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Abstract: Dempster-Shafer theory of evidence has been widely used in many data
fusion application systems. However, how to determine basic probability assignment,
which is the main and the first step in evidence theory, is still an open issue. In this
paper, an improved method to determine the similarity measure between generalized
fuzzy numbers is presented. The proposed method can overcome the drawbacks of
the existing similarity measures. Then, we propose a new method for obtaining
basic probability assignment (BPA) based on the proposed similarity measure method
between generalized fuzzy numbers. Finally, the efficiency of the proposed method is
illustrated by the classification of Iris data.
Keywords: data fusion, dempster-Shafer evidence theory, basic probability assign-
ment (BPA), generalized fuzzy numbers, similarity measures

1 Introduction

Dempster-Shafer (D-S) theory of evidence is widely used in many fields of information fu-
sion due to its efficiency in dealing with uncertain information. In real data fusion application
systems based on DS theory, the basic probability assignment function should be given so that
the combined BPA can be obtained through Dempster’s rule of combination [1, 2]. However,
how to determine basic probability assignment, which is the main and the first step in evidence
theory, is still an open issue. A number of authors have addressed this problem using differ-
ent approaches. Zhu et al. proposed a method to derive mass values from fuzzy membership
degrees. For this purpose, fuzzy c-means (FCM) clustering is used to represent the grey levels
as fuzzy sets [3]. Bendjebbour et al. [4] proposed a probabilistic model where the frame of
discernment contained the individual clusters and the ignorance that was modeled by the union
of all individual clusters. In that work, the authors derived the mass value of ignorance from the
mixture of distributions of the individual clusters composing it. Guan et al. [5] came up with
three methods to construct the BPA function based on gray correlation analysis, fuzzy sets, and
attribute measure respectively. Chen et al. [6] and Li et al. [7] used back-propagation (BP)
neural network to obtain basic probability assignment. According as neural network can gain
stronger generalization ability, the measured data being processed by neural network can be used
as the BPA value of every sensor. Xu et al. [8] used the difference matrix of deviation degree
to represent quantitatively the degree of similarity between interval numbers, and constructed
an expression of basic probability assignment function. Since the basic probability assignment
of evidence theory obtained by using neural network has high computational complexity, Zuo et
al. [9] put forward a method of rough set theory based on random set and BP neural network
to obtain the basic probability assignment. In the framework of random set, the ability of at-
tribute reduction of rough set was made use of to reduce the neural network input dimension.
In papers [10-13], in order to solve the different practical problems, we proposed several different
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approaches to obtain BPA. These more pragmatic methods are proposed to generate BPAs from
uncertain information.

In this paper, an improved method to determine the similarity measure between generalized
fuzzy numbers is presented. Then, a new method to obtain basic probability assignment (BPA)
is proposed based on the improved similarity measure between generalized fuzzy numbers. An
experiment of Iris data classification is used to illustrate the efficiency of our method.

2 Preliminaries

2.1 Dempster Shafer Evidence Theory.

Evidence theory first supposes the definition of a set of hypotheses Θ = {H1,H2, · · · , HN}
called the frame of discernment. It is composed of N exhaustive and exclusive hypotheses. Let
us denote P (Θ), the power set composed with the 2N propositions A of Θ:

P (Θ) = {∅, {H1}, {H2}, · · · , {HN}, {H1 ∪H2}, {H1 ∪H3} · · · ,Θ} (1)

Where ∅ denotes the empty set. The N subsets containing only one element are called
singletons. A key point of evidence theory is the basic probability assignment (BPA). A BPA is
a function from P (Θ) to [0, 1] ,and which satisfies the following conditions:∑

A∈P (Θ)

m(A) = 1;m(∅) = 0, (2)

Dempster’s rule of combination (also called orthogonal sum), noted by m = m1 ⊕m2, is the
first one within the framework of evidence theory which can combine two BPAs m1 and m2 to
yield a new BPA:

m(A) =

∑
B∩C=Am1(B)m2(C)

1− k
and k =

∑
B∩C=∅

m1(B)m2(C) (3)

Where k is a normalization constant, called conflict because it measures the degree of conflict
between m1 and m2. k = 0 corresponds to the absence of conflict between m1 and m2, whereas
k = 1 implies complete contradiction between m1 and m2. The belief function resulting from
the combination of J information sources SJ defined as

m = m1 ⊕m2 · · · ⊕mj · · · · · · ⊕mJ , (4)

As can be seen from above, multi source information can be easily fused in the framework of
evidence theory, if we can obtain the BPA functions.

