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Abstract: In this paper, a two-dimensional (2D) rate model is proposed considering
the joint impact of spatial (i.e., the frame size) and SNR (i.e., the quantization step)
resolutions on the overall rate-distortion performance. A related 2D quality model
is then proposed in terms of perceptual quality. Then the two proposed models are
applied to scalable video to address the problem of optimal bitstream adaptation.
Experimental results show that the proposed rate and quality models fit the actual data
very well, with high coefficients of determination and small relative root mean square
errors. Moreover, given the bandwidth constraint and required display resolution of
the end users, the optimal combination of SNR and spatial layers that provides the
highest perceptual quality can be achieved using the proposed models.
Keywords: 2D rate model, 2D perceptual quality model, scalable video, bitstream
adaptation.

1 Introduction

Recent multimedia applications are featured by various resolutions designed for a variety of de-
vices with different computational and display capabilities. These devices range from cell phones and
PDA’s with small screens and restricted processing power to high-end work stations with high-definition
displays. The related video services or applications are connected to different types of networks with
various bandwidth limitation and loss characteristics. A highly attractive approach to address the vast
heterogeneity is known as scalable video, which allows for spatial, temporal, and SNR scalabilities [1].
In Scalable Video Coding (SVC), the video signal can be encoded into a Base Layer (BL) and one or
more Enhancement Layers (ELs), with each enhancement layer improving the resolution (either tempo-
rally or spatially) or the fidelity of the video sequence. As a result, certain parts of the scalable bitstream
can be removed for adaptation to various capabilities of end users as well as varying network conditions.

At the network proxy or gateway, a bitstream adaptor is usually employed to extract the bitstream
to meet particular constraints, e.g., targeted bit-rates and/or spatial or temporal resolutions. For a given
set of constraints, the solution can be varieties of resolution combinations, leading to different visual
qualities. The challenging problem of bitstream adaptation is therefore how to determine the combination
of the spatial resolution (i.e., the frame size (s)), temporal resolution (i.e., the frame rate (t)) and SNR
(Signal-to-Noise Ratio) resolution (i.e., the quantization step (q)) to be used for bitstream extraction
under a given targeted bit-rate to maximize the resulting quality.

Many efforts have been devoted to bitstream adaptation for scalable video. A basic and content
independent extractor is provided in the reference software of the Joint Scalable Video Model (2) [2].
In [3], an alternative extraction method is proposed based on rate-distortion optimization. This technique
utilizes the concept of quality layers and improves the performance of the JSVM basic extractor by ar-
ranging the priority of layers based on their contributions to the global improvement in quality. A more
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efficient method for extraction is proposed in [4], using an accurately and efficiently estimation of the
quality degradation resulting from discarding an arbitrary number of Network Abstraction Layer (NAL)
units from multiple layers taking drift into account. However, the methods in [3] and [4] are executed
only within a single resolution, e.g., the SNR plane. In [5], an effective method is proposed to quickly
solve the problem of spatial resolution selection based on an analysis on the content information. How-
ever, the Peak-Signal-to-Noise Ratio (PSNR) is used as the distortion criterion, which does not correlate
well with the perceptual quality especially with regard to spatial scalability. In [6], two-dimensional
(2D) rate and perceptual quality models in terms of the frame rate and the quantization step are built,
and then the two models are applied to optimal bitstream extraction in SVC. However, the spatial reso-
lution is not considered in [6] and the parameters in the quality model are difficult to obtain. In [7], the
video quality under different spatial, temporal and SNR combinations is quantitatively and perceptually
assessed, based on which an efficient adaptation algorithm is proposed. However, there is lack of a rate
model to estimate the related bit-rate. On the other hand, performance improvement can be achieved by
resorting to network-related technologies, such as using a priority mechanism [8], or self optimization
of networked communications [9] presents a model for self optimization of network communications in
order to improve cluster performance by shortening the data transfer time.

In this paper, 2D rate and quality models are proposed for optimal bitstream adaptation for scalable
video under given bandwidth constrains and required display resolutions at the end user. Assuming that
the frame rate is determined, the two 2D models are applied to extract bitstream to achieve the optimal
combination of spatial and SNR resolutions.

The rest of the paper is organized as follows: Section 2 presents the 2D rate and perceptual quality
models considering the impact of spatial and SNR resolutions. Their application in constrained scalable
video adaptation is introduced in Section 3. Section 4 presents the experimental results. Section 5
concludes this paper and discusses future directions.

