
INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL
ISSN 1841-9836, 10(1):89-99, February, 2015.

An Approximate Algorithm Combining P Systems and
Active Evolutionary Algorithms for Traveling Salesman Problems

X. Song, J. Wang

Xiaoxiao Song*
School of Electrical and Information Engineering
Xihua University, Chengdu, Sichuan, P.R. China, 610039
*Corresponding author: sxx_pippen@163.com

Jun Wang
School of Electrical and Information Engineering
Xihua University, Chengdu, Sichuan, P.R. China, 610039
745257101@qq.com

Abstract: An approximate algorithm combining P systems and active evolution-
ary algorithms (AEAPS) to solve traveling salesman problems (TSPs) is proposed in
this paper. The novel algorithm uses the same membrane structure, subalgorithms
and transporting mechanisms as Nishida’s algorithm, but adopts two classes of ac-
tive evolution operators and a good initial solution generating method. Computer
experiments show that the AEAPS produces better solutions than Nishida’s shrink
membrane algorithm and similar solutions with an approximate optimization algo-
rithm integrating P systems and ant colony optimization techniques (ACOPS) in
solving TSPs. But the necessary number of iterations using AEAPS is less than both
of them.
Keywords: P systems, active evolutionary algorithms, traveling salesman problems.

1 Introduction

Membrane computing, a milestone in natural computing, was introduced by Gheorghe Pǎun
[1] in 1998. This computational model, which was inspired by the structure and the behavior of
living cells, was proposed. In the following more than ten years, a sizeable group of researchers
were seduced by membrane computing. Membrane algorithm is one of the research hotspots
after Nishida [2–4] first proposed this concept by combining P systems and meta-heuristic search
methodologies. Huang [5, 6] and Cheng [7] combined genetic algorithm and differential evolu-
tion with membrane systems to solve some single- and multi-objective optimization problems.
Quantum-inspired evolutionary algorithm based on P systems was proposed to solve some classi-
cal theoretical [8,9] and practical problems [10–17]. Also some novel membrane algorithms based
on particle swarm optimization [18] and artificial fish swarm algorithm [19] were proposed.

Evolutionary algorithm is based on survival of the fittest. Creatures do not have ability to
decide their mutation directions and choose advantageous gene to their offspring. But based
on the researches in biology, this stochastic evolution theory could not explain some problems
in creature’s adaptability. The modern biology research shows that the evolution process is
not completely stochastic [20–22]. So called stress-induced mutation mechanisms were proposed.
Specifically, when creatures are maladapted to their environment, that is, when they are stressed,
stress-induced mutation mechanisms produce mutations [23–26]. These facts have been consid-
ered in evolutionary algorithm for solving optimization problems [27].

In this paper an approximate algorithm combining P systems and active evolutionary algo-
rithms (AEAPS) is proposed in order to solve traveling salesman problems (TSPs) in the special
case of complete graphs with Euclidean distance. It follows the nested membrane structure
adopted by Nishida [2], and adopts genetic algorithm (GA), tabu search and active evolution-
ary algorithms (AEA) as the subalgorithms. Experiment results are compared with Nishida’s

Copyright © 2006-2015 by CCC Publications

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Agora University Editing House: Journals

https://core.ac.uk/display/236053012?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


90 X. Song, J. Wang

Figure 1: The membrane structure of a cell-like P system

algorithm and an approximate optimization algorithm integrating P systems and ant colony
optimization techniques (ACOPS) [28,29].

In Section 2, a brief introduction of P systems and Nishida’s membrane algorithm for TSPs is
given. Details of AEA designed for TSPs and AEAPS is discussed in Section 3. The experiment
results and analysis are mentioned in Section 4. Conclusions are drawn in Section 5.

2 P Systems and membrane algorithm

2.1 P Systems

P systems could be divided into three groups: cell-like P systems, tissue-like P systems
and neural-like P systems [30]. The structure of cell-like P systems is the basic structure of
other P systems. The membrane structure of a cell-like P system is shown in Fig. 1. The
outermost membrane is the skin membrane. Outside of the skin membrane is the environment.
Usually, there are some other membranes inside the skin membrane. We call the spaces between
membranes regions. The region just inside the skin membrane is the outermost region, and the
region in an elementary membrane is an elementary region. In membrane computing, regions
contain multisets of objects and sets of evolution rules.

