano α -open subsets of U will be denoted by $N_{\alpha}O(U, X)$ and its need not to be the

forms a nano α -topology on U. The complement of the nano α -open sets is nano α -closed subset

i.e.(A) is nano α -closed set, if{ $Ncl(Nint(NclA)) \subseteq A$ }.

2.6. Remark:

The intersection of two a nano α -open subsets need not to be a nano α -open, as the following example shows:

Journal of Babylon University/Pure and Applied Sciences/ Vol.(26), No.(3), 2018 Let $(U) = \{a, b, c\}$, with $(\frac{U}{R}) = \{\{a\}, \{b, c\}\}$ and $(X) = \{a, c\}$.

Then nano topology on(U) is $\tau_R(X) = \{\emptyset, U, \{a\}, \{b, c\}\}$, then the sets $\{a, c\}$ and $\{b, c\}$ are nano(α -)

open sets in(U), but their intersection is not nano α -open.

Also, the intersection of two a nano α -closed sets need not to be a nano α -closed as the following example shows:

Let(U) = {a, b, c, d, e}, with U/R = {{a, b}, {c, e}, {d}} and (X) = {a, d}. $\tau_R(X)$ = { $\emptyset, U, \{d\}, \{a, b, d\}, \{a, b\}$ }, the sets {c, e} and {c, d, e} are nano aclosed sets but their intersection is not nano a-closed.

i.e. $[N_{\alpha}O(U,X)]$ is supra nano topology on (U).

2.7. Definition:

A nano topological space $(U, \tau_R(X))$ is called nano α -multiplicative, if arbitrary intersection of nano α -open (nano α -closed) sets of U is also nano α -open (nano α -closed) set and it is denoted by $(IN_{\alpha}$ -space).

If $(U, \tau_R(X))$ be an IN_{α} - space, then the $[N_{\alpha}O(U, X)]$ becomes nano topology on (U) and called nano α -topology denoted by $\tau_R^{\alpha}(X)$.

2.8. Definition :- [Revathy and Ilango, 2015]

Let $(U, \tau_R(X))$ be a nano topological space with respect to X and if $A \subseteq U$, then the nano α -interior of A is defined as the union of all nano α -open subsets of A and it is denoted by $Nint_{\alpha}(A)$. Also, the nano α -closure of A is defined as the intersection of all nano α -closed sets containing A and it is denoted by $Ncl_{\alpha}(A)$.

Also, the nano α -closure of A is defined as the intersection of all nano α -closed sets containing A and it is denoted by $Ncl_{\alpha}(A)$.

For any subset A of a nano topological space $(U, \tau_R(X))$, the following are satisfied: (i)[$Ncl_{\alpha}(\emptyset) = \emptyset$].

(ii) [$Ncl_{\alpha}(A)$] need not to be a nano α -closed for all($A \subseteq U$).

(iii) { $Ncl_{\alpha}(Ncl_{\alpha}(A))$ } = [$Ncl_{\alpha}(A)$] for all ($A \subseteq U$).

(iv)[$Ncl(A) \subseteq Ncl_{\alpha}(A)$] for all($A \subseteq U$).

(v) If $(A \subseteq B)$, then $[Ncl_{\alpha}(A) \subseteq Ncl_{\alpha}(B)]$ for all $(A, B \subseteq U)$.

(vi) $Nint_{\alpha}(A)$ is a nano α -open for all $(A \subseteq U)$.

<u>2.9. Remark :-</u> [Lellis and Carmel, 2013]

(i) Every nano open subset of U is nano α -open.

(ii) Every nano closed subset of U is nano α -closed.

(iii) If $U_R(X) = U$, then $\tau_R(X) = \tau_R^{\alpha}(X)$.

The converse (i , ii) of the remark above is not true as the following example shows:

2.10. Example:

Let $(U) = \{a, b, c, d, e\}$, with $(\frac{U}{R}) = \{\{a, b\}, \{c, e\}, \{d\}\}\$ and $X = \{a, d\}$. $\tau_R(X) = \{\emptyset, U, \{d\}, \{a, b, d\}, \{a, b\}\}\$, the nano closed sets are $\emptyset, U, \{a, b, c\}, \{c\}\$ and $\{c, d\}$. Clearly, $\tau_R^{\alpha}(X) = \tau_R(X) \cup \{\{a, b, c, d\}, \{a, b, d, e\}\}$.