2 Two-Dimensional Rate and Perceptual Quality Models

In this section, the impact of the spatial and SNR resolutions on the bit-rate and the perceptual quality
is analyzed, based on which a 2D rate model and a 2D perceptual quality model are respectively derived.

2.1 Two-Dimensional Rate Model

Considering SNR and temporal scalabilities, we have proposed an analytical 2D rate model for
H.264/SVC [10]. In this paper, this model is extended to the spatial domain where a product of a power
function of the quantization step q and a power function of the spatial resolution index s are used, given
as

R(q, s) = cqαsγ, (1)

where α and γ are both content-dependent model parameters. The values of α and γ characterize how
fast the bit-rate reduces with the increase of q and how fast the bit-rate increases with the refinement of
the spatial resolution, respectively. Usually a sequence with richer texture has larger absolute values of α
and γ. Here s is computed through dividing the frame size of the current spatial resolution by the frame
size of the lowest spatial resolution. In order to evaluate the model accuracy, sequences, with QCIF, CIF
and 4CIF resolutions were encoded into 3 dyadic spatial layers using JSVM9.19.7 [11], respectively.
Each spatial layer contained 5 quality layers. The base quality layer in a lower spatial layer was used
to perform inter-layer prediction to avoid drifting at the decoder. The GOP (Group of Picture) size was
set to 1 to avoid the effect of temporal scalability. 120 frames were encoded for each sequence. The
difference of the quantization parameter (QP) between adjacent quality layers and adjacent spatial layers
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were set to 5 and 6, respectively, following [12]. The QP of the base quality layer of the lowest spatial
level was set to 38. The model parameters were obtained by minimizing the Root Mean Square Error
(RMSE) between the actual and predicted bit-rates. The actual values and those predicted using (1) are
plotted in Figure 1. It is clear that the proposed 2D rate model fits the actual data very well. Table 1 gives
the used parameters and the model accuracy in terms of the RRMSE (RRMS E = RMS E/Rmax, where
Rmax denotes the maximum bit-rate in the actual data) and the Coefficient of Determined (CoD), defined
as:

CoD = 1 −
∑

i

(
Xi − X̂i

)2

∑
i

(
Xi − X

)2 , (2)

where Xi and X̂i are the actual and the predicted values of the bit-rate, respectively, and X is the mean
of all actual bit-rates shown in Figure 1. It is once again demonstrated that the proposed rate model is
very accurate in prediction, where high CoD and small RRMSE values can be observed for all tested
sequences. Specifically, the average CoD and RRMSE are 0.9892 and 2.81%, respectively. And as
expected, the “City" sequence with the richest texture among the tested sequences has the largest absolute
values of α and γ.

0 50 100 150 200 250
0

500

1000

1500

2000

2500

3000

3500

Quantization Step

B
it
!

ra
te

 (
k
b
/s

)

Soccer

Actual data QCIF

Actual data CIF

Actual data 4CIF

Predicted values using (1)

0 50 100 150 200 250
0

500

1000

1500

2000

2500

3000

3500

Quantization Step

B
it
!

ra
te

 (
k
b
/s

)

Crew

Actual data QCIF

Actual data CIF

Actual data 4CIF

Predicted values using (1)

0 50 100 150 200 250
0

500

1000

1500

2000

2500

3000

Quantization Step

B
it
!

ra
te

 (
k
b
/s

)

City

Actual data QCIF

Actual data CIF

Actual data 4CIF

Predicted values using (1)

0 50 100 150 200 250
0

500

1000

1500

Quantization Step

B
it
!

ra
te

 (
k
b
/s

)

Ice

Actual data QCIF

Actual data CIF

Actual data 4CIF

Predicted values using (1)

Figure 1: Actual bit-rates and predicted values using (1).

Table 1: The values of parameters in (1) and model accuracy
Soccer Crew City Ice Ave.

c×103
9.67 13.58 10.76 4.23

α -1.276 -1.365 -1.462 -1.048
γ 0.970 0.965 1.078 0.756

CoD 0.9958 0.9860 0.9792 0.9929 0.9892
RRMSE 1.71% 3.31% 3.97% 2.27% 2.81%
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2.2 Two-Dimensional Quality Model

It has been widely acknowledged that the quality metrics of the PSNR and the Mean Square Error
(MSE) do not correlate well with the perceptual quality. On the other hand, the subjective quality can be
well captured by the Mean Opinion Scores (MOS) and Video Quality Metric (VQM) [13], at the cost of
high complexity in testing and computations. Trading off between the complexity and the consistency
with the human perception, the Structural Similarity (SSIM) [14] is used as the quality measure in this
paper.

