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Abstract  
  In this article  we  focus on the behaviors of  the generalised counting  function of primes    (x)  

and  the counting  function of integers    (x) as well as  the link between them as  x       . Here the 

Riemann zeta function    (s) ( = ∑    
  ,  (s)  > 1 )  play an  important  role  as  a link between   

   (x)  and    (x)  .  This  work  will  go  through  the  method  ( not  in  details )  adapted  by Bal-

anzario  [Balanzario , 1998]   and  later  generalised  by  AL- Maamori [AL- Maamori , 2013 ] . Finally 

we shall draw a diagram in order to determine the relation between    and    , (where   and    are the 

power of the error terms H1(x) , H2(x) of    (x) and   (x) respectively) . The aim of this work is to 

analysis  the behaviour of    (x)  and    (x) as  x     .   

Note that : ʺ   It’s a beneficial to point out that our effort in this paper is not to exchange the values 

of some functions of  Balanzarioʹ s  method . Since , changing any small value of one of the functions 

of  Balanzarioʹ s method may be leads to loss the aim of the work  ʺ   . Therefore , in this article we 

show  the ability of  changing  the values of  some functions and in which places in the proof we should 

sort out .  

 

Key words : Mathematical analysis and the generalization of  prime systems  .  

 الخلاصة 
وكذلك الرابط  (x)   وللأعداد الصحيحة  (x)   في هذا البحث نركز عمى تصرفات الدوال الحسابية الموسعة للأعداد الاولية  

 . هنا دالة ريمان زيتا  ∞    xبينهما عندما 
    (s) ( = ∑    

  ,  (s)  > 1 ) تمعب دورا مهما كرابط بين ,   (x)  و   (x)  هذا العمل سيتم من خلال سموك .
. بالنهاية سوف  ] 3182المعموري ،  [ليست بالتفاصيل والتي عممت من خلال المعموري    ] 8991بمنزاريو،  [طريقة العالم بمنزاريو 

عمى  (x)   و  (x)   من  H2(x) و  H1(x)هما القوى لمحدود الخطأ  βو  α) حيث  βو  αنرسم مخططا يحدد العلاقة بين 
 .   ∞    xعندما  (x)   و  (x)   التوالي . الغرض من هذا البحث هو تحميل تصرفات 

ملاحظة : من المهم والنافع الاشارة بان جهدنا في هذا البحث ليست تغيير بعض قيم الدوال التي استخدمت في طريقة بمنزاريو 
حيث ان تغيير اي قيمة مهما كانت صغيرة لإحدى دوال طريقة بمنزاريو ربما تقودنا الى خسارة هدف الموضوع بأكممه . ولهذا نبين 

 وح بها في قيم بعض الدوال . كذلك سوف نختم البحث بفتح باب لعمل مستقبمي . ايضا قابمية التغيير المسم
 

 التحميل الرياضي و الانظمة الاولية المعممة . :  المفتاحية الكممات
  

Introduction  
Let    = { p1 , p2 , … } be a set of real numbers satisfying the following conditions  :  

1 ˂   p1   ,   pn  ≤  pn+1   and  pn        as  n     . Beurling  [Beurling , 1937]  called  

  the generalized  primes ( Beurling primes ) . The generalised  counting  functions of  

primes and  of  integers are defined as follows :  

    (x) =  ∑                  and        (x) =   ∑             .         

We note that    (x) is defined as a discrete function  .   

The following definition is needed .  

Definition :  Let     ,    be functions such that  (        
  )

(*)
  and (        

 )
(**)

 

with  (    = exp *    )
(***) 

 . Then  (    ,    ) is called an outer g – prime system .  
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The generalised prime systems have been investigated by Beurling   and later by 

many authors studied it such as Diamond [Diamond , 1969  ] , Hilberdink [Hilberdink, 

2012  ] and so on . Beurling introduced the generalised prime theorem by showing :   

If     (x) = A(x) + O ( 
 

     
 ) for  A > 0 and    >  

 

 
  , then     (x)   

  

     
  .  

This is an analogue of the prime number theorem  (PNT)  ,  also Beurling showed that  

the condition     >  
 

 
   is  necessary  in  the  sense  that  there  is a continuous analogue 

of a g – prime system with    >  
 

 
  for which the PNT does not hold . 

