On (T,L)- Identification Function

Aqeel Ketab Al-Khafaji

Department of Mathematics, Collage of education For Pure Sciences University of Babylon aqeelketab@gmail.com

Abstract:

In this paper, we study and introduce the notion of (T, L)-identification function which is a function f from a topological space (X, τ) to another topological space (Y, σ) and T, L be two operators associative with τ, σ respectively, then f is called (T, L)-identification function if and only if f is onto and V is L-open set in Y if and only if $f^{-1}(V)$ is T-open set in X.

Keywords: Identification function, (T, L)-identification function, Operator, T-open set, (T, L)-continuous function, (T, L)-contra continuous function.

الخلاصة:

في هذا البحث قدمنا مفهوم دالة الهوية من النوع (T, L) والتي هي الدالة f من الفضاء التبولوجي (X, τ) الى فضاء تبولوجي اخر (Y, σ) وكل من T, L مؤثر على τ, σ على التوالي فنقول ان الدالة f هي دالة هوية من النوع (X, τ) اذا وفقط اذا كانت شاملة والصورة العكسية للمجوعة V تكون T, correnc في <math>X اذا وفقط اذا كانت المجموعة V هي J من النوع (T, L)، الدالــة الكلمات المفتاحية: دالة الهوية من النوع (T, L)، المجموعة المفتوحة من النوع T، الدالة المستمرة من النوع (T, L)، الدالــة ضد المستمرة من النوع (T, L).

1. Introduction

In 1966 HS [Hu,1966] introduced the concept of an identification function (Definition 3.1) and in 1997 Al-K utaibi [Alkutabibi,1997] introduced the notion of semi-identification and some other types of identification. In this paper we introduce the notion of (T,L)-identification function using the concepts of an operator associated to a topology (Definition 2.1) and T-open set (Definition 2.2) was introduced by Kasahara [Kasahara,1979] and Ogata [Ogata, 1991] respectively.

2. Fundamental Concepts

In this section we recall the basic definitions needed in this work.

2.1. Definition [Kasahara, 1979]

Let (X, τ) be a topological space, let P(X) be the power set of X. Let $T: \tau \to P(X)$, we say that T is an operator associated with the topology τ on X if $U \subseteq T(U)$ for every open set U in X.

We denote by (X, τ, T) as a topological space with an operator T associated with the topology τ and we will call it operator topological space.

2.2. Example [Mustafa, 2014]

Let (X, τ) be a topological space, Let $T: \tau \to P(X)$ be defined as follows, Let $T(A) = Int cl(A), A \subseteq X$, where Let Int(A) = interior of A, cl(A) = closure of A. Notice that if Let U is open in X, then $U \subseteq Int cl(U) = T(U)$. So that T is an operator associated with the topology τ on X and the triple (X, τ, T) is an operator topological space. If T is the identity operator (T(A) = A) then the triple (X, τ, T) will reduces to (X, τ) , so that the operator topological space is the ordinary topological space.

2.3. Definition [Ogata, 1991]

Let (X, τ, T) be an operator topological space, A subset A of X is said to be T-open set if for each $x \in A$, there exists an open set U containing x such that $T(U) \subset A$. A subset B is said to be T-closed set if it its complement is T-open set.

It is clear that every *T*-open set is open, but the converse is not necessarily true as shown in the following example :

2.4. Example

Let (X, τ, T) be an operator topological space, where $X = [a, b, c]_{\tau} = [\phi, X, [a], [b], [a, b]]$ and $T: \tau \longrightarrow P(X)$ is a closure operator. Consider $A = \{a, b, \}$, we claim that A is open but not T-open. Now, let $a \in A$ also $a \in \{a\}$ which is open in X. Let $W = \{a\}$ then $T(W) = cl(W) = cl(a) = \{a, c\}$, that means $a \in W = \{a\} \subseteq T(W) = \{a, c\}$. But $T(W) = \{a, c\} \notin A = \{a, b\}$, which means that A is not T-open.

2.5. Definition [Ogata. 1991]

Let (X, τ, T) and (Y, σ, L) be two operator topological spaces. We say that a function $f: (X, \tau, T) \to (Y, \sigma, L)$ is (T,L)- continuous function if for each point $x \in X$ and every open set V in Y containing f(x) ther exists an open set U in X containing x such that $f(T(U)) \subseteq L(V)$.

