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Abstract: Tissue P systems with evolutional communication rules and cell division
(TPec, for short) are a class of bio-inspired parallel computational models, which
can solve NP-complete problems in a feasible time. In this work, a variant of TPec,
called k-distributed tissue P systems with evolutional communication and cell division
(k-∆TPec , for short) is proposed. A uniform solution to the SAT problem by k-∆TPec

under balanced fixed-partition is presented. The solution provides not only the pre-
cise satisfying truth assignments for all Boolean formulas, but also a precise amount
of possible such satisfying truth assignments. It is shown that the communication
resource for one-way and two-way uniform k-P protocols are increased with respect
to k; while a single communication is shown to be possible for bi-directional uniform
k-P protocols for any k. We further show that if the number of clauses is at least
equal to the square of the number of variables of the given boolean formula, then
k-∆TPec

for solving the SAT problem are more efficient than TPec as show in [39]; if
the number of clauses is equal to the number of variables, then k-∆TPec

for solving
the SAT problem work no much faster than TPec.
Keywords: Membrane computing, distributed P system, SAT, communication com-
plexity

1 Introduction

Since the research area of membrane computing was proposed in 1998 [8,19], the research lines
about computation power of various variants of P systems [25, 26, 26, 33, 37], their applications
[8,24,29,36] and implementation issues [15,16,32] have been investigated widely. Several solution
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approaches and techniques have been presented in the literature for solving Satisfiability Problem
(SAT) using many variants of P systems [11, 12, 27, 30]. Each of these variants of P systems
solving SAT provided better solutions than the conventional model in terms of time efficiency or
computational time complexity [18,31,38]. Most of them are benefited from the nondeterministic
maximal parallelism of P systems and its ability to produce exponentially many cells or regions
(in linear time) in a computation [35].

Evolution and communication are the core operations in the solutions offered by the variants
of P systems, where communication allows objects to be transmitted to the other regions/cells for
further processing. In [14], Hernandez, et al. provided a solution to 3-SAT, where the amount of
communications is measured from a dynamic communication complexity perspective [1]. Several
results might have been reported using communication as a measure of complexity [2, 5, 6], but
the analyses would be dissimilar to that of [1].

In order to capture the concept of communication complexity as introduced by A.C. Yao
in [34], Gh. Păun, et al. [21] introduced and defined a so-called dP scheme, where the input of
a k-dP scheme is partitioned and these parts are distributed to the participating components.
Necessarily, these components need to communicate to solve a problem, and the so-called inter-
component communication rules are introduced as a new kind of set of communication rules.

Computation done by distributed model in this work depends on the agreed upon partition
of the input among the participating P systems. A partition is called balanced partition if the
number of objects or the length of the part of the input assigned to each participating component
P systems is almost equal. Let w be an input for a distributed system with two components.
The partition w1 and w2 of w, where wi is assigned to Πi, i = 1, 2 is balanced if and only if
||w1| − |w2|| ≤ 1. In particular, it is a balanced fixed-partition, if w = w1w2; otherwise, we have
unbalanced (fixed-)partition.

The distributed P systems halt if and only if all participating component P systems halt. If
a distributed system halts in a specified accepting configuration, then it accepts/decides/solves
a problem.

Since k-dP scheme was introduced, some of the results on this variant were reported in
[7,10,23]. In [4], Buño, et al. introduced a distributed solution for n-queens problem as presented
in Naranjo, et al. [13]. Indeed, in [4], the reduction of the n-queens problem to SAT of a dP
scheme were used, where the components are P systems with active membranes.

Recently, Buño, et al. [3] capitalized the power of tissue P systems (TPec) with evolutional
communication rules and cell division introduced in [39], in proposing a distributed solution to
SAT. In particular, they defined a so-called 2-dTPec. The paper claimed a decent advantage of
distributed solution compared to the non-distributed one with respect to the results reported in
[39]. Also, only two participating components in systems were considered working on a balanced
partition.