From a several papers in this field such as  " Diamond [Diamond , 1970 ] , Diamond 

[Diamond , 1969  ] ,  Bateman [Bateman , 1969 ] , Ellison and Mends [Ellison and 

Mends , 1975 ] , Hilberdink [Hilberdink , 2009 ]  and so on , We see that the main 

core (of the behaviors of     (x)  and     (x) )  is the size of  their error terms  where 

   (x) = ax + H1 (x) ( will use later in (6) )          (x) = li(x) + H2 (x) . Here  li(x) = 

∫
  

    

 

 
  .  

 …………………………………………………………….. 

( * )  Here   
  = { f   S : S is the space of all functions f :        s.t. f is right-

continuous and of local bounded 

        variation with f(1) = 0 } .  

( ** )  Here    
  = { f   S : S is the space of all functions f :        s.t. f is right-

continuous and of local bounded 

           variation with f(1) = 1 } . 

( *** )  f  =  exp * g  iff   f * g L = f L  where  f L   S  defined  for  x   1  by  f L(x) = 

∫     
 

 
 d f(x) .  

    In this article , we study the behaviors of  H1 (x) and  H2 (x)  ( as  x       ) in deep 

as     and     are counts g- prime functions . In order to see that taking  the method 

of  Balanzario in 1998  and later generalised by AL- Maamori  in 2015 . We note that 

the error terms of the counting functions are mostly of the form :   

( i )     O ( 
 

       
 )              ( ii )     O ( x           )                ( iii )     O (   ) 

we deal with the form  ( i )  in our work   . 

Balanzario defined          =  ∫  
     

     

 

 
         dt      where   k  >  1  ,  

      = 1 -  ∑         
  
               

   
                                                            …… ( 1 )                        

and    (s) =∫            
 

 
 =∫      

 
         = exp { ∫      

 
d      }   …..  ( 2 )  

for  more details of  ( 2 )  see [ Hilberdink , 2012  ] .  

Balanzario  proved that :    (x) = li (x) + O ( x      √     ) ,  c  >  0          ….  ( 3 )   

implies    (x)  =  x + Ω
(*) 

 ± ( x
      √     ) ,   > o  ,  k > 0                      ….  ( 4 ) 

 If we assume that we have  :  

  (x) =  li (x)  +  O  ( x              )  ,  k > 0 .                                 ……  ( 5 )                                                                       

Balanzario showed that for    = 
 

 
   implies     (x) =   x  + O ( x              )   

for  some     , c  >  0  and    = 
 

 
  here . 

Given  ( 5 ) , Malliavin  proved that :   (x) =   x  + O ( x                )   

for  some     , c  >  0   ( see [ Malliavin , 1961 ] ) . Diamond showed that with  ( 5 ) 

holds , we could get :    (x) =   x  + O ( x                   )  for  some   > 0 , c  > 0  .  
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This shows that H1(x) = ( x    √     ) ,  k > 0  has fixed power at   =  
 

 
 ,  but   var-

ies into different values . Suppose that we get  ( 5 ) with    =  
 

 
 ,  

The question is : " What is the best possible value could get using Balanzarioʹ s 

method   ? " .   

--------------------------------------------------------------------------------------- 

( * )   For  F and  G  be functions  defined  on  some  interval ( a , ∞ ) . We write  F (x)  

=  Ω ( G (t) ) ,  to mean that there exist a constant  c  >  0   such that  │F (t)│    c G 

(t)  for some arbitrary large values of  t  . Further , we write F (t) =  Ω+ ( G (t) )  and  F 

(t) =  Ω - ( G (t) )  if there exist a constant  c  > 0  such that  F (t)  ≥  c G(t) and  F (t) ≤  

- c G(t)  hold  respectively for some arbitrarily large values of  t . We write  F (t)  =  Ω 

  ( G (t)  if  both  F (t) =  Ω+ ( G (t) )  and    F (t) = Ω- ( G (t) )  hold  [Bateman , 1969  

]  . 

Suppose that we have          =  ∫
     

     

 

 
         dt   ,  k > 1  where    

  (x) =  li (x)  +  O  ( x              )  , for some  c > 0  and take     = 
 

 
  ,    K = 4 ,       

n0 = 3  ,   x =      . Here changing    from  
 

 
  into  

 

 
  will leads to considerable work . 

This means that  :  

bn  = exp { ( log xn )
 1/3 

 ) }      ,         an =  
 

     
 =  

 

       
 
 

  = ( log xn )
 – 1/3 

 ,  

xn+1  =  exp { ( log xn )
 3 

  }                 log xn+1  =  ( log xn )
 3  

    and  

Tn  =   exp { ( log xn )
 3/4  

 ) }       ,       α n =  
 

          ,        α = ∑        
   .  