<u>2.6. Theorem</u> [Mustafa, 2014]

Let $f: (X,\tau,T) \to (Y,\sigma,L)$ is (T,L)- continuous function, then the inverse image of each *L*-open set in *Y* is *T*-open set in *X*.

<u>Proof:</u> Let W be L-open set in Y, to prove that, $f^{-1}(W)$ is T-open set in X.Let $x \in f^{-1}(W)$ then, $f(x) \in W$ but W is L-open set then there exists an open set V in Y such that $f(x) \in V \subseteq L(V) \subseteq W$. Now f is (T,L)-continuous at x then there exists an open set U in X containing x such that, $f(T(U)) \subseteq L(V)$ so, $T(U) \subseteq f^{-1}(L(V))$.

Now, $x \in U \subseteq T(U) \subseteq f^{-1}(L(V)) \subseteq f^{-1}(W)$ that is, $x \in U \subseteq T(U) \subseteq f^{-1}(W)$ which means that $f^{-1}(W)$ is T-open.

2.7. Definition [Ogata, 1991]

Let (X, τ, T) and (Y, σ, L) be two operator topological spaces. We say that a function $f: (X, \tau, T) \to (Y, \sigma, L)$ is (T, L)-contra continuous function if $f^{-1}(A)$ is T-closed set in X for all L-open set A in Y.

3.The Main Results

3.1. Definition [Hu, 1966]

Let $(X, \tau), (Y, \sigma)$ be two topological spaces. A function $f: (X, \tau) \to (Y, \sigma)$ is called *identification function* if and only if (i) f is onto and (ii) V is open set in Y if and only if $f^{-1}(V)$ is an open set in X.

3.2. Example

Let (X, τ) and (Y, σ) be tow topological spaces where $X = \{1,2,3\}, \tau = \{\phi, X, \{1\}, \{2\}, \{1,2\}\}$ and $Y = \{a, b, c\}, \sigma = \{\phi, y, \{b\}, \{c\}, \{b, c\}\}$, let $f: (X, \tau) \rightarrow (Y, \sigma)$ be define by f(1) = b, f(2) = c, f(3) = a, then f is identification function.

3.3. Definition

A function f from the operator topological space (X, τ, T) to another topological space (Y, σ, L) is called (T, L)-*identification function* if and only if f is onto and V is L-open set in Y if and only if $f^{-1}(V)$ is T-open set in X.

3.4. Example

Let (X, τ, T) and (Y, σ, L) be two operator topological spaces, where $X = \{1, 2, 3\}, \tau = \{\phi, X, \{1\}, \{2\}, \{1, 2\}\}, T: \tau \longrightarrow P(X)$ such that

$$T(A) = \begin{cases} A & \text{if } A \neq \{2\} \\ \{2,3\} & \text{if } A = \{2\} \end{cases}$$
 and

 $Y = \{a, b, c\}, \sigma = \{\phi, Y, \{a, b\}\}, L: \sigma \longrightarrow P(X) \quad L(A) = A. \text{ Now the set of all } T\text{-open set} = \{\phi, X, \{1\}, \{1, 2\}\} \text{ and the set of all } L\text{-open set} = \{\phi, Y, \{a, b\}\}, \text{ let } f: (X, \tau, T) \longrightarrow (Y, \sigma, L) \text{ be define by } f(1) = a, f(2) = b, f(3) = c, \text{ then } f \text{ is } (T, L)\text{-identification function.}$

3.5. Remark

(i) Observe that if T and L are the identity operators on X and Y respectively, then the Definition 2.3 is reduced to the definition *identification function* (Definition 2.1).

(ii) Identification function and $(T_{s}L)$ -identification function are independent. And the following two examples will show that.

3.6. Example

Let $X = Y = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$, and $T: \tau \to P(X)$ defined as $T(A) = \begin{cases} A & \text{if } A \neq \{b\} \\ \{b, c\} & \text{if } A = \{b\} \end{cases}$, and $L: \tau \to P(X)$ defined as L(A) = A, then the set of all T-open set $= \{\phi, X, \{a\}, \{a, b\}\}$ and the set of all L-open set $= \{\phi, Y, \{a\}, \{b\}, \{a, b\}\}$. Let $f: (X, \tau, T) \to (Y, \tau, L)$ is identity function, then f is identification function but not (T, L)-identification function [take $W = \{b\}$ is L-open set in Y, then $f^{-1}(W) = W = \{b\}$ which is not T-open set in X].