2.2 Generalized Fuzzy numbers

A generalized fuzzy number Ã = (a, b, c, d;w) is described as any fuzzy subset of the real line
R with membership function µ

Ã
which has the following properties [14]:

(1) µ
Ã

is a continuous mapping from R to the closed interval in [0, w], 0 ≤ w ≤ 1;
(2) µ

Ã
(x) = 0 for all x ∈ (−∞, a];

(3) µ
Ã
(x) is strictly increasing in [a, b];

(4) µ
Ã
(x) = w for all x ∈ [b, c], where w is a constant and 0 < w ≤ 1;

(5) µ
Ã
(x) is strictly decreasing in [c, d];

(6) µ
Ã
(x) = 0 for all x ∈ [d,+∞).
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Where 0 < w ≤ 1, a, b, c and d are real numbers. Especially, a generalized trapezoidal fuzzy
number can be defined as Ã = (a, b, c, d;w), where a ≤ b ≤ c ≤ d, 0 ≤ w ≤ 1, its membership
function is defined by

µ
Ã
(x) =



(x− a)

b− a
a ≤ x ≤ b

w b ≤ x ≤ c

(x− c)

d− c
c ≤ x ≤ d

0 else

(5)

If w = 1, then the generalized fuzzy number Ã is called a normal trapezoidal fuzzy number,
denote as Ã = (a, b, c, d). If a = b and c = d, then Ã is called a crisp interval. If b = c, then Ã is
called a generalized triangular fuzzy number. If a = b = c = d, then Ã is called a real number.

1.0
0.8

0.1 0.2 0.3 0.4

w

A=(0.1,0.2,0.3,0.4;1.0)
B=(0.1,0.2,0.3,0.4;0.8)

 

Figure 1: Two generalized trapezoidal fuzzy numbers Ã and B̃

Figure 1 shows two different generalized trapezoidal fuzzy numbers Ã = (0.1, 0.2, 0.3, 0.4; 1.0)
andB̃ = (0.1, 0.2, 0.3, 0.4; 0.8). Compared with normal fuzzy numbers, the generalized fuzzy num-
bers can deal with uncertain information in a more flexible manner. For example, in decision
making situation, the values w1 and w2 represent the degree of confidence of the opinions of the
decision-makers’ Ã andB̃, respectively, where w1 = 1 and w2 = 0.8.

2.3 A Review of the Existing Similarity Measures between Fuzzy Numbers

In this section, we briefly introduce some existing similarity measures between fuzzy numbers
from Chen [15], Lee [16], Chen and Chen [17], Wei & Chen [18] and Hejazi, et al. [19].

Let Ã and B̃ be two trapezoidal fuzzy numbers, where Ã = (a1, a2, a3, a4) and B̃ = (b1, b2, b3, b4),
as shown in Figure 2. Chen [15] presented a similarity measure between fuzzy numbers Ã and
B̃ based on the geometric distance, where the degree of similarity S(Ã, B̃) between the fuzzy
numbers Ã and B̃ is calculated as follows:

S(Ã, B̃) = 1−
∑4

i=1 |ai − bi|
4

. (6)

Where S(Ã, B̃) ∈ [0, 1]. The larger the value of S(Ã, B̃), the more the similarity between the
fuzzy numbers Ã and B̃.

If Ã and B̃ are two triangular fuzzy numbers, where Ã = (a1, a2, a3) and B̃ = (b1, b2, b3).
The degree of similarity S(Ã, B̃) between the triangular fuzzy numbers Ã and B̃ is calculated as
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Figure 2: Trapezoidal fuzzy numbers Ã and B̃

follows [15]:

S(Ã, B̃) = 1−
∑3

i=1 |ai − bi|
3

. (7)

WhereS(Ã, B̃) ∈ [0, 1]. The larger the value of S(Ã, B̃), the more the similarity between the
fuzzy numbers Ã and B̃.

