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Abstract: This paper presents the design of a fuzzy control heuristic that can
be applied for modeling nonlinear dynamic systems using a fuzzy knowledge
representation. Nonlinear dynamic systems have been modeled traditionally
on the basis of connections between the subsystems that compose it. Never-
theless, this model design does not consider some of the following problems:
existing dynamics between the subsystems; order and priority of the connec-
tion between subsystems; degrees of influence or causality between subsystems;
particular state of each subsystem and state of the system on the basis of the
combination of the diverse states of the subsystems; positive or negative influ-
ences between subsystems. In this context, the main objective of this proposal
is to manage the whole system state by managing the state combination of the
subsystems involved. In the proposed design the diverse states of subsystems
at different levels are represented by a knowledge base matrix of fuzzy intervals
(KBMFI). This type of structure is a fuzzy hypercube that provides facilities
operations like: insert, delete, and switching. It also allows Boolean opera-
tions between different KBMFI and inferences. Each subsystem in a specific
level and its connectors are characterized by factors with fuzzy attributes rep-
resented by membership functions. Existing measures the degree of influence
among the different levels are obtained (negatives, positives). In addition, the
system state is determined based on the combination of the statements of the
subsystems (stable, oscillatory, attractor, chaos). It allows introducing the dy-
namic effects in the calculation of each output level. The control and search
of knowledge patterns are made by means of a fuzzy control heuristic. Finally,
an application to the co-ordination of the activities among different levels of
the operation of an underground mine is developed and discussed.
Keywords: Fuzzy Systems, Knowledge Representation, Heuristics, Nonlinear
Dynamic Systems.

1 Introduction

Organizations can be visualized as complex systems composed of various subsystems that
respond to different problems and have their own dynamics. This process in turn is recursive,
so each subsystem has a particular dynamics. Such is the case of Managements, Business Areas,
Departments, primary and support activities of the value chain, activities plans, besides many
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other systems and subsystems existing in the organization. Each subsystem is characterized by
its variables and by inputs that can alter its performance and its outputs, which are the inputs
of other subsystems, whose dependent effects are known only approximately. This constitutes
a situation of a set of highly dynamic subsystems and with clearly nonlinear characteristics.
Usually, these factors are not considered in the decision making processes.

It is clear that a universe of this kind is quite heterogeneous, dynamic, and growing. Also,
because of the nature of the stated problem, it must be considered that these subsystems rep-
resent inputs among themselves, giving the problem a high dose of parallelism. Insofar as these
subsystems serve as inputs among themselves, feedback is taking place continuously, making the
system’s dynamics difficult to control, predict, manage and administer [1]. It is also necessary
to take into account the increasing number of data, information and knowledge that current
systems must administer, in particular their adequate representation [9]. If we consider that the
problem of knowledge-based management and decision making must be carried out in organiza-
tions having these characteristics, then it is ever more important to support conceptual models
and tools adequate for the planning, management and control processes of this dynamics.

On the other hand, the representation knowledge is a fundamental component in any in-
telligent system that allows coding knowledge, objects, objectives, actions, and processes. The
scheme for the chosen representation of knowledge determines the reasoning process and its ef-
ficiency. Numerous studies on the representation of knowledge show that a representation can
be more adequate than another one for a particular case or it can be capable of covering a
greater number of cases [8]. The more traditional methods used are Semantic Networks, Frames,
Production Rules, Trees, and Bits Matrices. Cazorla et al. [3] suggest that knowledge can be
classified according to the specific application to be used that develops knowledge: procedural,
declarative, meta-knowledge, heuristic, or structural. However, the theory of diffuse sets pro-
posed by Zadeh [12], [13] allows the generation of knowledge representations that are closer to
the nature itself of what it is desired to represent.