A cell-like P system is formally defined as follows [1, 31]:

Π = [V, T, µ, w1, . . . , wm, R1, . . . , Rm, i0] . (1)

where:
(i) V is an alphabet; its elements are called objects;
(ii) T ⊆ V is the output alphabet;
(iii) µ is a membrane structure consisting of m membranes; m is called the degree of Π;
(iv) wi, 1 ≤ i ≤ m, is a string representing the initial multiset over V associated with region i,
1 ≤ i ≤ m;
(v) Ri, 1 ≤ i ≤ m, is a finite set of evolution rules associated with region i, 1 ≤ i ≤ m;
(vi) i0 is a number between 1 and m which specifies the output membrane of Π.

The rules of Ri, 1 ≤ i ≤ m, have the form a→ v, where a ∈ V and v ∈ (V ×{here, out, in})∗.
The multiset v consists of pairs (b,t), b ∈ V and t ∈ {here, out, in}. here means when the rule
is used in one region, b will stay in the region; out means that b exits the region and in means
that b will be communicated to one of the membranes contained in the current region.



An Approximate Algorithm Combining P Systems and
Active Evolutionary Algorithms for Traveling Salesman Problems 91

Figure 2: Membrane structure of membrane algorithm

2.2 The membrane algorithm for TSPs

Membrane algorithm is designed with the hierarchical or network structure of membranes
and rules of P systems, and the concepts and principles of meta-heuristic search methodologies.
It is a new kind of parallel-distributed framework for solving optimization problems. Nishida
first proposed a membrane algorithm using cell-like P systems (nested membrane structure) [2]
to solve TSPs. Nishida also proposed some improved membrane algorithms based on tissue-like
P systems, such as compound membrane algorithm [3] and shrink membrane algorithm [4]. All
the basic concepts of improved algorithms are based on the membrane algorithm. For example,
compound membrane algorithm has two phases. The first phase is using membrane algorithm
generating good initial solutions for phase 2; and the second phase is also similar to membrane
algorithm but using good initial solutions. The shrink membrane algorithm incorporates dynamic
membrane structure into compound membrane algorithm. The membrane algorithm with nested
membrane structure is a special case of multi-deme evolutionary algorithm [32]. In this paper,
we only research membrane algorithm with this structure.

In Nishida’s membrane algorithm, nested membrane structure, rules in membrane separated
regions and transporting mechanisms through membrane from P systems are adopted. The
structure of the membrane algorithm is shown in Fig. 2.

In solving TSPs, the membrane algorithm can be described as follows:
1. Generate one initial solution in region 0 and two initial solutions in all regions from 1 to m−1
respectively;
2. In one iteration, the solution in region 0 is updated by tabu search and the solutions in regions
from 1 to m− 1 are updated by genetic algorithm, simultaneously;
3. Regions from 1 to m−2 send the best solution to adjacent inner region, and the worst solution
to adjacent outer respectively. Region 0 sends the worst solution to region 1 and region m − 1
sends the best solution to region m− 2.
4. Erases solutions but the best two in regions from 1 to m− 1 and the best one in region 0.
5. Jump to step 2 if the termination condition is not satisfied; otherwise the output of the
algorithm is the solution in region 0.

3 AEAPS for TSPs

In active evolution organisms adapt their behaviour to changing environment. In TSPs, the
“environment" means the structure characteristics of a solution, like without crossings in its path
of traveling. If a solution is maladapted to the “environment", some active mutation mechanisms
should be considered to improve it. In this section we propose two classes of active evolution
conditions and show how to deal with these conditions; then we give a simple method of obtaining
good initial solutions; finally, every step of AEAPS is described.



