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Abstract: In many practical situations, the relation between the experts’ degrees of
confidence in different related statements is well described by Fuzzy Cognitive Maps
(FCM). This empirical success is somewhat puzzling, since from the mathematical
viewpoint, each FCM relation corresponds to a simplified one-neuron neural network,
and it is well known that to adequately describe relations, we need multiple neurons.
In this paper, we show that the empirical success of FCM can be explained if we take
into account that human’s subjective opinions follow Miller’s seven plus minus two
law.
Keywords: fuzzy cognitive maps, neural networks, seven plus minus two law.

1 Introduction: Fuzzy Cognitive Maps and Their Puzzling Suc-

cess

Need for (imprecise) expert estimates. To characterize a real-life system, we must know its
properties. Some of these properties come from measurements and are thus represented by real
numbers. However, in many cases, a large amount of information comes from expert estimates.

For example, to describe the current state of a patient, it is rarely enough to collect the
corresponding measurement results – such a temperature, blood pressure, etc. Medical doctors
supplement this information by providing imprecise ("fuzzy") estimates, such as "somewhat
soft", "small", "rather high", etc.

Similarly, to adequately describe the financial situation of a company or of a country, it
is important to supplement the corresponding numbers with expert estimates describing how
probable is a default or, vice versa, how probable in an increase in profitability (and how big this
increase can be). A typical expert’s opinion sounds like this: "a vert big increase is improbable,
but it is reasonable to expect a modest increase in reasonable time".

Fuzzy techniques as a natural way to describe imprecise expert estimates. When an
expert completely agrees or completely disagrees with a precise statement (such as "the price
of this stock will increase by at least 5% in a year"), in the computer, the resulting expert-
estimated truth value of a statement is either "true" or "false". In the computer, "true" is
usually represented as 1, and "false" as 0.

When the statement is imprecise, like the one above about a modest increase, the expert
is not 100% sure that the price will increase by 5%. Instead, the expert has some degree of
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confidence in this 5% increase. Since full confidence in a statement is described by the number 1,
and full confidence in its negation is described by the number 0, a reasonable way to describe the
expert’s partial confidence is by using numbers between 0 and 1: the higher the value, the larger
the expert’s degree of confidence. The use of numbers from the interval [0, 1] for describing the
experts’ degrees of confidence is the main idea behind fuzzy logic [6, 9, 15].

From individual fuzzy properties to Fuzzy Cognitive Maps. Fuzzy properties describing
a system are often interrelated, in the sense that some properties imply others. For example, in
medicine, if a person is overweight and not very physically fit, this increases the possibility that
this person may get diabetes and thus, may be in a pre-diabetic stage. In financial situations, if a
company has many new patents, especially patents in a "hot" area like advanced bioinformatics,
it is usually a good indication of its future financial prosperity, etc.

Fuzzy Cognitive Maps (FCM) are a way to describe the relations between different fuzzy
properties. To describe these relations, for each property P , we first need to list all the properties
P1, . . . , Pn that directly affect the property P . Once this list is produced, we need to describe
how the numerical values x1, . . . , xn ∈ [0, 1] of the properties Pi affect the value x of the property
P . In computational terms, we need to come up with an algorithmic function f(x1, . . . , xn) that
predicts the value x based on the known values x1, . . . , xn.

Which functions should we choose? A natural idea is to start with the simplest functions.
The simplest possible functions are linear functions, in which case we have

x = w0 + w1 · x1 + . . .+ wn · xn. (1)

However, we cannot simply use general linear functions:

• the predicted value should be within the interval [0, 1], but

• for different combinations of weights, the above linear expression can be any real number,
not necessarily a number between 0 and 1.

A reasonable idea is that, after we get the above linear combination, we then apply an additional
transformation s(x) that maps the whole real line to a number from the interval [0, 1]. In other
words, instead of the linear expression (1), we use a slightly more complex expression

x = s(w0 + w1 · x1 + . . .+ wn · xn), (2)

where s(x) is a pre-selected function that maps the real line into a unit interval [0, 1]. This
function s(x) is called an activation function.

This is the main idea behind Fuzzy Cognitive Maps (FCM); see, e.g., [2,3,7,8,11,12,16–20,22,
24–29]. The FCM model is used when experts provide estimates only for some of the properties.
In this case, the values of other properties are estimates by using the corresponding formulas of
type (2).

Which activations functions are used? Several different activation functions s(x) have been
used in FCM; the most frequently used is the sigmoid function

s(x) =
1

1 + exp(−x) . (3)

The main reason why this function is used is the same reason why the same function is used
in artificial neural networks: our goal is to describe human reasoning, and the sigmoid function
provides a good approximate description of how similar processing in performed by the biological
neurons in the brain; see, e.g., [1].
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Comment. There are also theoretical reasons explaining why the sigmoid function is, in some
reasonable sense, optimal; see, e.g., [10, 14, 23]. These theoretical reasons may also explain why
evolution resulted in selecting this particular function in the actual brain – since this function is
indeed optimal.