In this work, the solution presented in [3] will be revisited and some other insights into the
consequences of our results are provided. Some other relevant issues related to communication
complexity in distributed tissue P systems with evolutional communication and cell division are
proposed.

Contributions of the present work are summarized as follows:

(a) A variant of tissue P systems with evolutional communication and cell division, called k-
distributed tissue P systems with evolutional communication and cell division (k-∆TPec ,
for short) and the corresponding recognizer version are proposed.

(b) A uniform solution to the SAT problem by k-∆TPec under balanced fixed-partition is pre-
sented. The solution provides not only the precise satisfying truth assignments for all
Boolean formulas, but also a precise amount of possible such satisfying truth assignments.
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(c) The communication resource for one-way and two-way uniform k-P protocols is increased
with respect to k; while a single communication is shown to be possible for bi-directional
uniform k-P protocols for any k.

(d) We further show that if the number of clauses is at least equal to the square of the number
of variables of the given boolean formula, then k-∆TPec for solving the SAT problem are
more efficient than TPec as show in [39]; if the number of clauses is equal to the number
of variables, then k-∆TPec for solving the SAT problem works no much faster than TPec.

The rest of this work is organized as follows. Section 2 provides the preliminaries of a dP
scheme, introducing the concepts of P protocols and balanced (fixed) partition and the commu-
nication resources used in the analyses of the solution to SAT. In Section 3, distributed tissue
P systems with evolutional communication and cell division or k-∆TPec are defined. Solution to
SAT using 2-∆TPec is presented in Section 3, while solution to SAT using 3-∆TPec is given in
Section 5. Remarks on the relative efficiency of distributed solutions are provided in Section 4.
Finally, conclusions and discussions are given in Section 5.

2 Preliminaries

In this section, the notions of k-dP scheme and communication complexity of P systems
are presented, then tissue P systems with cell division and evolutional communication rules are
introduced [39].

Definition 1. A k-dP scheme (k ≥ 2) is a tuple

k-∆Π = (Γ, 0,Π1,Π2, . . . ,Πk, R∆),

where

• Π is a fixed variant of P system;

• Γ is an alphabet of objects in the whole system ∆;

• 0 is the common/shared environment of Πi;

• Πi for i = 1, 2, . . . , k are P systems of the fixd variant Π with Γ as working alphabet,
skin membranes or local environments of each P system will be labelled injectively as
s1, s2, . . . , sk;

• R∆ is a finite set of rules of the form (si, u/v, sj), where 1 ≤ i, j ≤ k, i 6= j, and u, v ∈ Γ∗,
such that uv 6= λ. We denote by |uv| the weight of the rule (si, u/v, sj). This antiport-like
communication rule is called inter-component communication rule.

The mechanism by which a k-dP scheme performs its computation could be found in [21].
In particular, an input for a k-dP scheme is partitioned into k parts and distributed one part
to each of the k components of the dP scheme. Thus, communication to solve the problem is
inevitable. In this paper, definition of balanced and unbalanced partition of an input is provided.

Definition 2. A partition {P1, P2, . . . , Pk} is called balanced partition if and only if for all i, Pi
have the same size or at most a difference of 1. Otherwise, we call it an unbalanced partition.

Definition 3. We call a k-balanced (unbalanced) partition {P1, P2, . . . , Pk} (resp., a k-balanced
(unbalanced) fixed-partition) if and only if the k-partition of input is done from left to right with
respect to the (resp., fixed) ordering of the input.
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Cooperation between component P systems of a dP scheme is defined in the set R∆ of inter-
component communications. R∆ specifies the mode of communication protocol of a dP scheme.
In what follows, k-P protocols for a k-dP scheme are defined.

Definition 4. Let k-∆Π be a k-dP scheme.

• k-∆Π is called 1-way k-P protocol if and only ifR contains only rules of the form (si, u/λ, sj).

• k-∆Π is called 2-way k-P protocol if and only if R contains rules of the form (si, u/λ, sj)
and (si, λ/v, sj).