 Estimation of         :  
With the above new values ( or condition ) of the method , our aim is to avoid two 

important points which are :  

( 1 )  The loss of generality  .    ( 2 )  cut of some simple details .  

For this , we keep tackling the curtail  sectors  of  Balanzarioʹ s  method . These cur-

tail parts improved to be :      

Proposition(1):(This is the modification of proposition (2) in [ Balanzario , 1998 ] )  

If    (x)  is given by ( 1 )  , then          = li ( x ) + O ( x               )  

here    = 
 

 
  , c = 4 .    

Proof :  we have :  

        =  ∫
     

     

 

 
         dt  =   ∫

     

     

 

 
 (1  -    ∑          

   
               

   
   dt   . 

 It's obvious that we could get       =  li ( x )  -  ∑          
  ∫  

               

         

 

 
  dt .  

It remains to estimate the summation part and show that :  

 ∑          
  ∫  

               

         

 

 
  dt  =  O ( x             

 
  )  .  

New to estimate the integration  in the summation part we get  :  

│  ∫  
               

         

 

 
  dt         3 

     

  
   . Its remains to calculate the magnitude   

 3 
     

  
  , by definitions of    bn    and   an  above  ,  we have  :  

     

  
  =  

         

  
 = 

      

  
 

       
 
 

        
 
 

  =  x exp { - 
     

       
 
 

  -        
 

   }  

=  x  exp { -        
 

   -        
 

   }  
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= x  exp { -        
 

    ( 1 +         
 

  ) }  

= x             
 
   .   Therefore   , 

∑          
│  ∫  

               

         

 

 
  dt  │ ≤    ∑          

 ( 3 x             
 
   ) 

=  3    x             
 
    =   O ( x             

 
   ) .  

 

Estimation of       :  
Here we calculate    (x)  in order to see the effecting of  the error term of         on 

the behaviour of    (x) in general . So we let    (x) = ∫        
 

 
 . The reason of 

doing this , is because dealing with    (x) is more easier than dealing with   (x) in 

calculations . Therefore ,  

    (x)  =  
 

   
 ∫        

    

        

    

    
  ds   ,  b > 1 .                              …..  ( 6 )   

So , in order to calculate    (x) we have to calculate        . Following same argu-

ments as in [ Balanzario , 1998 ] , we see that  :    │   (s)  │ ≤  45   .  

Now , the integration  in  ( 6 )   has a singularity pointes in 0 and 1 , therefore if we 

calculate the integration on [ b - i  , b + i ] , then we have to  make a partition of the 

path on this interval in order to avoid these pointes by restricting the domain as fol-

lows   : 

 1 : from  b - i   to  b – iT ,  

 2 : from  b – iT   to  - 
 

 
 – iT , 

 3 : from  - 
 

 
 – iT  to  - 

 

 
 + iT , 

 4 : from  - 
 

 
 + iT   to  b + iT , 

 5 : from  b + iT  to  b + i   .  

Thus , we can write  ( 6 ) as follows :   

  (x)  =  I1 + … + I5  + J-n + … + Jn + residues { 0 , 1 } ,  

where  Im =   
 

   
  ∫        

    

         
 ds  ,      m = 1 , … , 5 ,  

           Jm =    
 

   
  ∫        

    

         
 ds  ,    n0 ˂  │m │ ≤  n  .  

Here   m   is  the  path  of  integration  in  ( 6 )   and  Cm  is the m th horizontal  loop 

with   (s) = bm   .  

Now , we note that the estimation of  I1  is similar to  I5  and the estimation  of  I2  is 

similar to  I4   . 

 Hence the estimation of  I1 and I5  by [Balanzario , 1998 ] are :  O ( 
  

  
 )  ,   

the estimation of  I2  and I4   are :  O ( 
 

  
 )

2 
  and  

the estimation of  I3  is  :  O ( 
 

√ 
 )  . Therefore , from above we get  :  

 │ Im │ ≤  O ( 
  

   
 )   ,  m = 1 , … , 5    and hence ( 6 ) can be written as follows  :  

   (x)  =    O ( 
  

   
 )  +  ∑      

 
     +  residue { 0 , 1 }                          ……    ( 7 )  

Now , if we calculate the residue { 0 , 1 } in ( 7 ) by  [ Balanzario , 1998 ] , then we 

get :  

Residue { 0 , 1 }   = k  (1) 
  

 
 + ( 1 – k )  (0) x  , and hence ( 7 ) can be written as fol-

lows :   
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   (x) = k  (1) 
  

 
 + (1 – k)  (0) x  +  ∑      

 
     +  O ( 

  

   
 )            ……  ( 8 )   

Now , if we calculate the expression   
  

   
  appearing in ( 8 )  , then we get by [ Bal-

anzario , 1998  ] :     
  

   
 =  x

2 
 exp { - ( log xn )

3/4 
}  ,  and hence the equation  ( 8 ) become as follows :  

  (x) =  k  (1) 
  

 
 +  ∑      

 
      + O ( x

2
           

 
  )                        ……     ( 9 ) 

Its remains to estimate the magnitude   ∑      
 
      appearing in  ( 9 )  as follows :  

Proposition( 2 ):(This is the modification of proposition (8) in [Balanzario,1998 ] )  

 │∑             m │ ≤  60  x
2
          

 
   .  