The conceptual models of systems, their representation based on knowledge, and the tools
for supporting management and decision making must then consider in their design factors such
as high dynamism, parallelism, feedback, incompleteness, handling of uncertainty, nonlinearity,
vagueness, qualitative definitions and behaviors, personal opinions, etc. Along this line, some
authors [1], [16], [15] make a profound development of various concepts such as fuzzy function
approximations, chaos and fuzzy control, and processing of fuzzy signals. However, his greatest
contribution refers to the calculation and representation of knowledge by means of fuzzy cubes
and fuzzy cognitive maps. McNeill [6] also works with fuzzy theory as a means of representing
environments with uncertainty usually characterized by their nonlinearity. Welstead, on the other
hand, supported by one of Kosko’s results [11] suggests that fuzzy rules can be represented by one
or more fuzzy associative memory matrices (FAM); combining the above with genetic algorithms
he proposes a model to approach prediction problems. They also use fuzzy representations
centered mainly on the interaction of fuzzy theory, neural networks, and genetic algorithms,
supporting a new line of work known as Computational Intelligence. Tsoukalas [10] is more
centered on the interaction and creation of fuzzy theory and neural network hybrids. To approach
these kinds of problems, models are designed making use mainly of causal diagrams or knowledge
maps with a series of nodes that would represent the concepts that are relevant to the system,
and links between them that show the causal relation (influence) between concepts. In this
context, the objective of this paper is to make a study and analysis that will allow modeling
some types of dynamic systems, representing knowledge by means of a knowledge base matrix
of fuzzy intervals and fuzzy cognitive maps [4], [14] and [15] with the purpose of achieving their
categorization and fuzzy weight, as well as the levels of incidence in other subsystems, in this
way characterizing the complete system with its levels of fuzzy incidence [5], [10].
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2 Modeling of the Diffuse Knowledge Base Matrix

In this proposal each of the map’s concepts corresponds to a fuzzy set, and it is specifically
a particular Knowledge Base Matrix of Fuzzy Intervals (KBMFI). The connections between
concepts will have an associated value in the [-1,1] range that represents the degree of influence
of a (KBMFI) node on another. If the value is positive, it indicates that an increase on the
evidence of the origin concept increases the meaning, the evidence or the truth value of the
destination concept. If it is negative, an increase of the evidence of the source causes a decrease
of that of destination. If the value is 0, there is no connection, and no causal relation.

In this way it is possible to get blurred cognitive maps from the opinion of one or various
experts on the relations between some aspects of the evaluation process of a hypothetical case.
Also, the clear recursiveness involved in these types of systems is considered, and a vision of
granularity is proposed that allows overcoming the various levels of abstraction subjacent in
the dissimilar subsystems. On the other hand, internally each subsystem can be represented by
KBMFIs, allowing their incidence weight to be obtained with respect to other subsystems and
at the same time represent their particular behavior.

Definition 1. Let X be a classical set of objects, called the universe. Belonging to a subset A
of X can be defined in terms of the characteristic function:

µA : X −→ [0, 1] x −→ µA(x) (1)

where:

µA(x) =

{
1 x ∈ A

0 x ̸∈ A

If the evaluation set 0, 1 is extended to the real interval [0,1], then it is possible to talk about
the partial belonging in A, where µA(x) is the degree of belonging of x in A, and the values 0
and 1 are interpreted as "non-belonging" and "total belonging", respectively.

Clearly, A is a subset of x, which has no defined boundaries. This leads to the following
definition.

Definition 2. Let X be an object’s space. A fuzzy set A of X is characterized by the set of pairs:

A = {(x, µA(x))/x ∈ X} where µA : X −→ [0, 1] (2)

The fuzzy concept proposed by Zadeh [11] is based on the fact of allowing the partial belonging
in a set for certain elements of a given universe.

Definition 3. A fuzzy hypercube can be considered as a unit hypercube, i.e., a hypercube
In = [0, 1]n. The n fuzzy cube has two vertices or binary subsets.

A fuzzy cube contains all the fuzzy sets of a set X of n objects. The non-fuzzy sets are found
at the vertices of the cube. The continuum of fuzzy sets is in the cube.

Definition 4. Knowledge Base Matrix of Fuzzy Intervals (KBMFI) means the hypercube that
is constituted by the various knowledge E1, E2, E3, ..., En, relative to a domain of knowledge,
considering also the different weight or importance that each of them has in the particular
domain.

The KBMFI is a fuzzy hypercube where E1, E2, ..., En, represent the various contingencies or
characteristics of the area under discussion, according to the opinion of the experts. Ej, with
j = 1, 2, ..., n, do not necessarily have the same relevance or weight, they can be in particular
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fuzzy frames consisting of S1, ..., Sm, where S1, S2, ..., Sm, are the possible factors, not necessarily
disjoint, such that each characteristic Ei can be expressed by means of some particular union of
S1, S2, ..., Sm factors. Now the particular determination of each Ei through its particular factors
S1, S2, ..., Sm, model systems composed of a range of nodes N1,N2, ..., Nn, continually influencing
each other if and where the incidence of one with respect to others is completely dynamic. In
particular, this outlines a vision of dynamic nonlinear systems which in similar but not equal
versions are seen as causality maps.

If the map is adjusted to the opinions of several experts, one would have to get the assessments
of all of them and therefore establish the definitive values associated with the causality relations.
It must be noted that in general the causalities mentioned by the experts with respect to the
various influences exerted by the nodes of the maps are more attributable to qualitative than
quantitative concepts.

