
Int. J. of Computers, Communications & Control, ISSN 1841-9836, E-ISSN 1841-9844
Vol. VI (2011), No. 4 (December), pp. 635-646

The Research of QoS Approach in Web Servers

Y. Hu, D. Mu, A. Gao, G. Dai

Yansu Hu, Dejun Mu, Ang Gao, Guanzhong Dai
School of Automation
Northwest Polytechnical University
Xi’an 710072, China
E-mail: huyansu@gmail.com, mudejun@nwpu.edu.cn, snailgao@gmail.com, daiguanzhong@nwpu.edu.cn

Abstract: Proportional Delay Guarantee has been widely used in the Web
QoS service, and the most basic methods are the feedback of control theory
and the predictive control of queuing theory. While the former belonging
to passive control has a long setting time and imperfect real-time, the latter
can not simulate the Web server queuing system well because of the model
limitations. After the experimental verification and shortages analysis of the
two methods, an improved approach is proposed in this paper. Based on the
queuing feature of Web server and the HTTP 1.1 persistent connection, the
improved approach predicts the delay by calculating the queue length and
service rate and achieves the relative delay guarantee of different classes by
adjusting their quota of worker threads. The experimental results demonstrate
that the approach could maintain the relative delay guarantees well even in
poor network environment and performs a much better superior compared with
the traditional methods.
Keywords: Web Server, Proportional Delay Guarantee, Feedback Control,
Predictive Control

1 Introduction

The increasing diversity of Web applications the last decade has witnessed an increasing
demand for provisioning of different levels of quality of service (QoS) to meet changing system
configuration and satisfy different client requirements. Proportional delay differentiation (PDD)
service aims to ensure the QoS parameters between data flow of different classes to meet the
specified proportions, so the requests with higher priority will receive the quality of service
which is "at least not lower than" the low priority. There are many previous studies worked
on the Web QoS and two different methods are used to achieve the differentiated service: the
feedback of control theory (see [1], [2], [3], [4] and [5]) and predictive control of queuing theory
(see [2], [6] and [7]). Although the algorithms are different, the QoS architecture of Web server
they used is non-distinctive.

The QoS of Web application is usually related to the network layer transmission and the
operating system kernel. The latter that needs to replace the operating system on all the termi-
nals is difficult to deploy, so more and more researchers tend to the differentiation service on the
application layer. It ensures the PDD service by changing the original Web FIFO mechanism
and the modified Apache MPM (Multi-Processing Modules) architecture is illustrated in Figure
1.

1. The single connection queue is improved to a multi-queue structure in accordance with
the classified strategy. The listener monitors the network port, accepts the client TCP
connections, classifies the requests based on some classified strategy, and then puts them
into the appropriate waiting queue.

Copyright c⃝ 2006-2011 by CCC Publications

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Agora University Editing House: Journals

https://core.ac.uk/display/236053532?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

636 Y. Hu, D. Mu, A. Gao, G. Dai

2. Any class can not consume the server resource unlimitedly, so the requests of different
classes must be isolated. The thread per connection structure of MPM allows all the
worker threads in pool to be the resource to be allocated. So we divide the pool into
several sub-pools which are isolated with each other. The number of threads in each sub-
pool is known as the thread quota, and the requests are serviced in the corresponding
sub-pool.

3. For N kinds of classes, let ci(i = 1, ..., N) be the thread quota allocated to the class i.
When load varies, the size of sub-pool is dynamically adjusted to ensure the proportion
between classes constant. And is calculated by feedback control used the delay observer
to get the real delay (Figure 1 ¬method), or by predictive control used the queue length
observer to get the request arrival rate(Figure 1 method).