92 X. Song, J. Wang

Figure 3: Triangle inequality for (G,w)

3.1 1st class active evolution condition

TSP is one of the well-known combinatorial optimization problems. The TSP problem is
about finding the Hamilton cycle. i.e., the optimum shortest path of a given weighted undirected
and connected graph (G,w) with N nodes and where w is a distance metric. This distance is
symmetric, which means w(i, j) = w(j, i). In the two dimensional space, the distance between
vertex i and vertex j is

w(i, j) =
√

(xi − xj)2 + (yi − yj)2. (2)

where i and j have the coordinates (xi, yi) and (xj , yj), respectively.
The value of one solution is

V =
N−1∑
i=1

w(i, i+ 1) + w(N, 1). (3)

Since w is a distance, then it satisfies the triangle inequality, i.e., w(i, j) ≤ w(i, k) + w(j, k),
for any vertices i ̸= j, and k ̸= i, j (see Fig. 3).

It has been shown that 2-Opt iterative improvement method [10, 33, 35] leads to optimum
solutions for the TSP without any crossings. This means that any optimal path contains edges of
the graph that do not intersect each other. If we consider four nodes. The total graph associated
with these four nodes shows convex and concave quadrilaterals. When the convex quadrilateral
is considered, any two edges are disjoint (they do not intersect each other). This is no longer
true for the concave quadrilateral. In Fig. 4, we select a as the starting node, and there can be
6 possible solutions. Solutions abcda and adcba have no crossings, and solutions abdca, acbda,
acdba and adbca have crossings. One can easily show that the solutions without crossings are
better than those with crossings, by referring to the triangle inequality. For example, the path
abdca, has two edges, (a, b) and (d, c), overlapping the path abcda ((d, c) = (c, d)). For the path
abdca, we have w(b, d) = w(b, o) + w(o, d) and w(c, a) = w(c, o) + w(o, a). According to the
triangle inequality, we have

w(b, d) + w(c, a) = w(b, o) + w(o, d) + w(c, o) + w(o, a)

= w(b, o) + w(c, o) + w(o, d) + w(o, a)

≥ w(b, c) + w(a, d)

(4)

So we found solution abcda without crossings is better than solution abdca with crossings.
With this method, other solutions with crossings can also be transformed into a better ones
without crossings. One can conclude stating that for the TSP problem, with Euclidian distance,
for any solution with crossings there is always a better one without crossings.

In our AEAPS method we use a specific stress-induced mutation to the current solution. This
mutation operator is different from the usual one theory of evolution. This is an active evolution



An Approximate Algorithm Combining P Systems and
Active Evolutionary Algorithms for Traveling Salesman Problems 93

Figure 4: Example with four nodes

Figure 5: A 1st class active evolution condition applied

operator. If in the current path there is an edge from i to i+ 1 that crosses other existing edge
in the path, then i is called a 1st class active evolution node. The method of revising the path
according to a 1st class active evolution node is the following:
1. Find the nearest N1 nodes to i and denote by A the set consisting of these nodes;
2. Select one node from the set A and name it j;
3. Find out node j + 1 which is the next node after j in the solution;
4. Swap the nodes i and j + 1 in the solution;
5. If the value V of the new solution is less than the old one, keep the new one, otherwise keep
the old one.

An illustration of the method is provided in Fig. 5.

3.2 2nd class active evolution condition

If the distance from i to the next node, i + 1, is larger than some value D, i is called a
2nd class active evolution node. In this case insert a new node between i and i + 1. Also
computeDi = e× total_distancei/(N − 1), where e is a parameter, total_distancei is the total
distance between i and the other nodes and N is the number of nodes.

In AEAPS we consider an approach similar to 2.5-Opt iterative improvement scheme [36] for
dealing with 2nd class active evolution nodes. This method is described below, where i is a 2nd

class active evolution node and i+ 1 is the next node after i in the current solution:
1. Find the nearest N2 nodes to i and put them all into a set A; similarly build the set B for
i+ 1;
2. Select one element from A ∩B and name it j;
3. Eliminate j from the solution and insert it between i and i+ 1;
4. If the value of the new solution is less than the old one, keep the new one, otherwise keep the
old one.

An illustration of the use a 2nd class active evolution node is shown in Fig. 6.