As already stated, nonlinear dynamic systems involve nonlinear and feedback behaviors. In
these systems the output of a process or node is used as input for the following node or iteration,
and the output of this can again be the input of the same previous node, i.e., self-recurrent
behaviors. This behavior corresponds to the following equation:

f(x0) =


Xn−1

Xn

Xn+1

Assuming that the following situation occurs when modeling the system: x1, x2, x3, ..., xn.

Definition 5. Let x0 be an arbitrary starting node, then the above sequence is called the
Trajectory.

Considering these definitions, several behaviors can occur, such as, for example: fixed points;
periodic trajectories; behaviors given by attractor nodes, and chaos.

3 Case Study

The case study corresponds to the situation of an underground mine which has three levels:
Production Level, Reduction Level, and Transport Level. The problem consists in "providing
support to activity scheduling management". The problem consists in "providing support to
activity scheduling management" [2]. The total system shown by Figure 1 consists of these three
subsystems and the dynamics that exists between them. This situation is denoted as Level 1.

Figure 1: Production, Reduction and Transport Levels.
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N1: Production Level considers N11,N12,N13, as subsystems; N2: Reduction Level considers
N21, N22, as subsystems; N3: Transport Level considers no subsystems.

Looking at it at a more particular abstraction level, Level 2 appears, as shown in Figure 2.
From the particular situation shown, in Figure 1 it is seen that: N1 influences N2 negatively and
N3 positively, N2 influences N1 and N3 positively, N3 influences N2 negatively and N3 positively.

However, Figure 2 shows that the information obtained at Level 1 of abstraction of the
system does not have the sensitivity or reliability that is obtained at Level 2 of abstraction,
whose granularity or disaggregation is slightly higher.

Figure 2: Diagram of influence at the different levels.

If both levels are confronted, it may be incorrectly deduced that apparently contradictory
information is obtained. For example, if we look at Level 1 and Level 2 for the case of N3

with N2, at Level 1 it was stated that N3 influences N2 negatively, but at Level 2 it could be
concluded that both have the opposite influence, N31 influences N22 negatively and N21 influences
N31 positively. This apparent contradiction can be explained, for example, by saying that when
production at the Reduction Level decreases, there is less pressure on the demand for trains or
cars, and on the other hand, if there is not sufficient transport from N31 there is an impact due
to accumulation of material at the Reduction Level, which is considered a negative influence.
Then the question is, which of the two situations has greater incidence weight? According to
Figure 3, and only as an example, it can be stated that the negative impact from N31 to N22 is
greater than the influence of N22 on N31.

The main observations to the system are: it is clear that it is a Dynamic Fuzzy System. In
turn, every Ni is a Dynamic Fuzzy Subsystem. The connections between the various Ni are
fuzzy. These connections can be positive or negative. If positive, Ni influences positively on Nj.
If negative, Ni influences negatively on Nj.

4 Design and Implementation of the KBMFI Matrix

Going more deeply into Table 1, the experts draw these KBMFI as causal tables. They do
not state equations, but make links between subsystems. The KBMFI systems convert each
pictograph into a Fuzzy Rules Weight Matrix. The nodes of the KBMFI can model the complex
nonlinearities between the input and output nodes. The KBMFI can model the dynamics that
occur in the multiple iterations that take place in these dynamic systems.

The KBMFIs with N nodes have Nn arcs. Since Ni(t) nodes are fuzzy concepts, their values
∈ [0, 1]; a state of a KBMFI is the Ni(t) = (N1(t),N2(t), ...,Nn(t)) vector, so it is a point of the



A Fuzzy Control Heuristic Applied to Non-linear Dynamic System Using a Fuzzy Knowledge
Representation 669

hypercube In = [0, 1]n.
An inference in a KBMFI is a road or sequence of points in In, i.e., it is a fuzzy process or

an indexed family of fuzzy sets N(t). It is clearly seen that the KBMFIs can perform "forward
chaining," and whether they can perform "backward chaining" (nonlinearity inverse causality) is
an open question. The KBMFIs form, as nonlinear dynamic systems, Semantic Fuzzy Networks
and act as neural networks. The KBMFIs can converge to a fixed point, to a limited cycle, that
can be a stable or oscillating state or a chaotic attractor in the fuzzy cube In. In this context,
one of the basic questions to be answered is: what happens if the input to the (KBMFI) system
is known? In this sense, each KBMFI stores a set of global rules of the form:

IF N(0) THEN attractor A (3)

A KBMFI with a single fixed global point has only one global rule. The size of the attractor
regions in the fuzzy cube governs the number of these global regions or hidden patterns. The
KBMFIs can have large and small attractor regions in In, each of them with a different degree of
complexity. Therefore an input state can lead to chaos and a relatively close input state can end
up in a fixed point or limited cycle or a stable state. Since the KBMFIs correspond to a Semantic
Fuzzy Network structure, it is possible to associate a matrix M. This matrix lists the causal links
between Ni nodes. As an example, if it is considered again the case described by Figure 2, the
corresponding KBMFI is presented where a row is the incidence of Ni on Nj; columns are nodes
influence Ni and α,β, γ, δ, η, τ, are values. Fuzzy function: [little,moreorless,much, etc.].

