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Abstract

We studied this work investigate the fixed points of modified Kaplan York map k; and we focus
on found contracting and expanding area of this map ,Moreover we study the dynamical system of
modified Kaplan York map,is aslo studied the chaotic properties of k; proved the topological entropy of k;
is positive , ky is sensitive dependence into initial condition , ky is transitive finally the Lyapunov exponent
is positive .we use mat lab program to show the sensitivity and transitivity of Kaplan York map
Key words: The Kaplan York map , Sensitive Depends on Initial Condition , Transitivity Kaplan York
Map, Lyapunov exponents of the Kaplan York Map.
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1. Introduction
The Kaplan York map has chaotic behavior. It is one of the famous map on
discrete dynamical system which has many natural applications
We define the chaotic map as:-
x 2x mod1
K (y) - (oc y+ cos4nx)
In our work, we modify the Kaplan York map into
K (X) _ (2 < X modl)
Ny 7\ By+x?
We will simplify the Kaplan York map by replacing (cos4mx)
To x*and when we add the new parameter we get the properties of dynamic

behavior which are different from the Kaplan York map , also there are some similar
properties.

2. The General Properties of The Modified Kaplan York Map
We study the dynamical system of modified Kaplan York map , We find the fixed
point and the Jacobain of K;and we study the contracting area and exponding area of

K1
in this section many fundamental concepts which are needed in this work we
introduced:
RZ_R2 x _(f(x,y)> (D P
Let G:R*—R? such that G(y) =\gee ) be a map .Any pair (q) for where f (q)

=p, g (Z) = q is called a fixed point of the two dimensional dynamical system G is (! ,if
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all of its first partial derivatives exist and are continuous. G is C* , if its mixed K " partial
derivatives exist and are continuous for all K € Z . G is called a diffeomorphism provided
that G is one -to-one , G isonto , G is C*, its inverse G:R>—R2 isC* too. Let V be a
subset of R, and v, be any element in R2,

Consider G:V—R? be a map .Furthermore assume that the first partial of the
coordinate map f and g exist at vy . The differential of G at vq is the linear map DG(vo)
defined on R2 by

f(vey  Of(vo)

DG (Vo)= Oga()\io) aga(f:o) , for all v in R2 . The determinant
ox dy

DG(vo) is called the Jacobian of F at vy and is denoted ,
By J=det DG(vo).And if |det DG(v,)| >0 then G is called area-expanding atvo ,A
point x € X is a periodic point of period n> 0 if f™(x) # x forall r < n.

If p is period —n point of f such that |f(”) (p)| < 1 then f cannot has sensitive
dependence on initial conditions at p

Definition (2.1) ( Gulick, 1992):

Let G:R2—R2 be any map and let p be any fixed point of G. If A,,1, are the
eigenvalues of DG(P) then
1If |A;] < 1,vi = 1,2 then p is an attracting fixed point
2.1f [1;] > 1,Vi = 1,2 then p is an repelling fixed point
3.If there exist i€ {1,2} then |2;| > 1and |4;| < 1 i= j then p is a saddle fixed point
Definition (2.2) ( Kurka, 1997):
The f:X—X is said to be sensitive dependence on initial conditions if there exists & >
Osuch that for any xo € X and any open set U < X containing Xo there exists yp € U and n
€ Z*such that d(f"(xo),f" (o)) > € that is 3 £ > 0,Vx,V§ >0, 3ye B § (x) , 3:d(f"(xo),f"
(Yo))= €
Definition (2.3) (Fotion,2005):
Let f:X—X be a continuous map and X be a metric space . Then the map f is said to be
chaotic according to wiggins or W — chaotic if:
1.f is topologically transitive.
2.f is sensitive dependent on initial condition
Definition (2.4) (Sturman, 2006):

The map f: R"—R" will have n Lyapunov exponent , say L; (X, V), Lo (X ,v),...... , Ln (X,
v) for a system of n variable . then the Lyapunov exponent is the maximum n Lyapunov
exponent that is Ly (x, v) = max{ L1 (X, v) , L, (X, V) ,...... , Ln (X, V)} . Where

v=(V1,Vo,....,Vn).