• k-∆Π is called bi-directional k-P protocol if and only if R contains rules of the form
(si, u/v, sj), (si, u/λ, sj) and (si, λ/v, sj).

A k-dP scheme computes as follows. All component P systems of a k-dP scheme are aware of
the problem that they are solving. Each component P system knows only the part of the input
assigned to them. We allow each component P system to perform computation to the input part
known to them. To solve the problem, component P systems must communicate with respect to
a particular protocol.

Definition 5. A configuration δj of k-∆Π is a vector in C = 0×M〈1,0〉×M〈2,0〉× . . .×M〈k,0〉,
where 0 is the common environment, and M〈i,0〉 are sets of multisets of objects in 〈i, 0〉, i =
1, 2, . . . , k. In particular, δj = (m0j ,m1j ,m2j , . . . ,mkj ) ∈ C indicates that at time j, m0 ∈ 0 and
mi ∈M〈i,0〉, i = 1, 2, . . . , k.

Definition 6. A computation of k-∆Π is the transition of configurations represented by a se-
quence δ : δ0 ⇒ δ1 ⇒ · · · ⇒ δh, where δ0 is the initial configuration, and δh is the final or
halting configuration. The initial configuration δ0 is a vector of initial multisets contained in 0
(local environment of component P systems). δ is a halting computation if and only if δh is a
configuration, where one of the objects yes or no is contained in some (specified) membrane of
the system.

k-∆Π has an accepting configuration if and only if δ is a halting computation and at configura-
tion δh, object yes appeared in a specified membrane in the system. δ is a rejecting computation
if and only if at δh object no appeared.

Definition 7. A language L is decided by k-∆Π, L = L(k-∆Π) if and only if for every input w
over some alphabet, there is a halting computation δ of k-∆Π that decides on w ∈ L.

In this work, the existence of at least an object yes in 0 implies an affirmative decision on a
problem, while the appearance of at least an object no in 0 connotes a negative decision.

All component P systems with the same and uniform procedure in processing input part,
that is to say, component P systems of a k-dP scheme would be all the same, is called a uniform
k-dP scheme. If we have a uniform k-∆Π, then k-P protocol is called uniform k-P protocol.

This work focuses on the amount of communications used by component P systems in deciding
the satisfiability of some formula ϕ in conjunctive normal form (CNF). Thus, the following notions
are used [1].

Definition 8. [21] Let ∆ be a dP scheme, δ : δ0 ⇒ δ1 ⇒ · · · ⇒ δh is a halting computation in
∆, where δ0 is the initial configuration. Then for each i = 0, 1, · · · , h− 1, we have the following
parameters:

• ComN(δi ⇒ δi+1) =

{
1, if a communication rule is used in this transition,
0, otherwise,
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• ComR(δi ⇒ δi+1) denotes the number of communication rules used in this transition,

• ComW (δi ⇒ δi+1) denotes the total weight of the communication rules used in this tran-
sition.

The above mentioned parameters can also be used to measure computations, results of com-
putations, systems and languages (problems).

Definition 9. Let L(∆) be the set of strings accepted by ∆. For X ∈ {N,R,W}, we define:
ComX(δ) =

∑h−1
i=0 ComX(δi ⇒ δi+1), δ is a halting computation,

ComX(w,∆) = min{ComX(δ) | δ is an accepting computation of ∆ for w},
ComX(∆) = max{ComX(w,∆) | w ∈ L(∆)}.

3 Distributed recognizer tissue P systems

In this section, we introduce the notions of (recognizer) tissue P systems with evolutional
symport/antiport rules and cell division and k-distributed tissue P systems with evolutional
symport/antiport rules and cell division.