Lee [16] presented a similarity measure between trapezoidal fuzzy numbers, where the degree
of similarity S(Ã, B̃) between the trapezoidal fuzzy numbers Ã and B̃ is calculated as follows:

S(Ã, B̃) = 1−

∥∥∥Ã− B̃
∥∥∥
lp

∥U∥
× 4−1/p. (8)

Where ∥∥∥Ã− B̃
∥∥∥
lp
=

(
4∑

i=1

(|ai − bi|)p
)1/p

. (9)

and
∥U∥ = max(U)−min(U). (10)

In order to optimally aggregate experts’ fuzzy opinions, Chen and Chen [17] presented a
similarity measure between generalized trapezoidal fuzzy numbers. First, they calculate the
center-of-gravity (COG) point (x∗

Ã
, y∗

Ã
) and (x∗

B̃
, y∗

B̃
) of the generalized trapezoidal fuzzy numbers

Ã and B̃, respectively. The COG point (x∗
Ã
, y∗

Ã
) of the generalized trapezoidal fuzzy numbers

Ã = (a1, a2, a3, a4;wÃ
) is calculated as follows:

y∗
Ã
=


w
Ã
×
(
a3 − a2
a4 − a1

+ 2

)
6

if a1 ̸= a4 and 0 < w
Ã
≤ 1,

w
Ã

2
if a1 = a4 and 0 < w

Ã
≤ 1,

(11)

x∗
Ã
=

y∗
Ã
(a3 + a2) + (a4 + a1)(wÃ

− y∗
Ã
)

2w
Ã

. (12)

Then the degree of similarity S(Ã, B̃) between the two generalized trapezoidal fuzzy numbers
Ã and B̃ can be calculated as follows [17]:

S(Ã, B̃) =

[
1−

∑4
i=1 |ai − bi|

4

]
×
(
1−

∣∣∣x∗
Ã
− x∗

B̃

∣∣∣)B(S
Ã
,S

B̃
)
×

min(y∗
Ã
, y∗

B̃
)

max(y∗
Ã
, y∗

B̃
)

(13)

Where B(S
Ã
, S

B̃
) are defined as follows:
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B(S
Ã
, S

B̃
) =

{
1 S

Ã
+ S

B̃
> 0

0 S
Ã
+ S

B̃
= 0

(14)

Where S
Ã
= a4 − a1 and S

B̃
= b4 − b1 are the lengths of the generalized trapezoidal fuzzy

numbers Ã and B̃. The larger the value of S(Ã, B̃), the more the similarity measure between
two fuzzy numbers.

Wei & Chen [18] proposed a method for calculating the similarity of two fuzzy numbers Ã
and B̃, where Ã = (a1, a2, a3, a4;wÃ

) and B̃ = (b1, b2, b3, b4;wB̃
). If 0 ≤ a1 ≤ a2 ≤ a3 ≤ a4 ≤ 1

and 0 ≤ b1 ≤ b2 ≤ b3 ≤ b4 ≤ 1, then the degree of similarity S(Ã, B̃) between the generalized
trapezoidal fuzzy numbers Ã and B̃ is calculated as follows:

S(Ã, B̃) =

[
1−

∑4
i=1 |ai − bi|

4

]
×

min(P (Ã), P (B̃)) + min(w
Ã
, w

B̃
)

max(P (Ã), P (B̃)) + max(w
Ã
, w

B̃
)

(15)

Where S(Ã, B̃) ∈ [0, 1]; P (Ã) and P (B̃) are defined as follows:

P (Ã) =
√

(a1 − a2)
2 + w2

Ã
+
√

(a3 − a4)
2 + w2

Ã
+ (a3 − a2) + (a4 − a1). (16)

P (B̃) =
√

(b1 − b2)
2 + w2

B̃
+
√

(b3 − b4)
2 + w2

B̃
+ (b3 − b2) + (b4 − b1). (17)

P (Ã) and P (B̃) are the perimeters of generalized trapezoidal fuzzy numbers Ã and B̃, re-
spectively. The larger the value of S(Ã, B̃), the more the similarity measure between two fuzzy
numbers.