Proof  :   firstly , we estimate  Jm  as follows :  │Jm │ = |  
 

   
  ∫        

    

         
    |  

and we see that by [Balanzario , 1998  ] we get : │Jm │ ≤  
  

  
    x

2
           

Secondly , we estimate  ∑              m   as follows :  

If  │m│ ≤  n – 1  ,  then             ≤               

=  exp {  
     

√       
  }   =  exp {  

     

√       
 
 

 
 }    =  exp {  

     

       
 
 

 }    

  ≤  exp { 
        

 

   

       
 
 

   ≤   exp {  -        
 

   +  
 

    }  ≤  exp  {   -        
 

  + 
 

     }  ≤   

2            
 
    ,  where  │log x  -  log xn  │  ≤   

 

      , and hence    

│∑             m │ ≤  30  x
2
          

 
     ∑

 

  
               .   

Now we finish the proof by noting that the last sum is finite :  

∑
 

  
                 ≤   ∑

 

         
 
 

                  ≤   2    ∑            
 
 

     
   

≤   2   ∑         
 
 

     
  ≤   2    .  

Therefore ,    │∑             m │ ≤  60  x
2
          

 
   . 

 Since           
 
   ≤           

 
   , then the equation  ( 9 )  become as follows :  

  (x)   =  k  (1) 
  

 
 +  ( J-n + Jn )  + O ( x

2
           

 
  )           …..  ( 10 ) 

It remains to study the expression :   J-n + Jn  .   

Here      =   
  +   

  where    
  ,    

  refers to the integrals along the line segment   
  and 

  
  lying respectively above and below the branch cut  Cn    and  suppose that   

  with 

its direction reversed [ Balanzario , 1998]  :   -   
    :   

{
 

 
      

              
        

         
 

 

              

Since      
  = 

  

    
  ∫

                             

                           

     
 

 
         

 
  ( - dt ) , then  

   
  =  

 

    
  ∫

                             

                           

       
 
 
    

 
  dt + O ( x

2
           

 
  ) …..  ( 11 ) 

Now , if we rewrite the integrand  in  ( 11 ) as follows  :  
      

         
  =               

  
    fn ( s )   ,   
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 where  fn ( s ) = 

          ∏      
 

            
 
  
 | |     

     

                                
  
 

  ,  and we deduce that by [Bal-

anzario , 1998 ]  :  

   
  =  

 

    
                  

  
    

 

     
 
  
 

  
     +  O (  x

2
           

 
  ) ,   

with   Sn = ∫       
  
 

       
 
 

 
   fn             

 

     
   dt  . 

 

Similarly  ,  we calculate    
  in a similar way we obtain   :  

  
   =  

  

    
                 

  
     

 

     
 
  
 

  
     + O (  x

2
           

 
  ) and  from  

      =    
   +   

   , we get     

    = 
   

 

 
   

 
                  

 

     
 
  
 

  
     + O (  x

2
           

 
  )            …..  (12) 

Now ,  if  we calculate  J-n  we  obtain  the  complex  conjugate  of        

because  b-n  = - bn   , therefore       +    = 2  ( Jn ) .  

Now , in order to estimate the integral  Sn  appearing in ( 12 ) , we first obtain  the 

lower and upper bound for  fn (s) which is appearing in Sn  , we see that by [ Bal-

anzario , 1998  ] we get :    |      |  ≤  
   

  
      be the upper bound of   fn (s)    and  

|      |  ≥  
  

      
      be the lower bound of   fn (s) .  

Now , we can  estimate the integral  Sn  appearing in  ( 12 ) as follows :  

We get by  [Balanzario , 1998  ]  that  :       |  |  ≥  
           

 
 

     
          ….  ( 13 ) 

We shall use this lower bound for  Sn  appearing in   ( 12 ) . Now consider  the other 

factor in ( 12 ) , we get by  [ Balanzario , 1998 ]  : 
   

 

 
   

 
              

 

     
 
  
 

  
  ≥  

  

 
           

 
   

 

                     
   

Now , we can estimate  the equation  ( 12 ) as follows :  

|  |  ≥    
  

      
  .  