3.3 Initial solutions

Nishida proposed a membrane algorithm, called compound membrane algorithm, which has
two phases. The function of the first phase is producing good solutions which are used as initial



94 X. Song, J. Wang

Figure 6: A 2nd class active evolution condition applied

solutions for phase two. The better initial solutions can improve the final output solution. As
Nishida said the computation time of compound membrane algorithm is quite prohibitive. We
propose a simpler and faster method for generating good initial solutions. The method is as
follows:
1. Select one node randomly as the starting node, and name it current node;
2. Find the nearest neighbour of the current node which is not selected, and name it current
node;
3. Repeat step 2 until all nodes are selected; a good initial solution has been then found.

If we repeat the above steps for 2 × m − 1 times, we get enough initial solutions for each
region of the P system. We have one solution in region 0 and two solutions in each of the regions
1 to m− 1.

3.4 AEAPS algorithm

AEAPS uses the basic idea of the membrane algorithm proposed by Nishida; a nested mem-
brane structure with m regions is considered. We still use tabu search in region 0 and genetic
algorithms in regions 1 to m−1 as sub-algorithms. Finally, the same communication mechanisms
between adjacent regions are used; the best and worst solutions are sent to adjacent inner and
outer regions, respectively. Unlike the Nishida’s algorithm, AEAPS adds two classes of active
evolution operators in every region and use a new initial solution generation method.

The overall membrane algorithm can be described as follows:
1. Generate initial solutions by using the method mentioned in Section 3.3, one for region 0 and
two for each of the regions from 1 to m− 1;
2. Modify solutions simultaneously in each of the regions 1 to m−1 by using genetic algorithms,
simultaneously;
3. Find out all 1st class active evolution nodes in every solution and revise them; then find out
all 2nd class active evolution nodes and also revise them all;
4. Use tabu search in region 0;
5. Use the communication mechanisms between adjacent regions (as proposed by Nishida);
6. Remove all solutions but the best one from region 0 and best two in each of the regions 1 to
m− 1;
7. Jump to step 2 if the number of iterations is not satisfied; otherwise the output of the
algorithm is the solution in region 0.

4 Experiments and Results

We have tested the searching efficiency of AEAPS on two benchmark problems, eil51, with 51
nodes, and kroA100, with 100 nodes, from TSPLIB [37], running 10 times each. The parameters
in experiments are chosen as follows: m = 50, e = 0.1, N1 = 25, N2 = 35. The number of
iterations is 300. Table 1 shows the results. A comparison of simulated annealing (SA), shrink



An Approximate Algorithm Combining P Systems and
Active Evolutionary Algorithms for Traveling Salesman Problems 95

Figure 7: Curves of solving kroA100 problem by AEAPS

membrane algorithm (SMA) and AEAPS is shown in Table 2. We have implemented AEAPS in
C and tested the algorithm on a Microsoft Visual C++ 6.0 platform with Windows 7 and using
a computer with 2.4GHz CPU and 2G RAM.

Table 1. Results of AEAPS for eil51 and kroA100

1 2 3 4 5 6 7 8 9 10

eil51 431 429 428 428 426 430 429 428 429 427

kroA100 21282 21282 21320 21282 21389 21282 21373 21379 21282 21282

Table 2. A comparison of SA, SMA and AEAPS

SA SMA AEAPS

Best Average Worst Best Average Worst Best Average Worst

eil51 430 438 445 429 430 433 426 429 431

kroA100 21369 21763 22564 21299 21504 21750 21282 21315 21389

Results of SA and SMA from [4] are shown in the tables. From Table 1 and 2, one can
see that AEAPS gets better results than SA and SMA for both eil51 and kroA100. Fig. 7
shows the curves of average values for all the solutions and the average value of the solution in
region 0 for the kroA100 problem solved by AEAPS. For initial solutions which are generated by
the method in Section 3.3, the average value of the initial solutions in AEAPS is much smaller
than those using the membrane algorithm [4]. Compared to Nishida’s algorithm for solving the
same problem by the 50 membranes, AEAPS converges to remarkably fast to good solutions, in
approximately 50 steps.