Fuzzy Cognitive Maps are efficient. In many practical applications, Fuzzy Cognitive Maps
have led to a reasonably good description of human reasoning; see, e.g., [2, 3, 7, 8, 11, 12, 16–20,
22,24–29].

This empirical success is puzzling. From the theoretical viewpoint, this empirical success is
puzzling. Indeed, as we have mentioned, the output (3) of each corresponding fuzzy rule is the
same as the output of a standard non-linear neuron [1, 24].

It is known that a 3-layer neural network has the universal approximation property; see,
e.g., [1]. This means that if we use several (K) nonlinear neurons, with the outputs

x(k) = s
(

w
(k)
0 + w

(k)
1 · x1 + . . .+ w(k)

n · xn
)

, (4)

and then use an additional linear neuron to combine these output into a single combination

x = W (0) +
K
∑

k=1

W (k) · x(k), (5)

then, for each continuous function x = f(x1, . . . , xn) on any box – in particular, on the box

[0, 1]× [0, 1] – and for every ε > 0, we can find the values of the weights w
(k)
i and W (k) for which,

for every inputs, the final output (5) is ε-close to the desired value f(x1, . . . , xn).

It is also known that we need several neurons to get the universal approximation property,
a single neuron does not have this property; see, e.g., [9]. And here, we have an opposite
phenomenon: in many practical cases, already a single neuron provides a good approximation
for the desired dependence! This is very puzzling.

Comment. The fact that a single neuron does not have a universal approximation property can
be explained if we take into account that when the dependence x = f(x1, . . . , xn) is described
by the formula (2), then for every i, we get

∂f

∂xi
= s′ · wi,

where s′(x) is the derivative of the activation function s(x). Thus, for every i 6= j, we have

∂f

∂xi
= const · ∂f

∂xj
,

where the constant is the ratio
wi

wj

. This property is already not satisfied by the simplest non-

linear operation of multiplication f(x1, x2) = x1 · x2, for which

∂f

∂x1
= x2 6= const · ∂f

∂x2
= const · x1.

What we do in this paper. In this paper, we provide a possible explanation for the (puzzling)
empirical success of Fuzzy Cognitive Maps.



828 V. Kreinovich, C. Stylios

2 Possible Explanation for the Puzzling Empirical Success of FCMs

Main idea behind our explanation. Our main idea is to take into account the following
difference between the general universal approximation property (as used in neural network
theory) and what we want in Fuzzy Cognitive Maps.

The difference is that in the general applications of neural networks, the values x1, . . . , xn,
and x are usually well-defined physical quantities, quantities which can be, in principle, measured
with an arbitrary accuracy ε. For example, if we use neural networks to design an appropriate
control, we want the resulting control value x to be as close to the optimal value f(x1, . . . , xn)
as possible.

In contrast, in Fuzzy Cognitive Maps, all the variables x1, . . . , xn, and x are degrees of
confidence describing expert opinions. These degrees are, by definition, imprecise, so computing
them with too much for an accuracy simply does not make sense. An expert may be able to
mark his or her degree of confidence by marking 6 on a scale from 0 to 10 – which corresponds
to the degree of confidence 0.6 – but a normal expert cannot meaningfully distinguish between
degrees of confidence 0.61 and 0.62.

Let us show that this difference can explain the puzzling empirical success of Fuzzy Cognitive
Maps.

How accurate are expert estimates: 7 ± 2 rule. Psychologists have found out that we
usually divide each quantity into 7 plus plus minus 2 categories – this is the largest number of
categories whose meaning we can immediately grasp; see, e.g., [13, 21] (see also [30]). For some
people, this "magical number" is 7 + 2 = 9, for some it is 7 − 2 = 5. This rule is in good
accordance with the fact that in fuzzy logic, to describe the expert’s opinion on each quantity,
we usually use 7±2 different categories (such as "small", "medium" , etc.).

Since on the interval [0, 1], we can only have 7±2 meaningfully different degrees of confidence,
the accuracy of these degrees ranges from 1/9 (for those who use 9 different categories) to 1/5
(for those who use only 5 different categories).

What is the overall accuracy of the corresponding degrees. A Fuzzy Cognitive Map
usually combines knowledge of a large number of experts. Since we have a large number of
experts, it is practically certain that these experts include experts of all types: namely, those
who can estimate their degree of confidence with a higher accuracy of 1/9, as well as those who
can only estimates their degree of confidence with a much lower relative accuracy of 1/5 = 20%.