`
Worker

 Pool 1

Worker 1

Worker m

Worker
 Pool n

Waiting Queue n

Waiting Queue 1

Requests
Classified

Queue Length

Observer

Quota

Schedule

Delay

Observer

Feedback

Control

HTTP Response

Data Flow

Control Flow

Predictive

Control

Performance
Isolation

()Y k

Figure 1: The Web server architecture for PDD service

But there are some imperfections and limitations in both the methods. For example, the
feedback control is essentially a passive approach which works only after the deviation appeared.
The delay in response is significant since the server response time is particularly slow. Although
the predictive control based on queuing theory adjusts the controller output in advance, it can
not get the precise plant model because of limitations itself. So an improved predictive approach
is proposed to overcome their shortages and the contributions in this paper can be summarized
as follows:

1) A general architecture for proportional delay service in Web server is summed up.
2) The two methods referred above are verified and compared by experiments.
3) Implement and evaluate an improved approach to get a better performance.

2 The Comparison of Two PDD Methods

2.1 The Feedback of Control Theory

Assuming C worker threads are concurrent on the Web server. For N kinds of classes, let
δi be the constant weighting factor of class i where the higher priority has a smaller parameter
value, and di be the expectation of class i’s average measured delay, then the proportional delay
guarantees can be described as follows:

di/dj = δi/δj , 1 ≤ i ≤ N, 1 ≤ j ≤ N, (1)

The Research of QoS Approach in Web Servers 637

∑N

i=1
ci = C (2)

Quota

Schedule

Feedback

Control
dY

!

Delay

Observer

iXie

Plant

iY
ic jc

Figure 2: The feedback control model

Where ci is the thread quota of class i. So the improved MPM is equivalent to a control
model as Figure 2. The system desired output is the inherent priority parameter ratio between
class i and i+ 1 , which is

Ydesire = [y1desire, y2desire, ..., yN−1disire]
T. (3)

yidesire = δi/δi+1, i = 1, 2, ..., N − 1. (4)

Similarly, the controller output is the thread quota ratio and Y(k) is the measured output
ratio between the class i and i+ 1, which is

X(k) = [x1(k), x2(k), ..., xN−1(k)]
T. (5)

xi(k) = ci(k)/ci+1(k), i = 1, 2, ..., N − 1. (6)
Y(k) = [y1(k), y2(k), ..., yN−1(k)]

T. (7)
yi(k) = di(k)/di+1(k), i = 1, 2, ..., N − 1. (8)

Obviously, the deviation is E(k) = Y(k) − Ydesire. On the Web server, all classes share
a single host resource. So the feedback controllerďż˝ďż˝class-per-loopďż˝ďż˝adjusts X(k) to
satisfy Equation (1) by the measured E(k) .

The Web server is modeled as a linear system, i.e. a r-order difference equation is

Y(k) =
∑r

l=1
[alY(k − l) + blX(k − l)]. (9)

Where al and bl are the unknown parameters. The transfer function in z-domain is

G(z) =
Y(z)

X(z)
=

∑r
l=1 blz

r−l

zr −
∑r

l=1 alz
r−1

. (10)

The plant’s mathematical model (order and parameters) is obtained by system identification
which is presented by the authors in [8] in detail. Then we can design the controller based on
the classical control theory. Take the PI control for example, the controller transfer function in
z-domain is

D(z) = Kp +
KIT (z + 1)

2(z − 1)
, (11)

And the Closed-loop system transfer function is

GC(z) =
D(z)G(z)

1 +D(z)G(z)
. (12)

638 Y. Hu, D. Mu, A. Gao, G. Dai

2.2 The Predictive Control of Queuing Theory

Although the feedback maintains the system at the balance, it takes an imperfect real-time
for the lagging output. So [2, 6, 7] try to correct the deviation before the system output being
affected with the help of queuing theory. In the predictive control, the queue length observer
(see Figure 1) measures the request arrival rate λi and service rate µi. Then the predictive
controller reallocates the thread quota ci for respective class.