3.7. Example

Let (X, τ, T) and (Y, σ, L) be two operator topological spaces, where $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}, T: \tau \longrightarrow P(X)$ such that

and

$$T(A) = \begin{cases} A & \text{if } A \neq \{0\} \\ \{b, c\} & \text{if } A = \{b\} \end{cases}$$

 $Y = \{a, b, c\}, \ \sigma = \{\phi, Y, \{c\}\}, L: \sigma \longrightarrow P(X) \text{ such that } L(A) = \begin{cases} A & \text{if } A \neq \{c\} \\ \{a, c\} & \text{if } A = \{c\} \end{cases}$ Now the set of all *T*-open set = $\{\phi, X, \{a\}, \{a, b\}\}$ and the set of all *L*-open set = $\{\phi, Y, \}, \ \text{let } f: (X, \tau, T) \longrightarrow (Y, \sigma, L) \text{ is identity function, then } f \quad \text{is}(T, L)$ -identification function but not identification function[take $V = \{c\} \text{ is open set in } Y, \text{ then } f^{-1}(V) = V = \{c\} \text{ which is not open set in } X \end{bmatrix}.$

3.8. Theorem

An onto function $f: (X, \tau, T) \to (Y, \sigma, L)$ is (T, L)-identification function if and only if W is L-closed set in Y if and only if $f^{-1}(W)$ is T-closed set in X.

Proof: (\Rightarrow) Let W be L-closed set in Y, then W^{C} is L-open set in Y, but f is (T,L)identification function, then f is onto and $f^{-1}(W^{C}) = (f^{-1}(W))^{C}$ is T-open set in X, thus $f^{-1}(W)$ is T-closed in X. Similarly, if $f^{-1}(W)$ is T-closed set in X, then $(f^{-1}(W))^{C} = f^{-1}(W^{C})$ is T-open set in X, and since f is (T,L)-identification function, then W^{C} is L-open set in Y and hence W is L-closed set in Y.

(\Leftarrow) Let W be L-open set in Y, then W^C is L-closed set in Y, then $f^{-1}(W^C) = (f^{-1}(W))^C$ is T-closed set in X. That is $f^{-1}(W)$ is T-open set in X.

Journal of Babylon University/Pure and Applied Sciences/ Vol. (26), No. (3), 2018

Similarly, if $f^{-1}(W)$ is *T*-open set in *X*, then $(f^{-1}(W))^{c} = f^{-1}(W^{c})$ is *T*-closed set in *X*, and then W^{c} is *L*-closed set in *Y* and hence *W* is *L*-open set in *Y*. Since *f* is onto then *f* is (T,L)-identification function.

3.9. Definition

A function f from the operator topological space (X, τ, T) to another topological space (Y, σ, L) is called (T, L)- open (closed) if and only if the image of every T-open (T-closed) set in X is L-open (L- closed) set in Y.

Example 3.10

Let (X, τ, T) and (Y, σ, L) be two operator topological spaces, where $X = \{1, 2, 3\}, \tau = \{\phi, X, \{I\}, \{2\}, \{1, 2\}\}$ and $Y = \{a, b, c\}, \sigma = [\phi, Y, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$, where T and L are defined as follows: T(U) = L(U) = U, then the set of all T-open set $= \{\phi, X, \{I\}, \{2\}, \{1, 2\}\}$ and the set of all L-open set $= \{\phi, Y, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ let $f: (X, \tau, T) \rightarrow (Y, \sigma, L)$ be define by f(I) = a, f(2) = b, f(3) = c, then f is (T, L)-open function.

3.11. Theorem

If $f: (X, \tau, T) \to (Y, \sigma, L)$ is, (T, L)- open, onto and (T, L)- continuous function, then f is (T, L)-identification function.

Proof: Let W be a subset of Y, such that $f^{-1}(W)$ is T-open set in X. Since f is onto, we have $f(f^{-1}(W)) = W$, since $f^{-1}(W)$ is T-open set in X and f is (T,L)- open, then W is L-open set in Y. Now W is L-open set in Y, since f is (T,L)- continuous function, then $f^{-1}(W)$ is T-open set in X. That is f is (T,L)-identification function. **3.12. Corollary**

A function $f: (X, \tau, T) \rightarrow (Y, \sigma, L)$ is (T, L)-identification function, if it is, (T, L)- closed, onto and (T, L)- continuous function.