2.11. Theorem:

If A and B be a nano α -open sets in a space $(U, \tau_R(X))$, then $A \cup B$ it is clear nano α -open in U by **Proof:** Since A and B are α -open sets, $(A \subseteq Nint(Ncl(Nint(A))))$ and $B \subseteq Nint(Ncl(Nint(B)))$.

Then:

 $(A \cup B \subseteq)$ $Nint(Ncl(Nint(A))) \cup Nint(Ncl(Nint(B))) \subseteq$ $Nint(Ncl(Nint(A)) \cup Ncl(Nint(B))) = Nint(Ncl(Nint(A \cup B)))$, we have $(A \cup B)$ is nano α -open in(U).

2.12. Theorem:

If A and B be a (nano open) nano α -open sets respectively in an IN_{α} -space $(U, \tau_R(X))$ respectively, then $A \cap B$ is nano α -open set in U.

Proof: Since A be a nano open set and B be a nano α -open, we have A^{ε} is nano closed and B^{ε} is nano α -closed in U. By remark (2.9.ii), then A^{ε} and B^{ε} are nano α -closed sets in U.

Then

 $\begin{bmatrix} Ncl_{\alpha}Nint_{\alpha}Ncl_{\alpha}(A^{c}) \end{bmatrix} \bigcup \begin{bmatrix} Ncl_{\alpha}Nint_{\alpha}Ncl_{\alpha}(B^{c}) \end{bmatrix} = \\ Ncl_{\alpha} \begin{bmatrix} (Nint_{\alpha}Ncl_{\alpha}(A^{c})) \bigcup (Nint_{\alpha}Ncl_{\alpha}(B^{c})) \end{bmatrix}$

 $= Ncl_{\alpha}Nint_{\alpha}[\left(Ncl_{\alpha}(A^{c})\right) \cup \left(Ncl_{\alpha}(B^{c})\right)] = Ncl_{\alpha}(Nint_{\alpha}(Ncl_{\alpha}(A^{c} \cup B^{c}))) \subseteq A^{c} \cup B^{c} = (A \cap B)^{c} i.$

e. $(A \cap B)^{c}$ is nano α -closed set. This implies that $A \cap B$ is nano α -open.

Similarity, if A and B be a (nano closed) nano α -closed sets respectively in an IN_{α} -space above, we have $(A \cap B)$ is nano α -closed set in (U).

2.13. Corollary:

If $(A \subseteq Y)$ and Y be nano open in an $(IN_{\alpha}$ -space $(U, \tau_{R}(X))$, then $(A \cap Y)$ is nano α -open set in Y.

Proof: Follows from theorem (2.12).

2.14. Definition:

A nano topological space $(U, \tau_R(X))$ is said to be nano α -normal, if for each pair of disjoint nano α -closed sets(A) and(B) of(U), there are disjoint nano α -open sets (W) and (V) such that $(A \subseteq W)$ and $(B \subseteq V)$.

2.15. Theorem:

A nano topological space $(U, \tau_R(X))$ is nano α -normal if and only if for every nano α -closed set(F) in(U) and each nano α -open sets (W) in(U) such that $(F \subseteq W)$, there is a nano α -open set($V \subseteq U$) such that $[F \subseteq W \subseteq Ncl_{\alpha}(W) \subseteq V]$.

Proof: Straightforward.

2.16. Definition:

A family $\{A_{\lambda}: \lambda \in \Lambda\}$ of subsets of a nano topological space $(U, \tau_R(X))$ is said to be a nano α -

locally finite family, if for each point $u \in U$, there is nano α -open set W of U such that the set

 $\{\lambda \in \Lambda: W \cap A_{\lambda} \neq \emptyset\}$ is finite.