In general, if we process a large amount of data of different accuracy, the accuracy of the
result is determined by the lowest accuracy of the inputs. For example, if we estimate the overall
amount of money m = m1 + m2 + m3 owned by three people, and we know m1 and m2 with
an accuracy of 1 cent, but we only know m3 with an accuracy of 50% (i.e., we only know the
ballpark estimate for m3), then clearly our estimate for the sum m will be very inaccurate as
well.

From this viewpoint, since FCM contains lower-accuracy data, with the accuracy 20%, we
cannot expect the estimation results to be more accurate than that.

How accurate should our predictions be? Based on the above arguments, it makes sense to
estimate the dependence of x on x1, . . . , xn with accuracy 20%. Attempts to get a more accurate
estimation would be, in general, a useless computational exercise which is not related to the
desired problem – of estimating the expert’s degrees of confidence.

For example, if the expert’s degree is 0.6, and our formula predicts 0.65, it is a very good
match, and there is no need to come up with a formula that predicts exactly 0.6.

So, how many neurons do we need to make predictions with this accuracy: let us
start our analysis. Let us show that in general, if we want predictions with accuracy 20%,
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then one neuron is sufficient.
Specifically, we will show that if, instead of taking the neuron that provides the largest

contribution to the prediction, we consider both neurons, then – within the given accuracy – the
result will not change.

It makes sense to treat the outputs of two neurons as random variables. As we
have mentioned, for a general neural network, the result is a sum of the terms corresponding to
different neurons. Let t1 and t2 be terms corresponding to the two neurons.

In general, these terms depends on many factors, so it makes sense to treat them as random
variables.

As usual in statistics, we can somewhat simplify the problem by subtracting the means E[ti]
from the corresponding variables. In precise terms, instead of the original random variables ti,

we can consider the differences di
def
= ti − E[ti] for which the mean value is 0: E[di] = 0.

What we compare. We compare the two situations:

• a situation in which we consider the sum d1 + d2 of both neural terms, and

• a situation in which we only have a single neuron, the one that provides the largest contri-
bution:

– we consider d1 if |d1| ≥ |d2|, and

– we consider d2 if |d2| ≥ |d1|.

It is reasonable to assume that the variables corresponding to different neurons are
independent. Since we have no reason to believe that the variables corresponding to different
neurons are correlated, it makes sense to assume that the variables t1 and t2 – and thus, the
corresponding differences d1 and d2 – are independent. This conclusion is in line with the general
Maximum Entropy approach to dealing with probabilistic knowledge: if there are several possible
probability distributions consistent with our knowledge, it makes sense to select the one which
has the largest uncertainty (entropy; see, e.g., [4, 5]), i.e., to select a distribution for which the
entropy

S = −
∫

ρ(x) · ln(ρ(x)) dx

attains the largest possible value, where ρ(x) is the probability density function (pdf).
In particular, for the case when for two random variables, we only know their marginal

distributions, with probability densities ρ1(x1) and ρ2(x2), the Maximum Entropy approach
selects the joint probability distribution with the probability density ρ(x1, x2) = ρ1(x1) · ρ2(x2)
that corresponds exactly to the case when these two random variables are independent.

This independence make perfect sense for neural networks: when we train a neural network,
we want to get a model which is as accurate as possible, and if we use two highly correlated
neurons, we waste the second neuron to describe what the first neuron describes already.

How can we estimate the size of each random variable? For a random quantity with 0
mean, a natural measure of its size is its standard deviation σ.

If we only consider the term ds corresponding to a single neuron, then this size can be
described by the corresponding standard deviation σs. If we consider both neurons, then the size
of the sum d1+d2 can be similarly characterized by its standard deviation σ12. Since the variables
are independent, the variance σ2

12 of this sum is equal to the sum σ2
1 + σ2

2 of the corresponding
variances. Thus, the standard deviation σ12 of the sum has the form

σ12 =
√

σ2
1 + σ2

2. (6)
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What we plan to prove. We plan to prove that the change caused by adding the second
neuron is, in general, below the desired accuracy bound, i.e., that

∣

∣

∣

∣

σ12 − σs
σs

∣

∣

∣

∣

≤ 0.2. (7)

Let us estimate the sizes σs and σ12 corresponding to two possible situations. We do
not have much information about the size of the signals di corresponding to different neurons.
We may guess some bounds d ≤ di ≤ d.

If all know about the probability distribution is that its values are always located on the
interval

[

d, d
]

, then the Maximum Entropy approach recommends that we select a uniform
distribution on this interval. This recommendation is in perfect accordance with common sense:
if we have no reason to believe that some values from this interval are more probable or less
probable then others, then it is reasonable to assume that all these values have the exact same
probability, i.e., that the distribution is indeed unform.