Definition 10. A tissue P system (of degree q ≥ 1) with evolutional symport/antiport rules
and cell division (TPec) is a tuple

Π = (Γ, E ,M1, . . . ,Mq, R, iout),

where

1. Γ is a working alphabet of objects;

2. E ⊆ Γ is the set of objects initially located in the environment;

3. Mi, 1 ≤ i ≤ q, are finite multisets over Γ;

4. R is a finite set of rules of the following forms:

(a) Evolutional communication rules:
i. Evolutional symport rules: [u]i[ ]j → [ ]i[u

′]j , for 1 < i ≤ q, 0 < j ≤ q, i 6= j;u ∈
Γ+, u′ ∈ Γ∗ or i = 0, 1 < j ≤ q;u ∈ Γ+, u′ ∈ Γ∗, and there exists at least one
object a ∈ Γ \ E , which is in cell i = 0. The length of an evolutional symport rule
is defined as |u|+ |u′|.

ii. Evolutional antiport rule: [u]i[v]j → [v′]i[u
′]j , where 0 ≤ i 6= j ≤ q, u, v ∈

Γ+, u′, v′ ∈ Γ∗. The length of an evolutional antiport rule is defined as |u|+ |u′|+
|v|+ |v′|.

(b) Division rules: [a]i → [b]i[c]i, where i ∈ {1, 2, . . . , q}, i 6= iout, a, b, c ∈ Γ.

5. iout ∈ {1, 2, , . . . , q}.

The details of the mechanism on how TPec works can be found in [39]. In what follows, we
introduce the notion of recognizer TPec systems.

Definition 11. A recognizer tissue P system with evolutional symport/antiport rules and cell
division of degree q ≥ 1 is a tuple

Π = (Γ,Σ, E ,M1, · · · ,Mq, R, iin, iout),

where



308 H.N. Adorna, L. Pan, B. Song

• Γ has two distinguished objects yes and no;

• Σ ⊆ Γ is the input alphabet;

• M1, · · · ,Mq are finite multisets over Γ \ Σ;

• iin ∈ {1, · · · , q} is the label of the input cell, and iout = 0;

• all computations halt;

• either an object yes or an object no is released into the environment at the last step of
any computation.

Theorem 12. [39] Let PMCTDEC(k) be the set of all decision problems solvable in a uniform
way and polynomial time by means of recognizer tissue P systems with cell division and evolutional
communication rules of length at most k. Then, SAT ∈ PMCTDEC(4).

In this work, at least two recognizer tissue P systems with evolutional symport/antiport rules
and cell division of degree q ≥ 1 are used to solve the SAT problem, where the input multiset is
partitioned with respect to the number of component recognizer tissue P systems. Consequently,
a so-called k-distributed tissue P system with evolutional symport/antiport rules and cell division
rules (k-dTPec system) is defined.

Definition 13. A k-distributed tissue P system with evolutional symport/antiport rules and
cell division or k-dTPec system is defined as follows:

k-∆TPec = (Γ, 0,Π1,Π2, . . . ,Πk, R∆, iout),

where

1. Γ is a set of alphabet of objects in the whole system ∆;

2. 0 is the common or shared environment of all Πi, i = 1, 2, . . . , k;

3. Πi, i = 1, 2, . . . , k are recognizer tissue P systems with evolutional symport/antiport rules
and cell division. Each Πi has the alphabet of objects in Γ. Each cell of Πi will be labelled
〈i, j〉, where j = 1, 2, . . . , di, and di denotes the number of cells of Πi. The external region
or the environment is different for each component. We will refer to the environment of
component i as the local environment of i and is denoted by the label 〈i, 0〉;

4. R∆ is a set of finite inter-component communication rules of the form: (〈i, 0〉, u/v, 〈j, 0〉),
where 〈i, 0〉 and 〈j, 0〉 are the local environments of components i and j, respectively,
u, v ∈ Γ∗, and |uv| ≥ 1;

5. iout is the component of the dTPec designated as the output component. Only the ob-
jects produced in the output region of the system are considered as output in a halting
computation of the dTPec.