2.17. Definition:

Let $(U, \tau_R(X))$ be a nano topological space and $\{G_{\lambda} : \lambda \in \Lambda\}$ be a cover of U, then $\{V_{\sigma} : \sigma \in \Gamma\}$

is called a nano α -refinement of $\{G_{\lambda}: \lambda \in \Lambda\}$ if, and only if it's a cover of U and for each $\sigma \in \Gamma$, there is $\lambda \in \Lambda$ such that $V_{\sigma} \subseteq G_{\lambda}$.

3. Nano <u>a</u>-Covering Dimension:

In this section we will introduce necessary definition and every nano topological space is an IN_{α} - space. Let U be a set and \mathcal{V} be a non-empty family of subsets of U, the order of is the largest integer n such that $(\bigcap_{i=1}^{n+1} V_i \neq \emptyset)$ for some (n + 1) members $(V_1, V_2, V_3, \dots, V_{n+1})$ of \mathcal{V} [Pears R. 1975].

3.1. Definition:

The nano α -covering dimension of a nano topological space $(U, \tau_R(X))$ is the least positive integer n such that every finite nano α -open cover of U has a nano α -open refinement of order $\leq n$.

We shall denote the nano α -covering dimension of U by $Ndim_{\alpha}U$.

(i) $(Ndim_{\alpha}U = -1)$, whenever $(U = \emptyset)$,

(ii) $(Ndtm_{\alpha}U = n)$ if and only if $(Ndtm_{\alpha}U \le n)$, but it is no $(Ndtm_{\alpha}U \le n-1)$.

(iii) $(Ndim_{\alpha}U = \infty)$ if and only if $(Ndim_{\alpha}U = n)$ for no n.

3.2. Example:

Let $(U) = \{a, b, c, d\}$ and $U/R = \{\{a\}, \{c\}, \{b, d\}\}\$ where $X = \{a, b\}$ with the nano topology $\tau_R(X) = \{\emptyset, U, \{a\}, \{a, b, d\}, \{b, d\}\}\$, clearly that $\tau_R^{\alpha}(X) = \tau_R(X)$ and $(Ndtm_{\alpha}U = 0)$

3.3. Theorem:

Let $(U, \tau_R(X))$ be a nano topological space , if $\dim_{\alpha} U = 0$, then it is nano α -normal.

Proof: Let(F_1, F_2) be two nano α -closed sets in U, with($F_1 \cap F_2 = \emptyset$). Then $\{F_1^{\sigma}, F_2^{\sigma}\}$ is a nano (α -open cover) of(U), since($Ndim_{\alpha}U = 0$), then it is has nano α -open refinement $\{H_1, H_2\}$ of order 0.

Hence there are nano α -open sets H_1 and H_2 such that $(H_1 \cap H_2 = \emptyset)$ with $(H_1 \cup H_2 = U)$, so that $(H_1 \subseteq F_1^{\sigma}, H_2 \subseteq F_2^{\sigma})$. Thus $(F_1 \subseteq H_1^{\sigma} = H_2)$ and $(F_2 \subseteq H_2^{\sigma} = H_1)$, this is complete prove.

3.4. Theorem:

Let $(U_r \tau_R(X))$ be a nano topological space, A be a nano open set of U, then $\dim_{\alpha} A \leq \dim_{\alpha} U$.

Proof: Suppose $(Ndim_{\alpha}U \leq n)$. Let $(\mathcal{H} = \{H_1, H_2, ..., H_k\})$ be a nano α -open cover of A. Now

for each (i = 1, 2, ..., k), $(H_i = V_i \cap A)$, where (V_i) is nano $(\alpha$ -open) set in) U). Since $\dim_{\alpha} U \leq n$,

then a nano α -open cover of U has a nano α -open refinement \mathcal{F} in U of order $\leq n$.

Journal of Babylon University/Pure and Applied Sciences/ Vol.(26), No.(3), 2018 Let \mathcal{L} = { $F_i \cap A : F_i \in \mathcal{F}$ } be a nano α -open refinement of \mathcal{H} of order $\leq n$ So $Ndim_{\alpha} A \leq n$.