N11 N12 N13 N21 N22 N31

N11 0 −αµ +αµ 0 0 +αµ

N12 0 0 0 +βµ 0 0
N13 +γµ 0 0 0 −γµ 0
N21 0 −ηµ −ηµ 0 −ηµ 0
N22 +δµ 0 0 0 0 +δµ

N31 +τµ 0 0 0 −τµ 0

The proposed model is decomposed in diverse abstraction levels and at each level is repre-
sented by a corresponding KBMFI. Initially, observing Figure 2, the Abstraction Level 0 appears.
Only the influence shapes are observed. A Node Ni can influence positively or negatively to the
Node Nj. Abstraction Level 0 appears:

N1 N2 N3

N1 0 - +
N2 + 0 -
N3 + - 0

Experts are asked to qualify the degree of influence between: µ = [nothing, irrelevant, few,
influence, regular, alter, a lot, very much, so much] as shown in the Incidence Graphic of Figure
3.

Applying the incidence graphic, a second level of abstraction 01 is obtained:

N1 N2 N3

N1 0 −µ +µ

N2 +µ 0 −µ

N3 +µ −µ 0

It is observed that the degree of incidence between a node Ni with a node Nj, this means
that it exists a bigger degree of specificity (granulation) between them. This enhancement of
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Figure 3: Incidence Graphic.

specificity is explicit in the following level, it exist a "slot" between Ni with Nj. In this case
different situations are denoted: N1 influences in a negative way to N2; N1 influences in a positive
way to N3; N2 influences in a positive way to N1; N2 influences in a negative way to N3; N3

influences in a positive way to N1; N3 influences in a negative way to N2.
If it is considered that a Node Ni can be decomposed in Ni1, Ni2, ..., Nik, in where those Nim,

m = 1, 2, ..., k, with a particular dynamic conforms a Ni, the situation in the analyzed case is as
follows:

N1 = (N11,N12,N13); at Level 0; Node or Subsystem N1.

N1 at Level 01, Node or Subsystem N1i is defined by:

N11 N12 N13

N11 0 - +
N12 0 0 0
N13 + 0 0

N1 at Level 011 is defined by:

N11 N12 N13

N11 0 −αµ +αµ

N12 0 0 0
N13 +αµ 0 0

N2 = N21,N22; at Level 0; Node or Subsystem N2.

N2 at Level 01, Node or Subsystem N2i is defined by:

N21 N22

N21 0 -
N22 0 0

N2 at Level 011 is defined by:
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N21 N22

N21 0 −ηµ

N22 0 0

Applying the same procedure to node N3 and it is only characterized by N31, N3 at Level
011 is defined by:

N31

N31 0

At this point only the fuzzy subsystem cohesion is developed. So, it is necessary to visualize
what it happens with the external dynamic between subsystems, in order to obtain the fuzzy
matching inter systems. Continuing with the fuzzy cohesion procedure, links between nodes N1,
N2 and N3, at Level 0 by Nodes are obtained:

N1 N2 N3

N1 0 - +

At Level 01 by Node N1:

N1 N2 N3

N1 0 −αµ +αµ

At Level 011 by Node N1:

N1 N21 N22 N31

N11 0 0 0 +αµ

At Level 02 by Node N1:

N1 N21 N22 N31

N11 0 +βµ 0 0

In this way, influences are obtained allowing the fuzzy matching.

5 Heuristic Control for the KBMFI

Each Ni level has Fij factors that determine it, with i = 1, 2, 3; j = 1, 2, ...,m. Table 1 shows
relevant characteristics, factors, attributes and fuzzy functions at Production Level.