Proposition (2.5):
IF o+ 1; and [ # 1then K; has a fixed point.
proof

1628



Journal of University of Babylon, Pure and Applied Sciences, Vol.(25), No.(5), 2017.

. x 2 « x modl
Since K; (y) = ( By 4 32 ) 50
x=2 o« x mod1 and By + x* =y
this implies x-2 o« x=0
(1-2 c)x=0
By hypothesis « # %then
X=0 ( mod1), that is

X=k;VkeZ
Thus—y =k*;VkeZ
(B — Dy =—k*
. _ —k?
Since g # 1theny= 51
k
Therefore <—_k2> is a fixed pointof k; ; Vk € Z
B-1
Remark (2.6)

If = % and B = 1thus y+k?=y, so k2=0 then k; has unique fixed point which is (8)

Remark (2.7)
If = %and B # 1 then ki has infinite points

x mod1 x
(,By+x2)= (y)

If |o<|=§and|ﬁ|=1
2 < x modl x
( y + x? ): (3’>

then k; has (O mod1l

0 ) is the fixed points

If |B] = 1and || # -

Bar )= ()

Then ki has (g mOdl) as the fixed points

Proposition(2.8):

the Jacobain of the modified Kaplan York map is (2 x 8),V«,3 € R

Proof
af1  af1

: : : , X\ _[ox ey |\_(2x 0

The differential matrix of K;is Dk, (y) =lorz o2 |7 ( 2% B )

ax ay
J=detDk; () =2« B; v, 8 €R
y ) )
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Proposition(2.9):
1* If either|oc| > % or |B] > %Then ki is area expanding map.
1

2%|x| < %ﬁl or |B| < 2 ,o# 0, Kkj is area contracting map.

Proof
X
I |J] =| det Dk, (y)|
=2 g > 1, thus Jec g| >~
|2 < B] >% either || > % or |[B]l>1

Proposition(2.10):
the modified Kaplan York map is C*

proof

Note that

Os _ oo Va_ Oz _ oz _
ax—Zoc, a5 ,ax—2xanday—[3
My . Mk, .
6xn—0,VneNandayn—0,VneN

And these partial derivatives are exist and continuous then k; is C*
Remark (2.11):-
ki is not one - to — one so kj is not differentiable map.

Remark (2.12):-
K is not onto if

1*x=0,8=0
2*x= 0,8 #0or
Fx£0,6=0

Remark (2.13):-
The eigen values of Dk, at the fixed pointare 4, =2 « and%, =2k ;Vk€eZ
Proof
2« 0 )

Since Dk, (;) = ( B 2x

2 X 0 )
So that Dk, (p) = ( B 2k ),VkEZ
The eigen values of Dk, is
2 X =4 0 .
Det( B 2k — 1 ) = 0, this imply

(2o —A)2k—A)=0,50 4y, =2 « andi, =2k ;VkeZ
To find the type of the fixed points this proposition should be proved .

Proposition(2.14):
1* If x| < % and |k| < % V k € Z then the fixed point attractor

2* either || > % or |k| > % V k € Z then the fixed point of k; is saddle
3*If || > %and k| > % V k € Z then the fixed point of k; is repelling
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Proof

Since the eigen values of Dk, are A; =2 « and i, =2 k ;V k € Z and by the
proposition holds

Proposition(2.15):

K, has a positive topological entropy V o, € R

1% If || > 21
Hp 1 Htop 1k; (V) =>log|2 | >0
24 1f Ll > ||

H top (k1| = log

3- Chaotic Properties of Modified the Kaplan York Map
There are many chaotic properties , we start with topological entropy we will
prove the modified Kaplan York has positive topological entropy as its shown below :-
We recall the theorem(3.5) on [6] by theorem (4.1)
Let f:R™ — R™ be a continuous map then h p( K1) > log| #|
Where % is the largest eigen value of Dk; (v) , where r € R™
So we can estamite the topological entropy of k; as:-