Zhang [28, 29] proposed ACOPS for TSP, which uses a smaller number of function eval-
uations to achieve better solutions. Experimental comparisons between Nishida’s algorithm,
ACOPS and AEAPS are listed in Table 3 and Table 4. Results of Nishida’s algorithm and
ACOPS are from [28]. The results of Nishida’s algorithm were calculated by using 50 mem-
branes and 10000 iterations. In ACOPS the number of function evaluations (NoFE) is the



96 X. Song, J. Wang

stopping criterion. An equivalent number of iterations was obtained by using the product of
average iterations for elementary membranes (gmin+gmax)/2 and the number of communications
2∗(gmin+gmax)∗NoFE/(N +m). In solving ulysses22, eil51, eil76, eil101 and kroA100 problems,
the parameters of AEAPS have the values: m = 50, e = 0.1, N1 = 25, N2 = 35, and the maxi-
mal number of iterations is 300. In solving ch150, gr202 and tsp225 problems, the parameters of
AEAPS are: m = 50, e = 0.1, N1 = 40, N2 = 50, and the maximal number of iterations is 500.
The results of the AEAPS are obtained from 10 independent runs.

Table 3. Number of iterations in Nishida’s algorithm, ACOPS and AEAPS with 8
TSPs

Nishida′s algorithm ACOPS AEAPS

ulysses22 1.0e+5 7.7e+2 3.0e+2
eil51 1.0e+5 7.3e+2 3.0e+2
eil76 1.0e+5 7.5e+2 3.0e+2
eil101 1.0e+5 7.6e+2 3.0e+2
kroA100 1.0e+5 9.6e+2 3.0e+2
ch150 1.0e+5 7.8e+2 5.0e+2
gr202 1.0e+5 6.8e+2 5.0e+2
tsp225 1.0e+5 3.1e+2 5.0e+2

Table 4. Results of Nishida’s algorithm, ACOPS and AEAPS with 8 TSPs

Nishida′s algorithm ACOPS AEAPS

Best Average Worst Best Average Worst Best Average Worst

ulysses22 75.31 75.31 75.31 75.31 75.32 75.53 75.31 75.31 75.31

eil51 429 434 444 429 431 434 426 429 431

eil76 556 564 575 546 551 558 543 545 547

eil101 669 684 693 641 647 655 631 638 643

kroA100 21651 22590 24531 21285 21320 21427 21282 21315 21389

ch150 7073 7320 7633 6534 6560 6584 6549 6554 6565

gr202 509.7 520.1 528.4 489.2 492.7 497.1 491.3 496.1 498.9

tsp225 4073.1 4153.6 4238.9 3899.6 3938.2 4048.2 3938.7 3992.3 4034.1

As compared with Nishida’s algorithm, AEAPS uses much smaller number of iterations to
achieve better solutions. As compared with ACOPS, AEAPS uses smaller number of iterations
only except for the tsp225 and gets better results for the first 5 TSPs, similar results for ch150
problem and slightly worse results for the last 2 TSPs.

5 Conclusions

This work is the first attempt to discuss the role of active evolutionary operators in mem-
brane algorithms. We present an approximate algorithm combining nested membrane structure,
rules within regions and communication mechanisms of the P systems, and two classes of active



An Approximate Algorithm Combining P Systems and
Active Evolutionary Algorithms for Traveling Salesman Problems 97

evolution operators and a good initial solution generating method. AEAPS is used to solve Eu-
clidian TSPs, well-known NP-hard problems. The experiment results show that AEAPS performs
better than SA and Nishida’s membrane algorithm and similar with ACOPS, which requires a
smaller number of iterations. In order to improve the performance of AEAPS, especially in
solving large scale TSPs, our future studies will focus on other membrane structure options and
communication mechanisms.

Acknowledgments.

This work is supported by the National Natural Science Foundation of China (Grant No.
61170030), the Chunhui Plan of Ministry of Education of China (Grant No. Z2012025), the
Open Research Fund of Key Laboratory of Xihua University (Grant No. SZJJ2012-002), the
Research Projects of Eduction Department of Sichuan Province (Grant No. 13ZB0017) and the
Key Scientific Research Foundation of Xihua University (Grant No. Z1120943). The authors
also gratefully acknowledge helpful comments and suggestions made by reviewers, which have
significantly improved the presentation.

Bibliography

[1] Păun, G. (2000); Computing with membranes, Journal of Computer and System Sciences,
ISSN 0022-0000, 61(1): 108–143.