Recall that a family $(\mathcal{A} = \{A_{\lambda} : \lambda \in A\})$ is a reduce of a family $(\mathfrak{C} = \{D_{\lambda} : \lambda \in A\})$, if $(D_{\lambda} \subseteq A_{\lambda})$ for each $(\lambda \in \Lambda)$ [Dugundji, 1966]. **3.5. Theorem:**

Let $(U, \tau_R(X))$ be a nano topological space, the following statements are equivalent:

(i) $(Ndim_{\alpha}U \leq n)$.

(ii) Every finite nano α -open cover of U can be reduced to a nano α -open cover of U of order $\leq n$.

Proof: (*i*) \Rightarrow (*ii*) Suppose that ($Ndim_{\alpha}U \leq n$). Let ($\mathcal{P} = \{G_1, G_2, ..., G_k\}$) be a nano α -open cover of (U). Then (\mathcal{P}) has a nano α -open refinement ($\mathcal{V} = \{V_{\lambda} : \lambda \in \Lambda\}$) which it is of (order $\leq n . \forall V_{\lambda} \in \mathcal{V}$, $\exists G_i \in \mathcal{P}$) such that ($V_{\lambda} \subseteq G_i$, i = 1, 2, ..., k. Let $W_i = \bigcup_{\lambda \in \Lambda} V_{\lambda} \subseteq G_i$) thus ($W = \{W_i : i = 1, 2, ..., k\}$) is a nano α -open reduction of \mathcal{P} which it is nano α -open cover of (U of order $\leq n$).

 $(ii) \Rightarrow (i)$, suppose that the condition is holds and $\mathcal{M} = \{M_1, M_2, ..., M_k\}$ be a finite nano α -open covering of U. Since every nano α -open reduction of \mathcal{M} which it is nano α -open covering of U is nano α -open refinement. Thus \mathcal{M} has a nano α -open refinement which it is of order $\leq n$. The other result holds immediately.

3.6. Corollary:

Let $(U, \tau_R(X))$ be a nano topological space, the following statements are equivalent:

(i) Every finite nano α -open cover of U has a nano α -open refinement of $(U \text{ of order } \leq n)$.

(ii) Every finite nano α -open cover of U can be reduced to a nano α -open cover of U order $\leq n$.

Proof: It is easy to show that $(Ndim_{\alpha}U \leq n)$. Now apply theorem (3.5).

3.7. Theorem:

Let $(U, \tau_{\mathbb{R}}(X))$ It is known I guess be a nano topological space, the following statements are equivalent:

(i) $(Ndim_{\alpha}U \leq n)$.

(ii) Every nano α -open cover of (U with n + 2) sets has a reduction which a nano α -open cover of (U with n + 2) sets and empty intersection.

Proof: (i) \Rightarrow (ii) Suppose that $(Ndim_{\alpha}U \leq n)$, then every finite nano α -open cover of U has a (nano α -open) reduction which cover of (order $\leq n$) by theorem (3.5). The number of the elements of this cover is (n + 2), then the number its reduction is also (n + 2) with (order $\leq n$). The intersection is not empty for at most (n + 1) elements, i.e. the intersection of all (n + 2) with (order $\leq n$) is empty.

(*ii*) \Rightarrow (*i*) let $\Re = \{R_1, R_2, ..., R_k\}$ be a finite nano α -open cover of(*U*). We shall prove that this cover has a reduction of order $\leq n$. Suppose that order $\Re > n$,

i.e. $(\exists R_1, R_2, ..., R_{n+1}, R_{n+2})$ such that $(\bigcap_{i=1}^{n+2} R_i \neq \emptyset)$. Put $(R^* = R_{n+2} \bigcup R_{n+3} \bigcup \dots \bigcup R_k)$. Then $\{R_1, R_2, ..., R_{n+1}, R^*\}$ be a finite nano α -open cover of U with n+2 sets has a reduction $\{P_1, P_2, ..., P_{n+1}, P^*\}$ which it is a nano α -open cover of U and empty intersection.

