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Abstract: The distillation process is one of the most important processes
in industry, especially petroleum refining. Designing a distillation column as-
sesses numerous challenges to the engineer, being a complex process that is
approached in various studies. An important component, directly affecting
the efficient operation of the column, is the reflux ratio that is correlated with
the number of the theoretical stages, a correlation developed and studied by
Gililland. The correlation is used in the case of simplified control models of
distillation columns and it is a graphical method. However, in many situations,
there is the need for an analytical form that adequately approximates the ex-
perimental data. There are in the literature different analytical forms which are
used taking into account the desired precision. The present article attempts
to address this problem by using the technique of Genetic Programming, a
branch of Evolutionary Algorithms that belongs to Artificial Intelligence, a
recently developed technique that has recorded successful applications espe-
cially in process modeling. Using an evolutionary paradigm and by evolving a
population of solutions or subprograms composed of carefully chosen functions
and operators, the Genetic Programming technique is capable of finding the
program or relation that fits best the available data.
Keywords: Gilliland correlation, artificial intelligence, genetic programming.

1 Introduction

The early pioneers of computer science, like Alan Turing, John von Neumann, Norbert Wiener
studied natural systems as guiding metaphors for their desire to understand nature and create
intelligent computer programs capable to learn and adapt to their environment. In the 1950s
and 1960s, several scientists from Germany and United States independently studied evolutionary
systems with the aim to use evolution as an optimization tool for engineering problems. Several
techniques have been created in this period by different research groups: Evolution Strategies,
Evolutionary Programming and Genetic Algorithms (see [5]). The basic idea behind all this
techniques was to start with a random population of candidate solutions to the specific problem
and by applying a set of genetic operators, inspired from the field of genetics, to modify this
candidate solutions in such a way to achieve a better fitness or adequacy of the solution for the
engineering problem in an iterative process.

In this article we apply a technique of Evolutionary Algorithms, that of Genetic Programming,
with the aim at finding an analytic expression for a well studied and used correlation, the Gililland
correlation, applied to the design of control models for distillation columns. The algorithms for
implementing Genetic Programming are characterized by many heuristic tuning parameters, this
paper underlines the most important ones as a result of the simulations.
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2 Genetic programming based symbolic regression

Genetic programming was introduced by John Koza (see [4]) and it can be seen as an extension
of the Genetic Algorithms by the increase of the complexity of the structures used to represent
the potential solution to the problem. In his 1992 book ([1]), John Koza suggested that these
potential solutions should be represented as trees of functions and operators, dynamic structures
of varying size and shape. The classes of problems that can be best approached using this
technique are symbolic regression, in which an analytic expression for a function has to be
discovered such that a set of experimental data is fitted and machine learning, domain that
uses a set of possible computer programs that produce the desired behavior in the case of some
particular input data.

In genetic programming, the set of possible structures is determined by the set of Nf functions
from F = {f1, f2, ..., fNf

}, each function can take a specified number of arguments denoted a (fi)
called its arity and the set of Nt terminals from T = {t1, t2, ..., tNt

}. Some examples of functions
are: arithmetic operations: plus (+), minus (-) , multiply (*), divide (/); mathematical functions:
logarithm (log), trigonometric functions - sin, cos, etc; logical functions: AND, OR, NOT. The
terminals are variable atoms that represent input variables, signals form sensors / detectors or
constant atoms, for example the number 11.25 or the boolean constant true. An example of
a simple function represented by such a tree is given in figure 1, the corresponding analytic
expression being: f (x, y) = x+

√
y− 2 .

Figure 1: Example of a tree representing a possible solution

As a particular aspect of functions and terminals representation is that of closure which
assumes that each of the function from the set must be capable to accept as its input arguments
any value and data type that could possibly be returned by any function in the set and any
value accepted by any terminal. Another property is that of sufficiency which states that the
set of functions and terminals must be capable of defining a solution for the actual problem,
the designer of the algorithm is the one that decides what are the most probable functions and
constants that could express best a solution. The adequacy or fitness of a particular member of
the population has to be measured for a set of fitness cases, in the case of symbolic regression
these are the experimental data. The algorithm for implementing Genetic Programming has a
structure that resembles that of a Genetic Algorithm:

1. The designers establishes the set of functions / operators and the set of terminals for the
specific problem



Modeling Gilliland Correlation using Genetic Programming 839

2. t=0, t - being the generation counter

3. A random initial population of solutions P(0) is generated

4. Fitness evaluation for all the population

5. A new population is created by applying the genetic operators of cloning, mutation and
crossover.

6. If the stop condition is met, than the algorithm stops, else t=t+1 and go to step 4

3 Genetic programming applied to the Gilliland correlation

The Gilliland correlation or Gilliland plot (figure 2) correlates the reflux ratio and the number
of theoretical stages for a distillation column (see [3]):

x =
R− Rmin

R+ 1
, y =

N−Nmin

N+ 1
(3.1)

given that the minimum reflux ratio Rmin is calculated from Underwood’s equation and the
minimum number of stages Nmin by Fenske’s method.

The resulting curve stretches form (0,1) coordinate at minimum reflux to (1,0) at total reflux.
In the literature (see [3]) there are a series of numerical equations derived for this correlation,
but because there is some scatter in the fit of data to the Gilliland plot, the expressions that
best fits the plot are not always the best reflux-stages correlations.