[2] Nishida, T.Y. (2004); An application of P-system: A new algorithm for NP-complete opti-
mization problems, Proceedings of the 8th World Multi-Conference on Systems, Cybernetics
and Informatics, V: 109–112.

[3] Nishida, T.Y. (2005); An approximate algorithm for NP-complete optimization problems
exploiting P-systems, Proceedings of the 6th International Workshop on Membrane Comput-
ing, ISBN 978-3-540-30948-2, 26–43.

[4] Nishida, T.Y. (2006); Membrane algorithms: Approximate algorithms for NP-complete op-
timization problems, Applications of Membrane Computing, ISBN 978-3-540-29937-0, 303–
314.

[5] Huang, L.; He, X.X.; Wang, N.; Xie, Y. (2007); P systems based multi-objective optimization
algorithm, Progress in Natural Science, ISSN 1002-0071, 17(4): 458–465.

[6] Huang, L.; Wang, N. (2006); An optimization algorithm inspired by membrane computing,
ICNC 2006, LNCS, ISBN 3-540-45901-4, 4222: 49–52.

[7] Cheng, J.X.; Zhang, G.X.; Zeng, X.X. (2011); A novel membrane algorithm based on differ-
ential evolution for numerical optimization, International Journal of Unconventional Com-
puting, ISSN: 1548-7199, 7(3): 159–183.

[8] Zhang, G.X.; Liu, C.X.; Gheorghe, M.; Ipate, F. (2009); Solving satisfiability problems
with membrane algorithm, Proceedings of the 4th International Conference on Bio-Inspired
Computing: Theories and Applications, ISBN 978-1-4244-3866-2, 29–36.

[9] Zhang, G.X.; Gheorghe, M.; Wu, C.Z. (2008); A quantum-inspired evolutionary algorithm
based on P systems for knapsack problem, Fundamenta Informaticae, ISSN 0169-2968, 87(1):
93–116.



98 X. Song, J. Wang

[10] Liu, C.X.; Zhang, G.X.; Zhu, Y.H.; Fang, C.; Liu, H.W. (2009); A quantum-inspired evo-
lutionary algorithm based on P systems for radar emitter signals, Proceedings of the 4th
International Conference on Bio-Inspired Computing: Theories and Applications, ISBN 978-
1-4244-6438-8, 1–5.

[11] Liu, C.X.; Zhang, G.X.; Liu, L.W.; Gheorghe, M.; Ipate, F. (2010); An improved membrane
algorithm for solving time-frequency atom decomposition, WMC 2009. LNCS, ISSN 0302-
9743, 5957: 371–384.

[12] Liu, C.X.; Zhang, G.X.; Liu, H.W. (2009); A memetic algorithm based on P systems for
IIR digital filter design, Proceedings of the 8th IEEE International Conference on Pervasive
Intelligence and Computing, ISBN: 978-0-7695-3929-4, 330–334.

[13] Huang, L.; Suh, I.H. (2009); Controller design for a marine diesel engine using membrane
computing, International Journal of Innovative Computing Information and Control, ISSN
1349-4198, 5(4): 899–912.

[14] Zhang, G.X.; Liu, C.X.; Rong, H.N. (2010); Analyzing radar emitter signals with membrane
algorithms, Mathematical and Computer Modelling, ISSN 0895-7177, 52(11-12): 1997–2010.

[15] Yang, S.P.; Wang, N. (2012); A P systems based hybrid optimization algorithm for param-
eter estimation of FCCU reactor-regenerator model, Chemical Engineering Journal, ISSN
1385-8947, 211: 508–518.

[16] Zhang, G.X.; Gheorghe, M.; Li, Y.Q. (2012); A membrane algorithm with quantum-inspired
subalgorithms and its application to image processing, Natural Computing, ISSN 1567-7818,
11(4): 701–717.

[17] Zhang, G.X.; Cheng, J.X.; Gheorghe, M.; Meng, Q. (2013); A hybrid approach based on
differential evolution and tissue membrane systems for solving constrained manufacturing
parameter optimization problems, Applied Soft Computing, ISSN 1568-4946, 13(3): 1528–
1542.

[18] Zhang, G.X.; Zhou, F.; Huang, X.L. (2012); A Novel membrane algorithm based on particle
swarm optimization for optimization for solving broadcasting problems, Journal of Universal
Computer Science, ISSN 0948-695X, 18(13): 1821–1841.