          
 
  

        
  ≥  

    

       
             

 
     .  

We already know that  |  |  is large , but still it can be that     (    ) = 0 . 

Now , let us recall here equation  ( 12 ) , where  x = xn ( 1 + 
  

     
 ) , |  | ˂  1 . Then , 

we get by [ Balanzario , 1998  ] :  

  (    )  ≥  
    

        
              

 
   , c > 0   if  x  ≥ X1  and   1 =   ( + )   and   

   (    )  ≤   -  
    

        
              

 
   , c > 0   if  x  ≥ X1  and   1 =   ( - )  .  

These inequalities and  the equation  :  

   (x) =  2  (1)  x
2
  +  2   (    ) +  O (  x

2
           

 
  )  , 

imply relation  :     (x)   = 2  (1)  x
2
 +   ± ( x

2
                

 
  )  , c0  >  0    . 

   

Now , we need the following trick to move from  M(x) into          . 

Lemma ( 5 ) : Suppose that          ϵ   
  . Let    (x) = ∫        

 

 
 , then for every  

0 ˂  y ˂  x   ,  we have  :  
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   ≤                 ≤   

              

 
     

Proof :  

Let  M ( x ) = c x
2 

 + O  (  x
2
              ) for some   > 0   , then   

 M ( x ) - 
 

 
 x

2 
 = O  (  g ( x ) )  such that   g ( x ) =  x

2
               .  

Therefore  |           
 

 
   |  = O (  g ( x ) )  .                       ……  ( 14 ) 

Since the function          is increasing function  , so for every 0 ˂  y ˂  x , we have  :  

 ∫         
 

 
- ∫         

    

 
 =  ∫          

 

   
 ≤  y               ….   ( 15 )  

On the other hand  ,  

 ∫         
   

 
- ∫         

 

 
 =  ∫          

   

 
 ≥   y              ….   ( 16 )                                                                            

Therefore  from  ( 15 ) and ( 16 )  , we get :  
              

 
   ≤                ≤   

              

 
             …..   ( 17 )  

This is sufficient to show that : if    (x) =   x
2
 + E ( x

2
 ) for some   > 0  , 

then      (x) =  1 x
 
 + E ( x )   ,     1 > 0 . 

 

Appendix :  

Moreover , if we have    = 
 

 
  , then we could get  with the following setting :  

K = 4              ,             n0 = 3                 ,                 x =             ,       

bn  = exp { ( log xn )
 2/3  

 ) } , an =  
 

     
 =  

 

       
 
 

  = ( log xn )
 – 2/3 

 ,  

xn+1  =  exp { ( log xn )
 2 

  }               log xn+1  =  ( log xn )
 2  

    and  

Tn  =   exp { ( log xn )
 3/4  

 ) }       ,       α n =  
 

  
   ,   α = ∑        

   . 

We see that by a previous steps that : 

  (x)  =  li ( x )  +  O ( x             
 
  )   ,  

M ( x ) = 2  (1)  x
2
 +   ± ( x

2
               

 
  )  , c0  >  0     

and hence      (x) =  x + E(x)   ,     > 0  .  

Apart from that if we draw a diagram of    –    space we would get : 
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                    1                                                                                

                                                  

                                                                     

                 2/3                                   b2  

                 1/2                           a1  

                1/3                       b1     

 

                            •                                                                                   

                     0               1/3   1/2   2/3         1   

 

 

 

 

 

 

 

 

 

Figure ( 1 ) 

Show the relation between     and    

 

a1  related to Balanzario      =   = 
 

 
   ,  b1  = 

 

 
  and  b2  = 

 

 
  ,  this means   =    = 

 

 
    

and      =    = 
 

 
    respectively .  

As a result we have seen the error term of    (x)   linked  with the error term of    

          by zeta function     (s)    . 

 

Future work 

Assume that  ( 5 )  holds with  
 

 
  ≤     ≤  1                        ( * ) 

Question ( ** )  :  given  ( * )  could  we get    (x)  =   x  +  O ( x              )  

    ≤  
 

 
  for any     ?  

Note that if  Question ( ** ) holds this means that it is possible to get :   

  (x)  =  li (x) + O ( x            
 
  ) ,  c  >  0  

and    (x) =  x + o (  x ) ,     > 0  . This will show that Riemann Hypothesis is 

closed to be true .    
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