 $\{P_1, P_2, \dots, P_{n+1}, P^*, P^* \cap R_{n+2}, \dots, P^* \cap R_k\}$ is a nano α -open reduction of \Re of order $\leq n$.

The intersection of the first n + 1 sets of this cover is not empty intersection. But the intersection of all the sets of this cover has empty intersection. By continuous

this operation finite numbers at time , we will get the reduction with n + 2 sets and empty intersection . This completes the proof .

3.8. Definition:

Let $(U, \tau_R(X))$ and $(U', \tau_{R'}(Y))$ be a nano topological spaces. Then a mapping $(f: U \to U')$ is said to be a nano α -continuous on (U), if the inverse image of every nano α -open set in U' is nano $(\alpha$ -open in U).

3.9. Definition:

A nano(α -continuous mapping($f: U \to U'$) is said to have a vague order at most n, if for each finite nano (α -open) cover{ M_1, M_2, \dots, M_k } of(U'), there is a finite (nano α -open) cover{ N_1, N_2, \dots, N_k }

of $\boldsymbol{\textit{U}}$ such that :

(i) $[f(N_i) \subseteq M]_i$ for all (i = 1, 2, ..., k).

(ii)($f^{-1}(q) \cap N_i \neq \emptyset$) holds for at most(n + 1) values of *i* and for every ($q \in U'$). **3.10. Theorem:**

Let $(f: U \to U')$ and $(g: U' \to U'')$ be two a (nano α -continuous), onto mappings, if the nano α -vague order of g is at most n, then the nano α -vague order of gof is at most n.

Proof: Suppose the condition is holds and let $[\mathcal{W} = \{W_1, W_2, ..., W_k\}]$ be a finite nano α -open cover of (U')'. Then there is $\{\mathcal{V} = \{V_1, V_2, ..., V_k\}$ be a finite nano α -open cover of (U) such that $(g(V_i) \subseteq W_i \quad \forall i = 1, 2, ..., k)$ and $(g^{-1}(q) \cap V_i \neq \emptyset)$ for at most (n + 1) values of $(i \forall q \in U'')$. Then $(f^{-1}(\mathcal{V}))$ is a finite nano α -open cover of (U), where $gof(f^{-1}(V_i)) = g(V_i) \subseteq W_i \forall i = 1, 2, ..., k)$. Suppose that

 $(gof)^{-1}(q) \cap f(V_i) \neq \emptyset \quad \forall i = 1, 2, ..., n+2 \Rightarrow \exists x_i \in V_i \exists f^{-1}(x_i) \in (gof)^{-1}(q) \Rightarrow f(f^{-1}(x_i)) \in f(f^{-1}(g^{-1}(q))) \subseteq g^{-1}(q) \quad \forall i = 1, 2, ..., n+2 \Rightarrow g^{-1}(q) \cap V_i \neq \emptyset \quad \forall i = 1, 2, ..., n+2$ which is a contradiction.

3.11. Theorem:

Let $(f: U \to U')$ and $(g: U' \to U'')$ be two a (nano α -continuous), onto mappings and (f) is a (nano α -open), if the (nano α -vague order) of $g \circ f$ is at most (n), then the nano α -vague order of (g) is at most (n).

Proof: suppose that the(nano α -vague) order of **gof** is at most n. We shall prove that the nano α -vague order of g is at most n.

Let $(\mathcal{W} = \{W_1, W_2, ..., W_k\})$ be a finite nano $(\alpha$ - open covering) of (U''). Then there is $(\mathcal{V} = \{V_1, V_2, ..., V_k\})$ be a finite nano $(\alpha$ - open covering)of(U) such that $(gof)(V_i) \subset W_i \forall i = 1, 2, ..., k$, and $(gof)^{-1}(q) \cap V_i \neq \emptyset$ hold at most n+1 values of I and for every $q \in U''$. Now since f is nano α -open ,then the collection $\{f(V_i): i = 1, 2, ..., k\}$ is a finite nano α -open covering of U' satisfying: $g(f(V_i)) =$ $(gof)(V_i) \subset W_i$, i = 1, 2, ..., k. To prove $g^{-1}(q) \cap f(V_i) \neq \emptyset$ for at most n+1 values of i and for every $q \in U''$. Suppose for some $q \in U''$ there is $x_i \in V_i$ such that $f(x_i) \in g^{-1}(q)$ for n+2 values of I that is $(f^{-1}(f(x_i)) \in f^{-1}(g^{-1}(q))$ then $(x_i \in (gof)^{-1}(q)$ for n+2 values of i. This means that $(gof)^{-1}(q) \cap V_i \neq \emptyset$ hold for at most n+2 values of i which is contradiction with theorem (3.10). Thus the nano α vague order of g is at most n.