[19] Tu, M.; Wang, J.; Song, X.X.; Yang, F.; Cui, X.R. (2013); An artificial fish swarm algorithm
based on P systems, ICIC Express Letters, Part B: Applications, ISSN 1881-803X, 4(3):
747–753.

[20] Cairns, J.; Overbaugh, J.; Miller, S. (1988); The origin of mutations, Nature, ISSN 0028-
0836, 335: 142–145.

[21] Hall, B.G. (1988); Adaptive evolution that requires multiple spontaneous mutations. I. Mu-
tations involving an insertion sequence, Genetics, ISSN 0016-6731, 120(4): 887–897.

[22] Hall, B.G. (1991); Is the occurrence of some spontaneous mutations directed by environ-
mental challenges?, The new biologist, ISSN 1043-4674, 3(8): 729–733.

[23] Ponder, R.G.; Fonville, N.C.; Rosenberg, S.M. (2005); A switch from high-fidelity to error-
prone DNA double-strand break repair underlies stress-induced mutation, Molecular Cell,
ISSN 1097-2765, 19(6): 791–804.



An Approximate Algorithm Combining P Systems and
Active Evolutionary Algorithms for Traveling Salesman Problems 99

[24] Slack, A.; Thornton, P.C.; Magner, D.B.; Rosenberg, S.M.; Hastings, P.J. (2006); On the
mechanism of gene amplification induced under stress in Escherichia coli, Plos Genetics,
ISSN 1553-7390, 2(4): 385–398.

[25] Galhardo, R.S.; Hastings, P.J.; Rosenberg, S.M. (2007); Mutation as a stress response and
the regulation of evolvability, Critical Reviews in Biochemistry and Molecular Biology, ISSN
1040-9238, 42(5): 399–435.

[26] Rosenberg S.M.; Shee, C.; Frisch, R.L.; Hastings, P.J. (2012); Stress-induced mutation via
DNA breaks in Escherichia coli: a molecular mechanism with implications for evolution and
medicine, Bioessays, ISSN 0265-9247, 34(10): 885–892.

[27] Shi, L.; Li, H.Y.; Yang, J.A. (2004); Active evolution based genetic algorithm, Mini-micro
Systems, ISSN 1000-1220, 5(25): 790–793.

[28] Zhang, G.X.; Cheng, J.X.; Gheorghe M. (2010); An approximate algorithm combining P
systems and ant colony optimization for traveling salesman problems, Proceedings of the 8th
Brainstorming Week on Membrane Computing, ISBN 978-84-614-2357-6, 321–340.

[29] Zhang, G.X.; Cheng, J.X.; Gheorghe M. (2011); A membrane-inspired approximate al-
gorithm for traveling salesman problems, Romanian Journal of Information Science and
Technology, ISSN 1453-8245, 14(1): 3–19.

[30] Păun, G. (2007); Tracing some open problems in membrane computing, Romanian Journal
of Information Science and Technology, ISSN 1453-8245, 10(4): 303–314.

[31] Păun, G.; Rozenberg, G. (2002); A guide to membrane computing, Theoretical Computer
Science, ISSN 0304-3975, 287(1): 73–100.

[32] Erick, C.P. (1998); A survey of parallel genetic algorithms, Calculateurs Paralleles, ISSN
1260-3198, 10(2): 141–171.

[33] Croes, G.A. (1958); A method for solving traveling salesman problems, Operations Research,
ISSN 0030-364X, 6(6): 791–812.

[34] Lin, S.; Kernighan, B.W. (1973); An Effective Heuristic Algorithm for the Traveling-
Salesman Problem, Operations Research, ISSN 0030-364X, 21(2): 498–516.

[35] Helsgaun K. (2000); An effective implementation of the Lin-Kernighan traveling salesman
heuristic, European Journal of Operational Research, ISSN 0377-2217, 126(1): 106–130.

[36] Bentley, J.J. (1992); Fast algorithm for geometric traveling salesman problems, Informs
Journal on Computing, ISSN 1091-9856, 4(4): 387–411.

[37] http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/