One of the most used expressions is that of Molokanov:

y = 1− e
1−54.4x

11+117.2x
· x−1√

x (3.2)

used for higher precision, alternative relations being that of Eduljee:

y = 0.75(1− x0.5668) (3.3)

and Rusche (see [2]):

y = 0.1256 · x− 0.8744 · x0.291 (3.4)

Also, other correlations have been obtained as a result of research in the domain of optimal
control (see [6], [7] - polynomial analytical expression).

For implementing the Genetic Programming algorithm it was used a free MatLab toolbox
created by S. Silva, a toolbox well documented and highly modular having many configurable
parameters (see [8]).

A usual running of the algorithm is started by entering the following command at the Mathlab
prompt: >> [vars, b]=gplab(g,n);
where:

g=maximum number of generations as stop condition
n=the number of individuals in the population
vars=a structure containing all the algorithm variables
b=best fitted individual
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Figure 2: Plot of the original Gilliland correlation

The main modules that compose the toolbox have the following functions: Variables initial-
izing, Initial population and Generation creating. Among the many important features of the
toolbox, the parameters that were especially important in the symbolic regression applied for
the Gililland correlation:

• Population initialization has three possible methods: fullinit, growinit and rampedinit which
was used in the algorithm, and that produces an initial population having very diverse trees
(a combination of fullinit and growinit methods, see [4], [8]);

• With the purpose of avoiding function bloating, the toolbox uses a parameter called dy-
namiclevel that specifies if the trees depth or the trees number of nodes has a fixed limit
or not. Another experimental property, called veryheavy specifies if this dynamic limit can
be decreased under the initial value during the running in the case that the best individual
has a smaller depth or number of nodes. By using this option, a much simpler expression
for the function has been obtained, and also the running time of the algorithm and the
memory resources implied were substantially reduced;

• The methods available for selecting the most adequate individuals are the classical roulette
and tournament methods, in addition there are implemented other methods like lexic-
tour or doubletour that chooses taking into account the shortest (having the smaller depth
or number of nodes) individual. The best results were achieved using the lexictour method.

The crossover operator (figure 3) randomly choose nodes from both parents and swaps the
respective branches creating one or two offspring, in the case of the mutation a random node is
chosen from the parent individual and substituted by a new random tree, taking into account
the imposed restrictions on the depth and number of nodes (see [1]).

A set of six functions have been chosen and two random constants with values between 0 and
1. The functions were: plus, minus, times, custom divide (having protection to divide-by-zero
error) also custom square root and custom natural logarithm.
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Figure 3: Example of applying the crossover operator

The algorithm ran on a computer with an Intel Core 2 Duo processor, having 2GB of memory
and Matlab 7.4 for Windows XP. For a population with 1000 members and a number of 20
generations the running time was in the range of 4 minutes to 4.5 minutes. If the number of
generations is increased too much it always results a very big expression for the final function,
making it very hard for implementing and studying, a very slow increase in performance (fitness)
being obtained. Adding the two final points (0,1) and (1,0) in the data set conducts to a function
that does not approximate well the middle data points having a poor general performance because
of the relative big scatter of the terminal points from the plot, so for most of the simulations,
the two ending points were not included. The fitness function used calculates the sum of the
absolute difference between the desired output values and the value computed by the individual
on all fitness cases.

fitness =

N∑
i=1

|yi − f (xi)| (3.5)

where N is the number of fitness cases, yi the desired output and f (xi) is the value returned
by the individual.

With a generation number of 40 and a population of 500 individuals for a running time of
169 seconds, the expression obtained is presented in the following tree plot (figure 4):

Another common representation is the string representation, used in Matlab to represent the
function:

f=plus(times(minus(mysqrt(mydivide(0.96486,0.56835)),times(plus(0.96486,0.33765),mysqrt
(X1))),mylog(mysqrt(mydivide(0.8073,0.22837)))),mysqrt(plus(times(0.33765,times(X1,times
(plus(mysqrt(0.8073),0.56835),mysqrt(X1)))),mylog(minus(mysqrt(mydivide(0.9393,0.56835)),
times(plus(mysqrt(0.8073),0.56835),mysqrt(X1))))))),

from which we can write the following simplified relation:
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Figure 4: The tree representation of the final solution
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Figure 5: Plot of the final solution and other correlations together with the original data
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f = 0.631(1.30294− 1.30251
√
x) +

√
|0.495 · x

√
x+ ln(|1.285− 1.467

√
x|)| (3.6)

From the plot of the classic correlations (figure 5) and that of the Genetic Programming
function we can conclude that a very good approximation is obtained, challenging the methods
used in the domain of identification.

4 Conclusions and Future Works

The study presented in this article aims at applying a recently and not too well studied
technique of Artificial Intelligence, that of Genetic Programming to the problem of finding the
best function that fits some data. The well known Gililland correlation, applied in the domain
of process control of the distillation process has been studied. Using the classic representation
of the potential solutions as trees, many interesting results have been obtained. After running
the algorithm with varying parameters for initial population for the method of selection the best
individuals, the method of creating the new offspring, the genetic operators of crossover and
mutation and ending with the number of generations and of individuals in the population, it can
be stated that the technique of Genetic Programming has a promising future potential, proved
by the good estimation of the experimental data. One aspect that proved to be important is the
careful chosen of the running parameters which directly influence the quality of the solution.
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