M/M/1/∞ Queuing System

The Web server performance mainly subjects to the system bottlenecks(see [7]), so each class
in Apache can be considered as a M/M/1/∞ queuing model. Define ρ = λ/µ be the system
traffic intensity. And the residence time is the sum of queuing time (connecting time) and service
time (transfer time), which is

l = ω + χ (13)

Where ω and χ are independent from each other. According to paper [2], the mean residence
time is calculated by Equation (14).

l = ω + E[χ] =
ρ

µ(1− ρ)
+

1

µ
=

1

µ− λ
, (ρ < 1) (14)

To meet the proportion relationship specified by Equation (1), we can get

µj(k)− λj(k)

µi(k)− λi(k)
=

δi
δj

(15)

While normalized the thread quota

si = ci/Ci, 1 ≤ i ≤ N,
∑N

i=1
si = 1, (16)

Hence, for class i, the service rate can be rewritten as

µi(k) = µsi(k) (17)

Where µ is the total service capacity. Then Equation (14) becomes li =
1

µsi−λi
. Combined

with Equation (15),

µs2(k)− λ2(k)

µs1(k)− λ1(k)
=

δ2

δ1
µs3(k)− λ3(k)

µs2(k)− λ2(k)
=

δ3

δ2
...

µsN (k)− λN (k)

µsN−1(k)− λN−1(k)
=

δN

δN−1∑N
i=1 si = 1

(18)

Solving equations at each sampling time, we can get the thread quota for different classes
(s1, s2, ..., sN).

The Research of QoS Approach in Web Servers 639

M/G/1/∞ Queuing System

In M/M/1/∞ model, the service time obeys the memoryless exponential distribution. But
when it is general distribution, the correlation between the current and several previous service
time must be considered (see [9]). The paper [6, 10] described the "heavy tail" features of Web
service time series {χn, n ≥ 1}, and gave a more compatible queuing model M/G/1/∞ for the
Web server. According to the Pollaczek-Kinchin(PK) formula and lemma, if si is the normalized
thread quota for class i, service time χi obeys the bounded pareto distribution, the mean queuing
time is

m1,i = E[χi] = mi/si,m2,i = E[χi] = m2/si
2 (19)

Hence the mean residence time is

li = ω + E[χi] =
m2,iλi

2(1− λiE[χ])
+

m1

si
=

m2,iλi

2(1− λiE[χ])
+

m1

si
(20)

=
m2λi

2si(si −m1λi)
+

m1

si

Where m1 ,m2 are the constants related to shape parameter of bounded pareto distribu-
tion, λi is the requests arrival rate which is obtained by the queue length observer. Combined
Equation(20) with Equation (1),

si(si −m1λi)

si+1(si+1 −m1λi+1)

2m1si+1 + λi+1(m2 − 2m2
1)

2m1si + λi(m2 − 2m2
1)

=
δi+1

δi
(21)

Solve the equations similar to Equation (18) and get the results (s1, s2, ..., sN).

2.3 Experimental Results

The test-bed consists of a Web sever and two client machines, each with a 3.0GHz Pentium
4 professor and 521MB RAM connected with 100 Mbps Ethernet. The Web server is Apache
2(Httpd-ver2.0.53) running on Windows NT and the total number of server processes is config-
ured to 100. The two client machines run Liunx-2.6.27 with SURGE (see [11]) (ver 1.00a) as
the workload generator and each operates 120 concurrent UE. Requests are classified according
to their source IP address. All the experiments are under HTTP1.1 pipeline and the number
of maximum concurrent clients in SURGE is 1. Set δ1/δ1 = 1/2,which means the delay of high
class is half of the low one. The sampling period is set to 10 sec, and all the experiments last
3000 sec. 300 valid data is measured and the controller works after 750 sec.

The results under PI controller and predictive controller M/G/1/∞ are respectively shown
in Figure 3. Obviously, before the controllers works there is no differentiated service in different
classes. But after 750 sec, the thread quota for high class increases until the expectation is
satisfied. And all the methods achieve the proportional delay guarantees well.