Hejazi, etc.[19] presented an improved similarity measure between two fuzzy numbers Ã and
B̃ combining the concept of geometric distance, height, areas and perimeters of generalized fuzzy
numbers. The degree of similarity S(Ã, B̃) between the generalized trapezoidal fuzzy numbers
Ã and B̃ is calculated as follows:

S(Ã, B̃) =

[
1−

∑4
i=1 |ai − bi|

4

]
× min(P (Ã), P (B̃))

max(P (Ã), P (B̃))
×

min(A(Ã), A(B̃)) + min(w
Ã
, w

B̃
)

max(A(Ã), A(B̃)) + max(w
Ã
, w

B̃
)

(18)

P (Ã) and P (B̃) are the perimeters of two generalized trapezoidal fuzzy numbers which are
calculated by Eqs.(16),(17).On the other hand they have A(Ã) and A(B̃) which are the areas of
the two fuzzy numbers and that are calculated as follows:

A(Ã) =
1

2
w
Ã
(a3 − a2 + a4 − a1). (19)

A(B̃) =
1

2
w
B̃
(b3 − b2 + b4 − b1). (20)

The larger the value of S(Ã, B̃), the more the similarity measure between two fuzzy numbers.

3 An Improved Similarity Measure of Generalized Fuzzy Num-
bers

Many similarity measures between fuzzy numbers have been proposed [15-19]. However, it has
been found that the existing methods cannot correctly calculate the degree of similarity between
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two generalized fuzzy numbers in some situations. In this section, we present an improved
method to calculate the degree of similarity between generalized fuzzy numbers[20],which gives
consideration to the horizontal center of gravity, the perimeter, the height and the area of the
two fuzzy numbers. The proposed similarity measure can overcome the drawbacks of the existing
methods.

Assume there are two generalized trapezoidal fuzzy numbers Ã and B̃, where Ã = (a1, a2, a3, a4;
w
Ã
) and B̃ = (b1, b2, b3, b4;wB̃

), 0 ≤ a1 ≤ a2 ≤ a3 ≤ a4 ≤ 1 and 0 ≤ b1 ≤ b2 ≤ b3 ≤ b4 ≤ 1.
Then the degree of similarity S(Ã, B̃) between the generalized trapezoidal fuzzy numbers Ã and
B̃ is calculated as follows:

S(Ã, B̃) =
[
1−

∣∣∣x∗
Ã
− x∗

B̃

∣∣∣]× [1− ∣∣wÃ
− w

B̃

∣∣]× min(P (Ã), P (B̃)) + min(A(Ã), A(B̃))

max(P (Ã), P (B̃)) + max(A(Ã), A(B̃))
(21)

Where x∗
Ã

and x∗
B̃

are the horizontal center-of-gravity (COG) of the generalized trapezoidal
fuzzy numbers Ã and B̃, respectively. The COG point (x∗

Ã
, y∗

Ã
) of the generalized trapezoidal

fuzzy numbers Ã is calculated as follows:

y∗
Ã
=


w
Ã
×
(
a3 − a2
a4 − a1

+ 2

)
6

if a1 ̸= a4 and 0 < w
Ã
≤ 1,

w
Ã

2
if a1 = a4 and 0 < w

Ã
≤ 1,

(22)

x∗
Ã
=

y∗
Ã
(a3 + a2) + (a4 + a1)(wÃ

− y∗
Ã
)

2w
Ã

, (23)

P (Ã) and P (B̃) are the perimeters of two generalized trapezoidal fuzzy numbers which are
calculated as follows:

P (Ã) =
√

(a1 − a2)
2 + w2

Ã
+
√

(a3 − a4)
2 + w2

Ã
+ (a3 − a2) + (a4 − a1) (24)

P (B̃) =
√

(b1 − b2)
2 + w2

B̃
+
√

(b3 − b4)
2 + w2

B̃
+ (b3 − b2) + (b4 − b1) (25)

A(Ã) and A(B̃) are the areas of two generalized trapezoidal fuzzy numbers which are calcu-
lated as follows:

A(Ã) =
1

2
w
Ã
(a3 − a2 + a4 − a1), (26)

A(B̃) =
1

2
w
B̃
(b3 − b2 + b4 − b1), (27)

The larger the value of S(Ã, B̃) is, the more the similarity measure between two generalized
trapezoidal fuzzy numbers Ã and B̃ will be.