The SSIM measures the structural similarity as well as the luminance and contrast similarity between
two images block by block. In this paper, the SSIM values have been measured with regard to different
combinations of spatial and SNR resolutions, where the layers of lower spatial resolutions were up-
sampled to 4CIF using a set of 6-taps filters provided by the JSVM. According to empirical observations,
a logarithmic function in terms of the spatial resolution index and the quantization step is used to model
the perceptual quality regarding different spatial and SNR resolutions, which is expressed as

QMssim(q, s) = a0 + a1 ln q + a2 ln s + a3 ln q ln s, (3)

where a0, a1, a2 and a3 are all content-dependent model parameters. Here the second and third terms
indicates the impact of the SNR and the spatial resolution on perceptual quality, respectively. The forth
term models the joint impact of the SNR and the spatial resolution. The model parameters can be derived
easily by minimizing the RMSE between the actual and predicted values. The actual and predicted
qualities are shown in Figure 2. Table 2 lists the used parameters and the model accuracy in terms of the
CoD and RRMSE. It can be concluded from Figure 2 and Table 2 that the proposed 2D perceptual quality
model is very accurate in prediction with high CoD and small RRMSE values for all tested sequences.
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Figure 2: Actual qualities and predicted values using (3).
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Table 2: The values of parameters (3) in and model accuracy
Soccer Crew City Ice Ave.

a0 0.7709 0.9112 0.7268 0.9395
a1 -0.0614 -0.0569 -0.0791 -0.0193
a2 0.2292 0.1454 0.2918 0.0739
a3 -0.0393 -0.0251 -0.0444 -0.0141

CoD 0.9871 0.9842 0.9754 0.9561 0.9757
RRMSE 1.39% 1.11% 2.49% 0.8% 1.45%

3 Optimal Bitstream Adaptation for Scalable Video Using Proposed Mod-
els

The proposed models are applied to constrained bitstream adaptation for scalable video. Figure 3
provides a systematical view of the adaptation problem. For each video, a single full-resolution scalable
bitstream is available at a server, where the bitstream will be adapted at a network proxy or gateway
according to the user channel conditions and viewing preferences (i.e., the displayed spatial resolution).
When a user requests the video from the server, the adaptor (at the proxy) will determine an appropriate
bit-rate Rt for extraction based on the channel condition. Based on Rt and the user’s settings of viewing
preference (embedded in the user profile and sent to the adaptor), the adaptor determines the optimal set
of spatial and SNR layers to extract, so as to provide the best perceptual quality.

For a given targeted bit-rate Rt and the required display spatial resolution, the adaptation problem
can be formulated as the following constrained optimization problem:

Determine q, s to maximize QMssim(q, s)

subject to R(q, s) ≤ Rt

U(s)|s < S , (4)

where Rt and S denote the targeted bit-rate and the required display spatial resolution index, respectively.
By U(s)|s < S it is indicated that up-sampling is executed if the extracted spatial resolution is less than
the required display spatial resolution.

Assume that both the spatial resolution and the quantization step may take on any effective value. By
setting R(q, s) = Rt, it can be obtained that

q = α

√
Rt

csγ
, (5)

which describes the feasible q for a given s, to satisfy the rate constraint Rt. Substituting (5) into (3)
yields

QMssim(s) = −a3γ(ln s)2

α
+ (a3 ln Rt/c + αa2 − a1γ)

ln s
α
+ a0 +

a1 ln Rt/c
α

. (6)

Equation 6 is the achievable quality with different spatial resolutions under the targeted bit-rate Rt.
Clearly, this function has a unique maximum, which can be derived by setting its first order derivative
with respect to s to be zero. This yields

s = e(a3 ln (Rt/c)+αa2−a1γ)/2a3γ. (7)
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For any given Rt and S , we can solve (7) numerically to determine the optimal spatial resolution.
Then using (5) and (6) the optimal quantization step can be determined, and the corresponding quality
can be maximized. The parameters for the rate model, i.e., c, α and γ, can be easily derived from
the bit-rates corresponding to several different (q, s)combinations using least square fitting. The quality
model parameters, i.e., a0, a1, a2 and a3, can be derived using the least square fitting at the encoder,
and then embedded in the header field of the video stream. Based on the simulations, only several bytes
are required to represent those parameters which can be neglected compared to the actual video stream
payload.
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Figure 3: Constrained scalable video adaptation.