Note that the k-dP tissue P system used in the next section is actually a uniform k-distributed
recognizer tissue P system with evolutional symport/antiport rules.
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4 Solving SAT by 2-∆TPec

In this section, a 2-∆TPec is presented that solves the satisfiability of any instance ϕ of
the SAT problem. In particular, a uniform 2-P protocols is constructed which is based on the
construction in [39].

Theorem 14. Let ϕ be any instance of the SAT problem in CNF with m clauses and n variables.
Then there exists 2-∆TPec deciding on satisfiability of ϕ under a balanced fixed-partition in 3n+
3dm2 e+ 4 steps using antiport-like inter-component communication rules.

Proof: A 2-∆TPec for the SAT problem will be constructed such that component P systems are
quite the same with that presented in [39] but with some additional rules.

Let 2-∆TPec be defined as follows:

2-∆TPec = (Γ, 0,Π1,Π2, R∆),

where

• Γ = Γ1 ∪ Γ2,

• 0 is the common shared environment of the Π1 and Π2,

• Πk, k = 1, 2 are recognizer tissue P systems defined as:

Πk(〈n,m〉) = (Γk,Σk, Ek,Mk,1,Mk,2,Mk,3,Mk,x, Rk, ikin = 2, ikout = 0),

where:

– Γk = Γ′k ∪ V ,
Γ′k = Σh ∪ {ai, ti, fi, t′i, f ′i , βi, β′i | 1 ≤ i ≤ n}

∪ {ei,j , e′i,j , ei,j , e′i,j , Ei,j , Ei,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}
∪ {di,j,h, d′i,j,h, di,j,h, d′i,j,h | 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ h ≤ n− 1}
∪ {bjcj , cj , c′j , Ej | 1 ≤ j ≤ m}
∪ {bj,h, b′j,h | 1 ≤ j ≤ m, 1 ≤ h ≤ n− 1}
∪ {α, α′i | 0 ≤ i ≤ 3n+ 3mk}
∪ {d,Emk+1, α3n+3mk+1, yes, no, y, y

′},
V = {vl | 1 ≤ l ≤ 2n, where n is the number of variables}.

– Σk = {xi,j , xi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m},
– Ek = {α′i | 0 ≤ i ≤ 3n+ 3mk},
– Mk,1 = {a1, . . . , an, E1},Mk,2 = {b1, . . . , bn, d, α0},Mk,3 = {a1, . . . , an}, andMk,x =
∅,

– Rk is the set of rules of each k = 1, 2 component.
The set of rules we will use are those set of rules r1,i until r26,i, from [39] only with
the following modifications and addition:

(a) we split r1,i into r1,i;c, where c indicates in which cell r1,i will be applied on
variable i :
r1,i;3 ≡ [ a1 ]3 → [β1 ]3 [β′1 ]3, 1 ≤ i ≤ n,
r1,i;1 ≡ [ ai ]1 → [ t′i ]1 [ f ′i ]1, 1 ≤ i ≤ n;

(b) we replace r27 with the following:
r27 ≡ [ vlEmk+1 ] 1[ vl ]3 → [ y ]1 [ vl yes ]3;
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(c) we replace r28 with the following:
r28 ≡ [ vl yes ]3 [ ]0 → [ ]3 [ vl yes ]0;

(d) we replace r29 with the following:
r29 ≡ [α3n+3mk+1 d ]2 [ ]0 → [ ]2 [ no ]0;

(e) cell-labeling rules: rp;c denotes rp is used to label cell c,
r30;1 ≡ [β1 ]3 [ t′1 ]1 → [ v1 ]3 [ v1 t1 ]1,
r31;1 ≡ [β′1 ]3 [ f ′1 ]1 → [ v2 ]3 [ v2 f1 ]1.
r32;1 ≡ [βi ]3 [ t′ivl ]1 → [ v2l ]3 [ ti v2l ]1, l ∈ {1, . . . , 2n}, 2 ≤ i ≤ n,
r33;1 ≡ [β′i ]3 [ f ′ivl ]1 → [ v2l−1 ]3 [ fi v2l−1 ]1, l ∈ {1, . . . , 2n}, 2 ≤ i ≤ n;