In the following sections, we will introduce some of properties that our model has:

Theorem 3.1. Two generalized trapezoidal fuzzy numbers Ã and B̃ are identical if and only if
S(Ã, B̃) = 1.

Proof:
(i) If Ã and B̃ are identical, x∗

Ã
= x∗

B̃
, w

Ã
= w

B̃
, min(P (Ã), P (B̃)) = max(P (Ã), P (B̃)),

min(A(Ã), A(B̃)) = max(A(Ã), A(B̃)).
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The degree of similarity between two generalized trapezoidal fuzzy numbers is calculated as
follows:

S(Ã, B̃) =
[
1−

∣∣∣x∗
Ã
− x∗

B̃

∣∣∣]× [1− ∣∣wÃ
− w

B̃

∣∣]× min(P (Ã), P (B̃)) + min(A(Ã), A(B̃))

max(P (Ã), P (B̃)) + max(A(Ã), A(B̃))

= [1− 0]× [1− 0]× 1 = 1

(28)

(ii) If S(Ã, B̃) = 1, then

S(Ã, B̃) =
[
1−

∣∣∣x∗
Ã
− x∗

B̃

∣∣∣]× [1− ∣∣wÃ
− w

B̃

∣∣]
× min(P (Ã), P (B̃)) + min(A(Ã), A(B̃))

max(P (Ã), P (B̃)) + max(A(Ã), A(B̃))
= 1

(29)

It implies that x∗
Ã
= x∗

B̃
, w

Ã
= w

B̃
, min(P (Ã), P (B̃)) = max(P (Ã), P (B̃)) and min(A(Ã), A(B̃)) =

max(A(Ã), A(B̃)). Therefore, the generalized trapezoidal fuzzy numbers Ã and B̃ are identical.
2

Theorem 3.2. S(Ã, B̃) = S(B̃, Ã).

Proof: Because

S(Ã, B̃) =
[
1−

∣∣∣x∗
Ã
− x∗

B̃

∣∣∣]× [1− ∣∣wÃ
− w

B̃

∣∣]× min(P (Ã), P (B̃)) + min(A(Ã), A(B̃))

max(P (Ã), P (B̃)) + max(A(Ã), A(B̃))
(30)

S(B̃, Ã) =
[
1−

∣∣∣x∗
B̃
− x∗

Ã

∣∣∣]× [1− ∣∣wB̃
− w

Ã

∣∣]× min(P (B̃), P (Ã)) + min(A(B̃), A(Ã))

max(P (B̃), P (Ã)) + max(A(B̃), A(Ã))
(31)

We can see that
∣∣∣x∗

Ã
− x∗

B̃

∣∣∣ =
∣∣∣x∗

B̃
− x∗

Ã

∣∣∣, ∣∣wÃ
− w

B̃

∣∣ =
∣∣w

B̃
− w

Ã

∣∣, min(P (Ã), P (B̃)) =

min(P (B̃), P (Ã)), min(A(Ã), A(B̃)) = min(A(B̃), A(Ã)), and max(A(Ã), A(B̃)) = max(A(B̃), A(Ã)).

Therefore, S(Ã, B̃) = S(B̃, Ã). 2

Theorem 3.3. If Ã = (a1, a2, a3, a4;wÃ
) and B̃ = (b1, b2, b3, b4;wB̃

) are two generalized trape-
zoidal fuzzy numbers with the same geometric shape and height, then S(Ã, B̃) = 1 − d, where
d =

∣∣∣x∗
Ã
− x∗

B̃

∣∣∣ is the offset between Ã and B̃.