Table 2 shows relevant factors, attributes and fuzzy functions at Production Level.
Each Fij factor has Aijs attributes that determine it, where i = 1, 2, 3; j = 1, 2, ...,m; s =

1, 2, ..., k (see Table 1).
Each Aijs has attribute metrics associated with its nature. These metrics are functions of

fuzzy membership (see Table 2).
For the above points, it is possible to state that the degrees of influence (negative or positive)

that exist between the various levels can be measured, allowing the calculation of the existing
dynamics of the system to achieve an Intelligent Fuzzy Control with the purpose of keeping the
system in a desirable state (stable).
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CHARACTERISTICS OF LEVEL
1 (PRODUCTION)

ATTRIBUTES (Metrics or fuzzy functions
Table 1.1)

Fuzzy Functions
FACTORS 1 Rel. Card. (CRC) 1 2 3 4 5 6 7 8 9

1. Number of workmen present
2. Drilling, agents, and resources
3. Blasting, agents and resources
4. Technologies involved
5. Number of equipments
6. Lectures

Relative cardinality of Level 1 (CRN1)

Table 1: Relevant characteristics of Level 1 at Production Level.

6 Heuristic

The proposed heuristic consists of the following stages:

Stage 1: Obtaining the Fij factors of each level Ni.

Stage 2: Obtaining the Aijs attributes of each Fij factor.

Stage 3: Determining the metrics associated with each Aijs attribute, i.e., determining the
fuzzy membership functions for each Aijs.

Stage 4: Determining the "formula" that corresponds to each Fij from the Aijs, for example:

Fij = λ1Aij1⊕ λ2Aij2⊕ ...⊕ λkAijk (4)

where ⊕ is the operator to be determined (=>,∨,∪, etc.) and
∑

λk = 1.

Stage 5: Determining Ni from the Fij, for example:

Ni = λ1Fi1 ⊕ λ2Fi2 ⊕ ... oplusλmFim (5)

where ⊕ is the operator to be determined (=>,∨,∪, etc.) and
∑

λm = 1.
Note that the output of all Nj must be between 0 and 1.

Stage 6: Determining whether the "influence" of the output of Ni to other levels is negative
or positive.

Stage 7: Recalculating the Nt output, with its internal values, considering the influence ex-
erted on it by the recursive dynamics of the nodes Ni at Stages 1, 2,..., 5.

Stage 8: Determining the output of Nt, input of Nl, and determining whether we feed Nl

or Ni, and specifying the times. Note that in this step we distinguish between what influences
what, or we make a push, we make a pull, or both at the same time, with a delay of one with
respect to the other, etc.
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FACTORS AND ATTRIBUTES FUZZY FUNCTIONS
PROJECT SYSTEM

1. Number of workmen present.
(Decision making complexity).
1.1 Number of engineers. µ1

1(x) = 1− 25−x
25

10 ≤ x ≤ 25

1.2 Number of technicians. µ1
2(x) = 1−

(
75−x
75

)2
30 ≤ x ≤ 75

1.3 Number of miners. µ1
3(x) = 1−

(
150−x
150

)2
60 ≤ x ≤ 150

1.4 Number of equipments µ1
4(x) = 1− 30−x

30
12 ≤ x ≤ 30

x = amount of engineers, miners, ...

2. Drilling, agents and resources. For evaluating this characteristic, first the predominant fac-
tor must be identified and then the calculation can be made.
For example, if x = 25 or 30 or 90 or 21, for respective:

2.1 Planned drillings. µ1
i : µ

1
1(25) = 1;µ1

2(30) = 0.64;µ1
3(90) = 0.84;µ1

4(21) = 0.91

2.2 Direct agents involved. µ2
1(x) = 1−

√
50−x
50

20 ≤ x ≤ 50

2.3 Indirect agents involved. µ2
2,3(x) = 1−

(
15−x
30

)3
6 ≤ x ≤ 15

Table 2: Factors, attributes and fuzzy functions at Production Level.

7 Conclusions and Future Works

The work done in the paper allows the characterization of a complex system through sub-
systems considering the dynamics and the incidence of each subsystem on the others. From the
display of the complexity of the system and subsystems, the KBMFI is constructed, which allows
an adequate representation of diffuse knowledge and the dynamics associated with the system.
A fuzzy control heuristic is also designed that allows managing the KBMFI.

In the case of the planning of mining operations, the KBMFI and the associated heuristic
allow the evaluation of the impact of the incidence of various factors such as reduction of the
number of planned workers in a shift, faults in Load Haul and Dump LHD equipment, rock
breakers, shafts, and trains, among others.

If someone is considering developing software from this proposal, it should be kept in mind
that in the tool there should be an agent module that is informed (alert) of the acceptable critical
values for each node, so that this node does not alter acceptable states (experts) of the nodes
with which it interacts. In such case the agent must learn about the acceptable critical values,
know and learn preventive measures; know and learn mitigation measures, and know and learn
corrective measures.
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