In order to compare the features of the two methods, the mean value of the measured delay
ratio l1/l2 and the variance relative to δ1/δ2 = 0.5 are defined as follows:

Ee =

∑300
k=75 l1(k)/l2(k)

300− 75
(22)

De =
∑300

k=75
[l1(k)/l2(k)− δ1(k)/δ2(k)]

2 (23)

Compute Equation (22) and (23), we get Ee = 0.5198,De = 4.56 under the PI controller,while
Ee = 0.4136 ,De = 5.5376 under the M/G/1/∞ predictive controller.Now we can see

640 Y. Hu, D. Mu, A. Gao, G. Dai

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 500 1000 1500 2000 2500 3000
 20

 30

 40

 50

 60

 70

 80

d
e
la

y
 r

a
ti
o

th
re

a
d
 q

u
o
ta

delay ratio
high class thread
low class thread

(a) PI control

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 500 1000 1500 2000 2500 3000
 20

 30

 40

 50

 60

 70

 80

d
e
la

y
 r

a
ti
o

th
re

a
d
 q

u
o
ta

delay ratio
high class thread
low class thread

(b) M/G/1/∞ queuing predictive control

Figure 3: The change of delay ratio and thread quota under different controllers

1. As a passive control, the PI controller works until the deviation appeared. Although the
output is stabilized in the vicinity of the expectation value, there is a long setting time
ts ≈ 300s.

2. In contrast, the latter with a much better setting time ts ≈ 40s only maintains the delay
proportion at 0.4. This is because the queuing theory based on PK formula asks for the
statistics balance which means the requests arrival rate is equal to service rate. So the
model limitation leads to the ineffaceable deviation.

3 An Improved Predictive Control

From Section 2, the queuing theory is invalid when the Web loads bursts and fluctuates
dramatically. Meanwhile, for the Web queuing process, the number of requests in the front of
request j can be measured. On this issue, an improved predictive control is proposed in this
paper to achieve the relative delay guarantees.

3.1 Design

The relationship of the requests arrival rate, service rate and the queue length of class i
are demonstrated in Figure 4(see [12]).The arrival curve Arrviali(k) presents the rate of TCP
connections, and the service curve Servicei(k) presents the capacity of Web server for class i.

∆Arrivali(k)

∆k
= λi(k) (24)

∆Servicei(k)

∆k
= µi(k) (25)

The Research of QoS Approach in Web Servers 641

When classi is overload, the arrival rate is always greater than the Web service rate,i.e.
λi(k) > µi(k).So the vertical distance between the two curves is the actual length ni(k) of
waiting queue i at the kth sampling time, which is ni(k) = Arrivali(k)− Servicei(k). From the
view of the tail, the waiting time wi,ni−1is the sum of the processing time of the top (ni − 1)
requests. Considered the processing time χi,ni itself, the mean residence time is

li,ni = wi,ni−1 + χi,ni =
∑ni

j=1
χi,j (26)

If the mean residence time li(k+1) can be predicted as l̃i(k) based on the queue length ni(k),
we can adjust the thread quota to satisfy Equation (1).

Q
u
eu

e
L

en
g
th

time

()
i
l k

()
i
l k Service Curve

Arrival Curve

()
i
n k

k 1k 1k

Figure 4: The arrival curve and service curve

3.2 Dealy Prediction

The Web load is actually the superposition of lots of ON/OFF process(see [11]). Just like
Figure 5, Web pages are transferred during Object, and each page is composed of several em-
bedded files which are transferred in a single TCP persistence connection under HTTP 1.1. The
intervals between every embedded URL are Active OFF time corresponding to the processing
time spent by browse parsing Web page. The Inactive OFF time is a longer pause corresponding
to clients’ "thinking procedure". Therefore, the request of a Web page consists a sequence of
HTTP requests with self-similarity, which is