Proof: Clear ■

3.13. Theorem

Let (X, τ, T) , (Y, σ, L) and (Z, ρ, K) are operator topological spaces, then if: $f: (X, \tau, T) \to (Y, \sigma, L)$ is (T, L)-identification function, and $g: (Y, \sigma, L): \to (Z, \rho, K)$ is(L, K)-identification function, then $gof: (X, \tau, T) \to (Z, \rho, K)$ is (T, K)-identification function.

Proof: Clear that, the composition of two onto function is onto. Now, let W be any K-open set in Z, since g is (L,K)-identification function, then $g^{-1}(W)$ is L-open set in Y, and f is (T,L)- identification function, we have $f^{-1}(g^{-1}(W)) = (g \circ f)^{-1}(W)$ is T-open set in $X \blacksquare$

Similarly, if $(g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W))$ is *T*-open set in *X*, since *f* is (T,L)-identification function, then $g^{-1}(W)$ is *L*-open set in *Y*, and since *g* is (L,K)-identification function, then *W* be any *K*-open set in *Z*. Thus *g*of is (T,K)-identification function \blacksquare

3.14. Theorem

Let $f: (X, \tau, T) \to (Y, \sigma, L)$ is (T, L)-identification function, and $g: (Y, \sigma, L): \to (Z, \rho, K)$ is a function, then the following statements are valid:

(i) If $g \circ f$ is (T, K)- continuous function, then g is (L, k)- continuous function.

(ii) If gof is (T,k)-contra continuous function, then g is (L,k)-contra continuous function.

<u>Proof</u>: Assume that h = gof

(i) let W be K-open set in Z, put $V = g^{-1}(W)$ and $U = f^{-1}(V)$, since h = gof, we have $h^{-1}(W) = f^{-1}[g^{-1}(W)] = U$. Since W is K-open set in Z and h is (T,K)-continuous function, then $h^{-1}(W)$ is T-open set in X, this means that $f^{-1}(V)$ is T-open set in X. But f is (T,L)-identification function, then V is L-open set in Y, that is $g^{-1}(W)$ is L-open set in Y. Thus g is (L, k)- continuous function

(ii) let W be K-open set in Z, put $V = g^{-1}(W)$ and $U = f^{-1}(V)$, since h = gof, we have $h^{-1}(W) = f^{-1}[g^{-1}(W)] = U$. Since h is (T,k)-contra continuous function, then $h^{-1}(W)$ is T-closed set in X, that is U is T-closed set in X. Since $U = f^{-1}(V)$, then $f^{-1}(V)$ is T-closed set in X. But f is (T,L)-identification function, then V is L-closed set in Y (Theorem 3.8), that is $g^{-1}(W)$ is L-closed set in Y. Thus g is(L,k)- contra continuous function

4.Future works:

We will discuss the following concepts :

- 1- (T,L) -semi-identification function. (Using the concepts operator T and semi-open sets)
- 2- (T,L)- pre-identification function. (Using the concepts operator T and preopen sets)
- 3- We can use the concept of **b**-open set and the concept of **operator T** to define **(T**, **L)**-**b**-identification function.

References

- Alkutaibi, S. H., 1997, On Some Types Of Identifications, Journal of sciences, college of education, Tikrit University, Vol. 4 No.2. 157-163.
- Al-jizani, A. K., 2004, The Operator *T* And New Types Of Open Sets And Spaces, M.Sc. Thesis, Mu'tah Uneversity, Jordan.
- Carpintero, C, Rosas E and Vielma J., 2001, Generalization Functions Contera-Continuas, Divulgaciones Mathematics . Vol. 9, No. 2. 33-44.
- Kasahara, S.,1979, Operation-Compact Spaces, Mathematical Japonica. Vol. 21. 97-105.
- Mustafa, H. J., Al-Khafaji,A.K. and Al-Hindawe,A.L., Operator Topological Spaces, Journal of college of education, Mustansiriyah University, Vol. 1 NO.3,2014, 225-232.

Hu, S. T., 1966, Introduction to General Topology. Holden-day, Inc.

Ogata, H., 1991, Operation On Topological Spaces And Associated Topology, Math. Japonica, Vol. 36 No. 1.175-184.