Proof: Because w
Ã
= w

B̃
, and based on Eq.(24) - Eq.(27),

we can get min(P (Ã), P (B̃)) = max(P (Ã), P (B̃)) and min(A(Ã), A(B̃)) = max(A(Ã), A(B̃));
Therefore, due to Eq.(21), the degree of similarity between Ã and B̃ is calculated as follows:

S(Ã, B̃) =
[
1−

∣∣∣x∗
Ã
− x∗

B̃

∣∣∣]× [1− ∣∣wÃ
− w

B̃

∣∣]× min(P (Ã), P (B̃)) + min(A(Ã), A(B̃))

max(P (Ã), P (B̃)) + max(A(Ã), A(B̃))

=
[
1−

∣∣∣x∗
Ã
− x∗

B̃

∣∣∣]× [1− 0]× 1 = 1− d

(32)

2
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4 A Comparison of The Similarity Measures

In this section, we extend 15 sets of fuzzy numbers presented by Wei & Chen [18] into 18
sets of fuzzy numbers, as shown in Figure 3, and compare the calculation results of the proposed
method with the results of the existing similarity measures, as shown in Table 1. From Figure 3
and Table 1, we can see the drawbacks of the existing similarity measures:

(1) From Figure 3, we can see that Set 3 and Set 4 are different sets of fuzzy numbers.
However, from Table 1, we can see that if we apply Chen’s method (Chen, 1996) and Lee’s
method (Lee, 2002), Set 3 and Set 4 get the same degree of similarity, respectively.

(2) From Set 5 of Figure 3, we can see that Ã and B̃ are different generalized fuzzy numbers.
However, from Table 1, we can see that if we apply Chen’s method (Chen, 1996) and Lee’s
method (Lee, 2002), their result is a degree of similarity equal to 1, respectively, which is an
incorrect result.

(3) From Set 6 of Figure 3 and Table 1, we can see that if we apply Lee’s method (Lee, 2002),
we cannot calculate the degree of similarity between two identical real values due to the fact that
the denominator will become zero, such that S(Ã, B̃) = ∞, which is an incorrect result.

(4) From Set 7 of Figure 3 and Table 1, we can see that if we apply Lee’s method (Lee, 2002),
we can see that Lee’s method cannot correctly calculate the degree of similarity between two
identical real values due to the fact that the degree of similarity of the real values become zero,
which is an incorrect result.

(5) From Set 8 and Set 9 of Figure 3, we can see that they are two different sets of fuzzy
numbers. However, from Table 1, we can see that if we apply Chen’s method (Chen, 1996),
they get the same degree of similarity, respectively, which does not coincide with the intuition
of human being.

(6) From Set 10, Set 11 and Set 12 of Figure 3, we can see that they are different sets of
generalized fuzzy numbers. However, from Table 1, we can see that if we apply Chen’s method
(Chen, 1996), they get the same degree of similarity, respectively, which does not coincide with
the intuition of human being.

(7) From Set 7, Set 9 and Set 13 of Figure 3, we can see that Ã and B̃ have the same shape
and the offset d = 0.1 in the X-axis, respectively. By applying the proposed method, we can see
that the proposed method has the good property that the degree of similarity between Ã and
B̃ is equal to1 − |d| = 1 − 0.1 = 0.9. However, from Table 1, we can see that if we apply Chen
and Chen’s method (Chen & Chen, 2003), the degree of similarity is equal to 0.81, which is an
incorrect result.

(8) From Set 14 of Figure 3, using Chen’s Method (Chen, 1996) and Lee’s Method (Lee,
2002), the result is a degree of similarity equal to 1, respectively, which is an incorrect result.

(9) From Set 14 and Set 15 of Figure 3, we can see that Set 14 is more similar than Set 15
by the intuition of human being. However, from Table 1, we can see that if we apply Chen and
Chen’s method (Chen & Chen, 2003), we can see that it gets an incorrect result.

(10) From Figure 3, we can see that Set 10 and Set 16 are different sets of generalized fuzzy
numbers and Set 10 is more similar than set 16 by the intuition of human being. However, from
Table 1, we can see that if we apply the methods presented by Chen (1996), Lee (2002) and
Hejazi et al. (2011), Set 10 and Set 16 get the same degree of similarity, respectively, and if we
apply the method presented by Wei & Chen (2009), the result shows that Set 16 is more similar
than Set 10. They are not the correct results.

(11) From Figure 3, we can see that Set 11 and Set 17 are different sets of generalized fuzzy
numbers and Set 11 is more similar than Set 17 by the intuition of human being. However, from
Table 1, we can see that if we apply the methods presented by Chen (1996), Lee (2002) and
Hejazi et al. (2011), Set 11 and Set 17 get the same degree of similarity, respectively, and if we
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apply the method presented by Chen & Chen (2003) and Wei & Chen (2009), the result shows
that Set 17 is more similar than Set 11. They are not the correct results.