(f) cleaning rules, unused objects (during computation) are dump to cell x
r34 ≡ [ yes vl ]0 [ ]x → [ ]0 [ yes vl ]x,
r35 ≡ [ ]3 [ y ]1 → [ y′ ]3 [ ]1,
r36 ≡ [ y′ ]3 [ ] → [ ]3 [ y ]0,
r37 ≡ [ y ]0 [ ]x → [ ]0 [ y ]x.

• R∆ is the set of inter-component communication rules:
Rbi-∆2 = {r′1 ≡ (〈1, 0〉, yes vl/yes vl, 〈2, 0〉), r′2 ≡ (〈1, 0〉, no/no, 〈2, 0〉),

r′3 ≡ (〈1, 0〉, λ/no, 〈2, 0〉), r′4 ≡ (〈1, 0〉, no/λ, 〈2, 0〉),
r′5 ≡ (〈1, 0〉, yes /λ, 0), r′6 ≡ (〈1, 0〉, no/λ, 0), r′7 ≡ (〈2, 0〉, yes /λ, 0),
r′8 ≡ (〈2, 0〉, no/λ, 0)}.

Note that each (uniform) recognizer tissue P system Πk(〈n,m〉) in a dP scheme will process all
Boolean formulas ϕ, which are in conjunctive normal form (CNF) with n variables andm clauses,
where 〈n,m〉 = (n+m)(n+m+1)

2 + n, as long as appropriate input multiset cod(ϕ) is supplied to
each component system [39]. Furthermore, we will use non-deterministic maximal parallelism in
the application of rules of the system. Thus, the correctness of the computations made by the
component P systems of 2-∆TPec is done [39].

In the construction of 2-∆TPec , labelling rules are introduced. Initially, both cells 1 and 3
contain a1, a2, . . . , an, which represent the variables in ϕ. After applying rules r1,i;1 and r1,i;3, we
would have 2n copies of cell 1 and 2n copies of cell 3 in both Π1 and Π2 in 2-∆TPec . Each cell 1
contains a unique truth assignments of the n variables to be evaluated. Each cell 3 contains the
corresponding sequence of βi and β′i, 1 ≤ i ≤ n. Note that the number of t′i and f

′
i equals to the

number of βi and β′i, respectively.
We need to show that our labelling of all cells 1 is unique to guarantee a consistent truth

assignments by both component P systems in 2-∆TPec for each variable in ϕ before the inter-
component communication is done.

The set of labelling rules is composed of r30;1 to r33;1 of 2-∆TPec . The existence of βi and β′i
in each of cell 3 is assured after applying r1,i;3, 1 ≤ i ≤ n. Also t′is and f ′is are in each cell 1 after
applying r1,i;1.

Labelling rules can be expressed as follows. Given initial labels obtained by using r30;1 and
r31;1. Let r32;1 be the mapping gt′ : l 7→ 2l, and r33;1 be the mapping gf ′ : l 7→ 2l − 1. These
mapping are bijections. Thus the unique labelling vl of each cell 1 is obtained. Furthermore,
each cell 1 labelled vl contains distinct thruth assignments that makes true the formula ϕ.

The labelling procedure is done in O(n) steps. Each component P system of ∆TPec performs
its evaluation individually in 3n+ 3mk + 2 steps, where mk = dm2 e. In particular, after 3n+ 3mk

steps, Emk+1 and vl are found in each cell 1, which means the truth assignment for ϕ is satisfied.
Rule r27 collects all pairs vl and yes in cell 3 at step 3n+3mk+1, then r28 releases pairs of vl and
yes to the local environment of each component P system in the dP scheme. The communication
rule r′1 can be applied at the same time unused pairs of vl and yes during the communication
will be dumped to cell x.
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Finally, the object yes will be at the common environment after step 3n + 3mk + 4 or the
object no will be at the common environment after step 3n+3mk +3. Note that at δh the object
yes is in 0. 2

The succeeding results will measure the amount of communications in each component P
system.