4 Experimental Results

The experimental results are presented in this section to evaluate the performance of the proposed
extraction method. Firstly, assuming that the spatial resolution can be any positive values, and then the
practical case where spatial resolutions to be discrete is considered.

4.1 Optimal Solutions Assuming q and s Taking Continuous Values

Assuming that both the spatial resolution and the quantization step can take continuous values. Figure
4 shows the optimal spatial resolution, quantization step and quality as functions of the targeted bit-
rate Rt. As expected, as the targeted bit-rate increases, the optimal s increases while the optimal q
reduces, and the achievable best quality continuously improves. Notice that the optimal s increases
more rapidly for the “City" sequence than for the other sequences because of its richer texture. The
up-sampling introduces more severe quality decrease than the quantization step. Therefore, under the
bit-rate constraint, a larger spatial resolution with a larger quantization step is a better choice.

4.2 Optimal Solutions Under Dyadic Spatial Resolution Scalability

The H.264/SVC includes three profiles [15], i.e., the “Scalable Baseline" profile, the “Scalable High"
profile, and the “Scalable High Intra" profile. While the latter two profiles support full spatial SVC scal-
ability, the Scalable Baseline profile imposes some constraints to enable simplified application scenarios.
For example, dyadic spatial scalability is provided in the baseline profile, where the scaling ratio of the
width and height between adjacent spatial layers is equal to 2. From a practical point of view, it will
be interesting to see the optimal combination of the spatial resolution and quantization step for different
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Figure 4: Optimal quantization step, spatial resolution index and the corresponding quality versus the
targeted bit-rate by assuming the quantization step and the spatial resolution to be continuous.

targeted bit-rates under this SVC structure. To obtain the optimal solution for this SVC structure, we first
determine the optimal s using (7), and then choose two spatial resolutions up and down around the value
from the candidates. Finally, compute the quality using (6) corresponding to the two spatial resolutions
and choose the spatial resolution that leads to a better quality.

The experimental results are shown in Figure 5. Because the spatial resolution can only increase in a
discrete step, the optimal quantization step does not decrease monotonically with the bit-rate. Whenever
the optimal s jumps to the next higher value, the optimal q first increases to meet the rate constraint, and
then decreases while the optimal s is held constant, as the rate increases. Consistent with the previous
results in Figure 4, for the “City" sequence with richer texture, the optimal s is 16 (corresponding to
4CIF) at a low bit-rates, whereas for other sequences, the optimal s stays 4 (corresponding to CIF) even
at high bit-rates.

In practice, the SVC encoder with quality scalability does not allow the quantization step to change
continuously. The finest granularity in quality scalability is a decrement of QP by 1 with each additional
quality layer. This means that the quantization step reduces by a factor of 2−1/6 with each additional layer.
In practice, much coarser granularity is typically used, with a decrement of QP by 3 to 6 typically [11].
When we limit the values of q to be discrete in addition to allow only dyadic spatial resolutions, a rate
constraint cannot be always exactly met. However, one may still obtain the optimal q and s for any given
constrains using the proposed scheme by estimating the bit-rate and quality of each combination in the
finite set of feasible values for q and s.

5 Conclusions and Future Works

In this paper, a 2D rate model and a 2D quality model have been proposed, based on which a model-
driven method for optimal bitstream adaptation is developed. Experimental results have demonstrated the
accuracy of the two models. Using the proposed extraction method, the optimal combination of quality
and spatial layers can be determined, providing the highest perceptual quality for a given bandwidth
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Figure 5: Optimal quantization step, spatial resolution index and the corresponding quality versus the tar-
geted bit-rate by assuming that the q varies continuously and the spatial resolution takes QCIF/CIF/4CIF.

constraint and required display frame rate of the end user.
Future work may include an extension of the proposed models to three-dimension, taking tempo-

ral scalability into account. Moreover, the proposed models can be applied to other applications, e.g.,
advanced multidimensional rate control for video coding.
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