(12) From Figure 3, we can see that Set 11 and Set 18 are different sets of generalized fuzzy
numbers. However, from Table 1, we can see that if we apply the methods presented by Chen
(1996), Lee (2002), Hejazi et al. (2011) and Wei & Chen (2009), Set 11 and Set 18 get the same
degree of similarity, respectively.

In summary, from Figure 3 and Table 1, we can see that the proposed method can overcome
the drawbacks of the existing similarity measures.

Table 1: The fuzzy model of attribute SL

Sets Chen’s Lee’s Chen & Chen’s Wei & Chen’s Hejazi et al. Proposed
method method method method method method

(1996)[15] (2002)[16] (2003)[17] (2009)[18] (2011)[19]

Set 1 0.9750 0.9617 0.8357 0.9500 0.9004 0.9473
Set 2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Set 3 0.7000 0.5000 0.4200 0.6820 0.6465 0.6631
Set 4 0.7000 0.5000 0.4900 0.700 0.7000 0.7000
Set 5 1.0000 1.0000 0.8000 0.8248 0.6681 0.6659
Set 6 1.0000 * 1.0000 1.0000 1.0000 1.0000
Set 7 0.9000 0.0000 0.8100 0.9000 0.9000 0.9000
Set 8 0.9000 0.5000 0.5400 0.8411 0.3700 0.3896
Set 9 0.9000 0.6667 0.8100 0.9000 0.9000 0.9000
Set 10 0.9000 0.8333 0.9000 0.7833 0.6261 0.7731
Set 11 0.9000 0.7500 0.7200 0.8003 0.6448 0.7938
Set 12 0.9000 0.8000 0.8325 0.8289 0.7361 0.7478
Set 13 0.9000 0.7500 0.8100 0.9000 0.9000 0.9000
Set 14 1.0000 1.0000 0.7000 0.7209 0.5113 0.5104
Set 15 0.9500 0.7500 0.9048 0.6215 0.3830 0.4242
Set 16 0.9000 0.8333 0.7425 0.8140 0.6261 0.7321
Set 17 0.9000 0.7500 0.8911 0.8380 0.6448 0.7432
Set 18 0.9000 0.7500 0.6976 0.8003 0.6448 0.7144

Note. "*" means that the similarity measure cannot calculate the degree of similarity between
two generalized fuzzy numbers and the results that are not satisfactory are given in bold.

5 A New Method to Obtain BPA

In fact, some samples exist in many systems, which often approximatively submit the trian-
gular distribution. Therefore, we use the existing sample data to build a triangular distribution
to describe model of attribute categories, and then generate the BPA function based on the
similarity between the collected attribute and the model attribute.

In order to be understood easily, the following Iris data classification problem shows the
detailed approach of the proposed method.

In the Iris data, there are 3 species of Iris flower, i.e., Setosa, Versicolor, and Virginica [21].
The Iris data contain 150 instances, and each species contains 50 instances. There are four
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Figure 3: Eighteen sets of generalized fuzzy number Ã and B̃
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attributes in the Iris data, i.e., Sepal Length (SL), Sepal Width (SW), Petal Length (PL), and
Petal Width (PW).

We randomly chose 40 instances from Setosa, the min(SL)=4.30; the average(SL)=5.04; the
max(SL)=5.80 can be obtained. Hence, we can construct the fuzzy model of SL attribute of
Setosa in Figure 4. In the same way, we can construct fuzzy models of Sepal Length(SL) of
Versicolor and Virginica, as shown in Table 2 and Figure 4.

As can be seen from Figure 4, there are some crossing areas. For example, the crossing area
of fuzzy number of Setosa and Versicolour can be shown in Figure 5. All the crossing areas can
be modeled as generalized fuzzy numbers shown in Table 3.