3.12. Theorem:

Let $(U, \tau_R(X))$ be a nano topological space, the following statements are equivalent:

(i) $(Ndim_{\alpha}U \leq n)$.

(ii) The(nano α -vague) order of the identity mapping(I_U of U) is at most n.

(iii) The (nano α -vague) order of every(nano α -continuous) onto mapping with range(U) is at most(n).

Proof: $(i \Rightarrow ii)$ the following result follows immediately from definition (3.9) and we obtain $(ii \Rightarrow iii)$ by theorem (3.10). Also, $(iii \Rightarrow ii)$ by theorem (3.11).

Now, we prove that (ii \Rightarrow i). Let($\mathcal{H} = \{H_1, H_2, \dots, H_k\}$ be a nano α -open cover of U. Since I_U is nano α -vague order at most n. Then($\xi = \{E_1, E_2, \dots, E_k\}$ be a nano α -open cover of U such that :

• $(I_U(E_t) = E_t \subseteq H_t \forall i = 1, 2, ..., n + 1).$

•($I_U^{-1}(q)\cap E_i\neq \emptyset ~\forall~i=1,2,...,n+1)$. i.e. $\mathrm{order}(~\xi\leq n)$, we get the desired result .

<u>3.13. Theorem:</u>

Let $(Ndim_{\alpha}U = 0)$ and $(f: U \to U')$ be a nano α -continuous, onto mapping with $(f^{-1}(q) \text{ contains})$

at most (n + 1) points of (U) for all $(q \in U')$, then the (nano α -vague) order of (f) is at most n.

Proof: Let $(\mathfrak{R} = \{R_1, R_2, ..., R_k\})$ be a finite (nano α -open cover) of (U'). Then $(f^{-1}(\mathfrak{R})$ is a finite (nano α -open) cover of (U). Since $(Ndim_{\alpha}U = 0)$, then there exist $(\mathcal{M} = \{M_1, M_2, ..., M_k\})$ be a disjoint nano α -open refinement which cover of (U) with $M_i \subseteq f^{-1}(R_i) \Rightarrow f(M_i) \subseteq R_i \forall i = 1, 2, ..., k$.

Now since $(f^{-1}(q) \text{ contains at most}(n+1) \text{ points of}(U)$, then $(f^{-1}(q) \cap M_t \neq \emptyset)$ for at most n+1 values of l for all $(q \in U')$.

Reference:

- Alias, B. K. and Haji, M., 2011," α-Covering Dimension ", Int. J. Pure Appl. Sci. Tech, 3(1).
- Caldas, M., Jafari, S., Georgion, D. N., 2003,"Characterization of low separation axioms via *a*-open sets and *a*-closure operator", Bol. Soc. Paran. Math., 21 1/2.

Dugundji J., 1966, "Topology ", Allyn and Bacon Inc., Boston.

- Lellis, M. T. and Carmel, R., 2013, " On Nano forms of Weakly open sets ", Int. J. Math. S., Vol. 1, No. 1.
- Lellis, M. T.,and Carmel, R., 2013, "On Nano Continuity", Math. Theory. and Modeling, Vol. 3, No.7.

Najastad, O., "A note on some applications of *a*-open sets", 2013, Pacific J.Math.Vol.2.

Pears R., 1975," Dimension Theory of General Spaces ", Camb., Univ. Press Camb.

Revathy, A. and Ilango G., 2015, "On Nano β-open sets ", Int. J. of Engineering Contemporary, Math. and S., Vol. 1, No. 2.