 Embedded URL

ON Object
Inactive

OFF

 Active OFFURL

time

Figure 5: HTTP1.1 ON/OFF model

si,n =
∑yi,n

j=1
xi,jn = 1, 2, ...ni(k) (27)

Where si,n means the size of the nth Web page in waiting queue i, xi,j is the size of embedded
files, and yi,n is the number of its embedded files. The previous research indicates that the heavy-
tailed distribution is more accuracy for Web page (see [13] and [14]),and the probability mass
function is:

642 Y. Hu, D. Mu, A. Gao, G. Dai

f(x) =
αkα

1− (k/p)α
x−α−1, k < x < p (28)

Where k and p are the size of minimum and maximal file,α(0 < α < 2) is the sharp parameter
which determine the variability of distribution. Generally set 1 < α < 2to correspond to the
actual communications. The number of embedded files yi,n follows Pareto distribution (see
[11]).yi,n and xi,j ,xi,j itself are all independent from each other. The mathematical expectation
of page sizesiis

E[si] = E[yi]E[xi], i = 1, 2, ...N (29)

Let {si,1, si,2, ..., si,ni(k)}be the size of HTTP requests on a TCP connection at the kthsample.
Then the total size of the page in waiting queue i to be transferred is

∆i(k) =
∑ni(k)

n=1
si,n =

∑ni(k)

n=1

∑yi,n

j=1
xi,j (30)

This means that the forecasting delay is the time spent by ci(k) threads concurrently pro-
cessing the files of size ∆i(k).

The paper [15] illustrates that the processing time of a static Web page is approximately
linear to the size of request files. Combined the condition that the unit of the operation system
is 64KB, the total size of the page to be transferred is

χ(s, ci) = b× (s/64) + d× ci (31)

Where b is the transmission coefficient, d is the overhead of threads switching and synchro-
nization. They can be obtained by linear regression. So the total delay predicted is:

li(ni(k), ci(k)) =
∑ni(k)

n=1
χi(si,n, ci(k))/ci(k) (32)

l̃i(k) = E[li(ni(k), ci(k))] =
ni(k)

64
(
bE[si]

ni(k)
+ 64d) (33)

3.3 Threads Dispatch

Combined Equation (33) with Equation (1):

l̃i(k)

l̃i+1(k)
=

δi

δi+1
=

ni(k)ci+1(k)

ni+1(k)ci(k)

bE[si] + 64dci(k)

bE[si+1] + 64dci+1(k)
(34)

Regardless the priority, Web pages stored in server is identical. So we have E[xi] = E[xi+1].
If Zi(k) = ni(k)/ni+1(k),e = bE[si],f = 64d,Equation (34) can be rewritten as

δi

δi+1
= Zi(k)

fci(k)ci+1(k) + eci+1(k)

fci(k)ci+1(k)+eci(k)
(35)

Where Zi(k) is obtained by the queue length observer, and Equation (35) can be written
into the form of ci+1 = Fi(ci(k), Zi(k)). Take class 1 be the reference (δ1 = 1).Considered the
Equation (2), the number of threads for each class is solved.

The Research of QoS Approach in Web Servers 643

3.4 Parameter Regression

As described in Section 3.2, the parameters b and din Equation (31) are calculated by the
Least Square algorithm. The sampling period is set to 10 sec and the parameter regression
experiments totally obtain 61 group valid data. Figure 6 presents the pages size, the predict
delay and the measured delay when the thread quota varies. The identification results are
b = 9.7,d = 55.7 under 0.05 significant level.