Table 2: The fuzzy model of attribute SL

Species Setosa(S) Versicolor(C) Virginica(V)
Attribute (SL) (4.30,5.04,5.80;1.0) (5.0,5.90,6.8;1.0) (5.6,6.59,7.90;1.0)

Setosa Versicolor Virginica

4.5 6.565.55 7 7.5 84

0

0.2

0.4

0.6

0.8

1.0

m
em

b
er

 f
u

n
ct

io
n

SL(cm)
 

Figure 4: The fuzzy number representation of SL attribute of each species

Setosa Versicolor Virginica
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Figure 5: The generalized fuzzy number model of crossing area of Setosa and Versicolour

In a similar way, the fuzzy models of Sepal Width (SW) attribute, Petal Length (PL) at-
tribute, and Petal Width (PW) attribute of each species can be constructed.



344 W. Jiang, Y. Yang, Y. Luo, X.Y. Qin

Table 3: The generalized fuzzy number model of crossing area of three species Iris flowers

Species S&C S&V V&C S&C&V
Attribute (SL) (5.00,5.43,5.80;0.48) (5.60,5.71,5.80;0.11) (5.60,6.23,6.80;0.63) (5.60,5.71,5.80;0.11)

We randomly chose a datum from Iris source; for example, a new instance (NI) of Setosa
could be shown as (5.1cm, 3.5cm, 1.4cm, 0.2cm). In Figure 6, the relation between SL attribute
of NI and the fuzzy number representation of SL attribute of each species is distinctly shown.

To calculate the similarities between NI and each generalized fuzzy number and normalize
the obtained similarities, the BPA can be obtained, as shown in table 4.
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Figure 6: The relation between the new instance and the model of SL attribute of each species

Table 4: The BPA of an instance attribute SL

m(S) m(C) m(V) m(S,C) m(V,S) m(C,V) m(S,V,C)

SL 0.2955 0.2605 0.2215 0.0842 0.0046 0.1291 0.0046

In the same way, the four attributes and their relative BPAs can be obtained, as shown in
Table 5.

With the combination rule in Eq.(3) used, the fusion results can be shown as follows:

m(S) = 0.5324, m(C) = 0.2607, m(V ) = 0.1879, m(S,C) = 0.0112,

m(V, S) = 0.0015, m(C, V ) = 0.0063, m(S, V,C) = 0.0001

Hence, the instance can be classed as Setosa. The result is consistent with the actual situation.
The algorithm of our proposed method can be listed step by step as follows.
Step 1: Use the existing sample data to obtain the min, average and max value to construct

the triangular fuzzy models, which describe the model attributes of instances.
Step 2: Calculate the similarity between the collected attribute and the model attribute.
Step 3: Normalize the similarity measure to obtain the BPA function.
We randomly selected 120 instances, 40 instances for each of the 3 species, to construct

species models. The remaining 30 instances, 10 instances for each of the 3 species, were used as
collected instances whose class was unknown. By applying the method proposed in the above
section to classify the 30 instances, the correct rate of Iris data classification was calculated as
96.67%.
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Table 5: The BPA of an instance

m(S) m(C) m(V) m(S,C) m(V,S) m(C,V) m(S,V,C)

SL 0.2955 0.2605 0.2215 0.0842 0.0046 0.1291 0.0046
SW 0.1727 0.1614 0.1687 0.0925 0.1510 0.1611 0.0925
PL 0.2198 0.1193 0.0731 0.1943 0.1943 0.0049 0.1943
PW 0.1921 0.0988 0.0499 0.2143 0.2143 0.0162 0.2143

Further, we applied the proposed method 10 times; the average correct rate of Iris data
classification was up to 95.67%. It can be seen that our proposed method has good results in
classification problem.

6 Conclusions

The estimation of BPA plays a very important role in the application of Dempster-Shafer
theory in complex uncertain problems. The fusion performance depends on the method of BPA
construction. To solve this problem, firstly, the paper presents an improved method to calculate
the degree of similarity between generalized fuzzy numbers, which gives consideration to the
horizontal center of gravity, the perimeter, the height and the area of the two fuzzy numbers.
The method can overcome the drawbacks of the existing similarity measures. Then, a new
method to obtain BPA is proposed based on the improved similarity measure between generalized
fuzzy numbers. The proposed method to obtain BPA can effectively overcome the problem of
subjectivity, which also has strong generality. The classification of Iris data is used to illustrate
the efficiency and the low computational complexity of the proposed method. The proposed
method provides a simple technique that will help to use the classical Dempster combination
rule effectively.
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