For a uniform distribution on the interval
[

d, d
]

, the mean value is known to be equal to the

midpoint
d+ d

2
of this interval. Since we are interested in random variables di with 0 mean, this

means that this point must be equal to 0, i.e., that we have d = −d.
Since the mean is 0, the variance is equal to the expected value of d2i . Here, d2i = a2i , where by

ai
def
= |di| we denoted the absolute value of the di. One can easily check that this absolute value

ai is uniformly distributed on the interval [0, d], with a constant probability density ρi(x) =
1

d
,

so its variance σ2 =
∫

x2 · ρ(x) dx is equal to

σ2
i =

∫ d

0
x2 · 1

d
dx =

1

3
·
(

d
)3 · 1

d
=

1

3
·
(

d
)2

. (8)

Due to the formula (6), we thus have

σ12 =

√

1

3
·
(

d
)2

+
1

3
·
(

d
)2

=

√

2

3
· d. (9)

Now, we need to estimate the variance σ2
s of the case when we only select one of the neurons,

i.e., the expected value of the square of the selection ds. Similarly to the one-neuron case, since

d2s = |ds|2, this variance is equal to the expected value of a2s, where we denoted as
def
= |ds|. By

definition, as = |ds| = max(|d1|, |d2|) = max(a1, a2).
We know that a1 and a2 are two independent random variables which are uniformly dis-

tributed on the interval
[

0, d
]

. The distribution of the maximum can be described in terms of

the cumulative distribution functions (cdf) F (x)
def
= Prob(X ≤ x).

For the uniformly distributed variable a1, we have F1(x) = Prob(a1 ≤ x) =
x

d
. Similarly,

F2(x) = Prob(a2 ≤ x) =
x

d
. For the maximum as = max(a1, a2), we have

Fs(x) = Prob(as ≤ x) = Prob(max(a1, a2) ≤ x).

Since the maximum of the two numbers is smaller than or equal to x if and only both of these
numbers are ≤ x, we conclude that Fs(x) = Prob((a1 ≤ x) & (a2 ≤ x)). The variables a1 and
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a2 are independent, so

Fs(x) = Prob(a1 ≤ x) · Prob(a2 ≤ x) =
x

d
· x

d
=

x2
(

d
)2 . (10)

From this cdf, we can compute the corresponding pdf ρs(x):

ρs(x) =
dFs(x)

dx
=

2x
(

d
)2 . (11)

Thus, the desired variance σ2
s has the form

σ2
s =

∫ d

0
x2 · 2x

(

d
)2 dx =

2
(

d
)2 ·

∫ d

0
x3 dx =

2
(

d
)2 ·

1

4
·
(

d
)4

=
1

2
·
(

d
)2

. (12)

Thus,

σs =

√

1

2
· d. (13)

Final step: checking that the desired inequality (7) is indeed satisfied. Now that we
have expressions (9) and (13) for the sizes σ12 and σs, we can plug them into the inequality (7)
and check that this inequality is satisfied – i.e., that within the desired accuracy of 20%, adding
the second neuron, on average, does not matter. Indeed, substituting expressions (9) and (13)
into the left-hand side of the formula (7) and dividing both the numerator and the denominator
by the common factor d, we get the ratio

r =

∣

∣

∣

∣

∣

∣

∣

∣

√

2

3
−

√

1

2
√

1

2

∣

∣

∣

∣

∣

∣

∣

∣

.

Dividing both terms in the numerator by the denominator, we get

r =

∣

∣

∣

∣

∣

√

4

3
− 1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

2√
3
− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

2

3
·
√
3− 1

∣

∣

∣

∣

.

For
√
3 = 1.73 . . ., we get

r =

∣

∣

∣

∣

2 · 1.73 . . .
3

− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

3.46 . . .

3
− 1

∣

∣

∣

∣

= |1.15 . . .− 1| = 0.15 . . . < 0.2.

The statement is proven.

3 Conclusion

Thus, we have explained why Fuzzy Cognitive Maps (i.e., 1-neuron neural networks) are
adequate for describing the dependence between the experts’ degree of confidence, when the
relative accuracy of 20% is quite sufficient.
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Comment.

We have proven that, on average, the relative error does not exceed 20%. This explains why
Fuzzy Cognitive Maps are efficient in many practical situations. However, the fact that this
inequality is satisfied on average does not necessarily mean that it is satisfied always. There
may be cases when Fuzzy Cognitive Maps do not work that well – in this case, it makes sense
to describe the corresponding dependencies x = f(x1, . . . , xn) by generic (multi-neuron) neural
networks.
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