20

40

60

80

100

120

0 20 40 60 80 100
20

40

60

80

D
e
la

y
 (

m
s
)

/
fi
le

 s
iz

e
 (

K
B

)

th
re

a
d
 q

u
o
ta

time(/sec)

estimate
processing time

file size
thread

Figure 6: Parameter regression

3.5 Experimental Results

The test-bed has been shown in the section 3.3. Request rate of class1 varies from 6/s to 15/s
every 300 seconds and class 2 keeps 12/s. The sampling time is T = 10s and all the experiments
last 2000s. The reference value is 0.5, i.e. δ1/δ1 = 0.5. The thread quota is equivalent for each
class in the initial state. The results under different controllers are shown in Figure 7. Each
sub-picture has two insets. The upper is the request arrival rate of two classes and their delay
proportion. The lower presents the change of their thread quota. Compared the controllers, the
results are in accordance with what we analyzed before:

1. Whatever using feedback, M/G/1/∞ predictive control or improved predictive control,
they all achieve PDD in Web server. The experiments also did at sampling time T = 8s
and T = 15s which are similar. So In order to save space, we only give the best effect
figure at T = 10s.

2. Define the variance Ξ be the stability evaluation index ,which is

Ξ =

√∑n

k=1
(yi(k)− y1d)2

/
n (36)

Compute it under the different methods respectively, we find that the variance of propor-
tional delay to 0.5 in improved predictive controller and M/G/1/∞ predictive controller is
40.18% and 57.4% of which in PI controller. This means the predictive controller is more
stable when the load changes.

3. Compared the setting time in Figure 7a,7b and 7c. For the feedback, the setting time
is nearly 100s at rising edge and 150s at the falling edge. The M/G/1/∞ predictive
controller is almost the same situation but a little shorter. But those of the improved
predictive controller are less than 1s at both edges, which presents a much better dynamic

644 Y. Hu, D. Mu, A. Gao, G. Dai

 6

 8

 10

 12

 14

 16

 0 500 1000 1500 2000
 0

 0.2

 0.4

 0.6

 0.8

 1

re
q
u
e
s
t

ra
te

 p
e
r

s
e
c
o
n
d
s

(1) delay ratio

class1 request rate
class2 request rate

service time ratio

 30
 35
 40
 45
 50
 55
 60
 65
 70

 0 500 1000 1500 2000

q
u
o
ta

(2) quota variation

class1 thread
class2 thread

(a) PI control

 6

 8

 10

 12

 14

 16

 0 500 1000 1500 2000
 0

 0.2

 0.4

 0.6

 0.8

 1

re
q
u
e
s
t

ra
te

 p
e
r

s
e
c
o
n
d
s

(1) delay ratio

class1 request rate
class2 request rate

service time ratio

 30
 35
 40
 45
 50
 55
 60
 65
 70

 0 500 1000 1500 2000

q
u
o
ta

(2) quota variation

class1 thread
class2 thread

(b) M/G/1/∞ queuing predictive control

 6

 8

 10

 12

 14

 16

 0 500 1000 1500 2000
 0

 0.2

 0.4

 0.6

 0.8

 1

re
q
u
e
s
t

ra
te

 p
e
r

s
e
c
o
n
d
s

(1) delay ratio

class1 request rate
class2 request rate

service time ratio

 30
 35
 40
 45
 50
 55
 60
 65
 70

 0 500 1000 1500 2000

q
u
o
ta

(2) quota variation

class1 thread
class2 thread

(c) Improved predictive control

Figure 7: The change of delay ratio and thread quota under different controllers

performance. There are two reasons for this. One is the load changes influence waiting
queue length first, and then this leads to the delay changes observed which exists delay.
The other is the refreshed controller output works in the next sample time, while both the
predictive controllers adjust the quota early.

4. Finally, compared how they adjust the thread quota when load changes in Figure 7b and
7c. Because of the limitation of PK formula, it takes a long time to adjust the quota to
the steady state in Figure 7b. But the improved predictive controller can complete the

The Research of QoS Approach in Web Servers 645

procedure in just "one step".

4 Conclusion and Future Work

The paper first presents a general Web QoS architecture, and then analyzed the defects of two
traditional differentiated methods by experimental results. Finally, based on the queue length
observer and parameter regression, improved predictive controller is proposed and produces a
much better performance in real-time and stability.