Proposition (3.1)
either || > %or |B] > 1 then k; has sensitive dependence into initial Cond icons
Proof

()=o)

6 () = (ppyaety +2) =gty 4 32)
y BBy + x?) + x? By + x?
By induction
X 2 ) "x
ki (y) x ([3(”31 -I)— xz)
If |§| >1 then kI — o0 asn—o
If |B] >1 then k' — oo as n—ow
d (K (1), kT (x2) = /(2 0™ (21 = x2)* + B"(y1 — ¥2)°
If oc] > = then d(k}(x,), kZ(xz)) —o0 as n—co
And |B| > 1 thend(kT(x,), k¥ (x;)) —0 as n—oo
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Fig (1-1) x=-1.06 , $=0.5 with initial
points (0.2,0.1) , (0.4,0.6)
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Fig (1-2) x=-3.16 , £=0.1 with initial
points (0.2,0.1) , (0.4,0.6)

Fig (1-3) «=-0.9, #=-0.4 with initial points
(0.2,0.1), (0.4,0.6)

Fig (1-4)x =-0.9, =0 with initial points
(0.2,0.1), (0.4,0.6)
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Fig (1-5) x=0.9, =0 with initial points
(0.2,0.1), (0.4,0.6)
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Fig (1-6) x=-1.9, =0 with initial points
(0.2,0.1) , (0.4,0.6)

Fig (1-7) x=1.15, f=0 with initial points
(0.2,0.1), (0.4,0.6)
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Fig (1-8) «=0.51, £=0.3 with initial points
(0.2,0.1), (0.4,0.6)
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Fig (1-11)x =-0.9 , £=-0.7 with initial points
(0.1,0.1)
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Fig (1-12) «=-0.7 ,8 =1.7 with initial
points (0.1,0.1)

Fig (1-13)x =1.9 ,8 =2.7 with initial points
(0.1,0.1)
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Fig (1-14)x =3.4 , f=-0.1 with initial
points (0.1,0.1)
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Fig (1-15)x =-0.7 , £=0.1 with initial
points (0.1,0.1)
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Fig (1-16) «<=-1.4, $=0.1 with initial
points (0.1,0.1)

The final chaotic properties is Lypunov exponent

Proposition (3.2)
k, has a positive Lypunov exponent

Proof

Since 4, =2 x and%, =2kandL (k;)=1log |2 ]| or L (k;) =log |k|

i kez

If || > %then L (n)> 0 and if k+0 then L (n;) >0

The second property is sensitivity
Proposition (3.3)

If |x| > %or B > %then k; has sensitive dependence on the initial conditions.

Proof
X 2 « x mod1l
Ks (y) _( By + x* )

4 ? x

1 (5) = (sgg y 1ty +2) < [ty 3 22

By induction
X (2 c)™x
ki (y) x (,B”y + x2>

If |§| >1 then kT — oo as n—o
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If || >1 then kI — oo as n—oo

We use the matlab to calculate the Lypunov exponent of k;

Jp= (2 x ;’;"d 1 g) x=0.1, y=0.1
A b L1 L2
-1 0.1 -0 NaN
- 08 +0.1 - o0 NaN
-0.4 0.1 -0 NaN
0 +0.1 - o0 NaN
1.2 0.1 - o NaN
0.9 0.1 -0.2217568112 -
0.5 +0.1 - o0 NaN
0.8 0.1 -0.5104248463 -0
0.7 +0.1 - o0 NaN
0.8 0.7 -0.3530910674 -0.5144095003
-1 +0.7 -0.3550215868 -0
-2 +0.7 -0.3555969509 - 0
0 +0.7 - o0 NaN
0.4 +0.4 -0.223143513 -0.9162907319
0.23 1 -0.0042964340 -0.7722323555
0.23 -1 -0.0051558170 -0.7713729725
-0.23 -1 0.0009468829 -0.6171330223
-0.23 1 0.0024528523 -0.6186389917
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