Theorem 15. There exists a bi-directional P protocol ∆TPec for solving the SAT problem under a
balanced fixed-partition such that ComN(∆TPec) = 1, ComR(∆TPec) = S, ComW (∆TPec) = 4S,
where S is the number of satisfying truth assignment to the SAT problem.

Proof: The dP scheme 2-∆TPec from Theorem 14 decides ϕ using bi-directional P protocol.
After the component P systems of ∆TPec individually decide on their parts of the input, they
would need to communicate their decisions to the other components for consistency of truth
assignments. Since 2-∆TPec is using an antiport-like inter-component communication rules, this
requires only one communication. Each of the component P systems, if ϕ is satisfiable, then the
system will certainly have some vl. In particular, if (〈1, 0〉, vlyes/vlyes, 〈2, 0〉) is used by both
component P systems Π1 and Π2, which implies both of them obtained at least a satisfying truth
assignment for ϕ.

Let Tk be the set of satisfying truth assignments obtained by Πk, (k = 1, 2), then T1 ∩ T2

is the set of satisfying truth assignments for ϕ. Let |T1 ∩ T2| = S, then ComN(∆TPec) =
1, ComR(∆TPec) = S, ComW (∆TPec) = 4S. 2

Theorem 16. Let ϕ be any instance of SAT in CNF with m clauses and n variables. Then under
a balanced fixed-partition, there is a two-way 2-P protocol ∆TPec for solving the SAT problem such
that ComN(∆TPec) = 2, ComR(∆TPec) = S + T, ComW (∆TPec) = 2(S + T ), where S is the
number of satisfying truth assignment to ϕ1, and T is the number of satisfying truth assignments
of the SAT problem.

Proof: The same 2-∆TPec in Theorem 15 is used but rules in R∆ will be as follows.

R2-∆2 = {r′1 ≡ (〈1, 0〉, vl yes /λ, 〈2, 0〉), r′2 ≡ (〈1, 0〉, λ/ v′l yes 〈2, 0〉),
r′3 ≡ (〈1, 0〉, no/λ, 0), r′4 ≡ (〈2, 0〉, y′ yes /λ, 0), r′5 ≡ (〈2, 0〉, no/λ, 0)}.

Furthermore, we add cell 4 to each component P system of ∆TPec. Then we have

∆TPec = (Γ, 0,Π1,Π2, R∆),

where Πk(〈n,m〉) = (Γk,Σk, Ek,Mk,1,Mk,2,Mk,3,Mk,4,Mk,x, Rk, ikin = 2, ikout = 0), such that
Mk,4 = {ai | 1 ≤ i ≤ n}, and Γk = Γ′ ∪ V ∪ V ′ ∪ {εi, ε′i, κi, κ′i γi, γ′i}.

Similarly, we add the following rules in Rk :

Rule applied to cell 3 with objects βi, β′i, κi and κ
′
i

r1,i;3 ≡ [ a1 ]3 → [β1 κ1 ]3 [β′1 κ
′
1 ]3, 1 ≤ i ≤ n.

Rule applied to generate copies of cell 4 with objects γ′i and ε
′
i

r1,i;4 ≡ [ ai ]4 → [ γ′i ]4 [ ε′i ]4, 1 ≤ i ≤ n.