But there are still some problems. For example, if the parameters b and d obtained online,
it will be more accurate to the Web model. Meanwhile, the paper only talked about the static
requests and is not compatible to the dynamic loads. In the future, we should also break the
local area network, and take the network congestion into account.

Bibliography

[1] J. Wei, C. Xu, eQoS:Provisioning of client-perceived end-to-end qos guarantees in web servers.
IEEE Transactions on Computers, Vol.55, No.12, pp.1543-1556,2006.

[2] Y. Lu, T. Abdelzaher, C. Lu, L. Sha, X. Liu, Feedback control with queuing theoretic pre-
diction for relative delay guarantees in web servers, The 9th IEEE Real-Time and Embedded
Technology and Applications Symposium, Washington, DC., USA,pp.208-217,2003.

[3] K.H. Chan, X. Chu, Design of a Cluster-Based Web Server with Proportional Connection
Delay Guarantee, The IEEE International conference on Communications, Beijing,China,
pp.5692-5696,2008.

[4] W. Pan, D. Mu, H. Wu, Q. Sun, Proportional Delay Differentiation Service in Web Applica-
tion Servers: A Feedback Control Approach, International Journal of Intelligent Information
Technology Application, Vol.1, No.1,pp.37-42,2008.

[5] Y. Lu, T.F. Abdelzaher, A.Saxena, Design, implementation, and evaluation of differenti-
ated caching services, IEEE Transactions on Parallel and Distributed Systems, Vol.15, No.5,
pp.440-452,2004.

[6] J. Wei, X. Zhou, C. Xu, Robust processing rate allocation for proportional slowdown differen-
tiation on Internet servers, IEEE Transactions on Computers, Vol.54, No.8,pp.964-977,2005.

[7] L.Sha, X. Liu, U.Y. Lu, T. Abdelzaher, Queueing model based network server performance
control, The Proceedings Real-Time Systems Symposium, Austin, USA,pp.81-90,2002.

[8] C. Lu, T. Abdelzaher, J. Stankovic, S. Son, A Feedback Control Approach for Guaranteeing
Relative Delays in Web Servers, The 7th Real-Time Technology and Applications Symposium,
Taipei, Taiwan,pp.51-62,2001.

[9] Y. Tang, X. Tang, The queuing theory foundation and analysis, Science Press. Beijing. 2005.

[10] X. Zhou, J. Wei, C.Z. Xu, Processing rate allocation for proportional slowdown differentia-
tion on Internet servers. The 18th International Parallel and Distributed Processing Sympo-
sium, Santa Fe, USA, pp.1247-1256,2004.

[11] P. Barford, M. Crovella, Generating Representative Web Workloads for Network and Server
Performance Evaluation, Proceedings of the 1998 Joint International Conference on Measure-
ment and Modeling of Computer Systems, Madison, USA,pp.151-160,1998.

646 Y. Hu, D. Mu, A. Gao, G. Dai

[12] J. Liebeherr, N. Christin, JoBS: Joint buffer management and scheduling for differentiated
servers, Proceedings of the 9th International Workshop on Quality of Service, Karlsruhe,
German,pp.404-418,2001.

[13] M. Harchol-Balter, Task assignment with unknown duration, Journal of the ACM, Vol.49,
No.2, pp.260-288,2002.

[14] M. Arlitt, T. Jin, A workload characterization study of the 1998 world cup web site, IEEE
network, Vol.14,No.3, pp.30-37,2000.

[15] TF Abdelzaher, N. Bhatti, Web server QoS management by adaptive content delivery,
Proceedings of the 7th International Workshop on Quality of Service, London,UK, pp.216-
225,1999.

[16] A. Gao, D. Mu, Y. Hu, W. Pan, Proportional Delay Guarantee in Web QoS Based on
Predictive Control, Proceedings of iCISE 2009, Nanjing,China,pp.173-176,2009.