Cell-labeling rules for cell 4:
r30;4 ≡ [κ1 ]3 [ γ′1 ]4 → [ v1 ]3 [ v1 γ1 ]4,
r31;4 ≡ [κ′1 ]3 [ ε′1 ]4 → [ v2 ]3 [ v2 ε1 ]4,
r32;4 ≡ [κi ]3 [ γ′ivl ]4 → [ v2l ]3 [ γi v2l ]4, l ∈ {1, . . . , 2n}, 2 ≤ i ≤ n,
r33;4 ≡ [κ′i ]3 [ ε′ivl ]4 → [ v2l−1 ]3 [ εi v2l−1 ]4, l ∈ {1, . . . , 2n}, 2 ≤ i ≤ n.
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Additional rules
r38 ≡ [ v2

l y ]0 [ vl ]4 → [ vl ]0 [ v′l y
′ ]4,

r39 ≡ [ ]0 [ v′l y
′ ]4 → [ v′l y

′ ]0 [ ]4.

Let ϕ = ϕ1 ∧ϕ2, where ϕ1 is assigned to Π1 and ϕ2 is assigned to Π2. The inputs are placed
in the appropriate cells of the component P systems of ∆TPec in an encoded form. Solution must
be made known to both component P systems of ∆TPec . Thus, the decision has been made known
to both component P systems if object yes appeared in 0 or the common shared environment of
Π1 and Π2. Note that communications start from left to right, then from right to left.

When both components of ∆TPec have already been produced all labels vl in cell 1, and if
object Emk+1 appears at least in a cell 1 (it means ϕ is satisfiable). Emk+1 together with vl will
be evolved to yes, vl in 〈k, 0〉, k = 1, 2. At this time, communication for the system commences.

Π1 will communicate to Π2, all labels vl of cell 1 that appear in its local environment use the
rule (〈1, 0〉, vl yes /λ, 〈2, 0〉). Suppose there are S copies of vl in 〈1, 0〉, hence 2S copies of objects
have been communicated to Π2 in one communication using S symport-like inter-component
rules. Let T1 and T2 denote sets of satisfying assignments obtained by Π1 and Π2, respectively,
then T1 ∩ T2 is the set of satisfying assignments for the SAT problem.

After performing rules r38 and r39, Π2 will send all v′l and yes to Π1 to inform the solution on
the satisfiability of the SAT problem. At the same time, Π2 sends objects yes, y′ to 0. Finally,
Π1 is informed with the satisfying assignments for the SAT problem.

Therefore, ComN(∆TPec) = 2, ComR(∆TPec) = S + T, ComW (∆TPec) = 2(S + T ). 2

Theorem 17. Let ϕ be any instance of the SAT problem in CNF with m clauses and n variables.
Then under a balanced fixed-partition, there is a one-way 2-P protocol ∆TPec for the SAT problem
such that ComN(∆TPec) = 1, ComR(∆TPec) = S, ComW (∆TPec) = 2S, where S is the number
of satisfying truth assignment of the SAT problem.

Proof: The same 2-∆TPec in Theorem 16 is used.
Communications between Π1 and Π2 end after Π1 sends its pairs vl, yes to Π2. After using

r39, Π2 sends copies of yes to 0 to declare satisfiability of the SAT problem.
At the end of computation/communications, both Π1 and Π2 know the labels of the satisfying

truth assignments for the SAT problem, which requires only a single communication using S
number of communication rules with a total of 2S objects, where S is the number of satisfying
truth assignment of the SAT problem.

Therefore, ComN(∆TPec) = 1, ComR(∆TPec) = S, ComW (∆TPec) = 2S. 2

Remark 18. Suppose we consider an unbalanced fixed-partition for the input of the SAT problem.
Let |P1| = m1, and |P2| = m −m1 such that |m1 −m2| ≥ 2. Then 2-P protocol ∆TPec would
need 3n+ 3m′ + 3 steps to provide a decision for the SAT problem, where m′ = max{m1,m2}.
Eventually, results on communication complexity (Theorems 15, 16 and 17) can be re-stated for
the case of unbalanced fixed-partition.

5 Solving SAT by 3-∆TPec

In this section, solution to the SAT problem will be presented using 3 components recognizer
tissue P systems.

Theorem 19. Let ϕ be any instance of the SAT problem in CNF with m clauses and n variables.
Then under a balanced fixed-partition, there is a one-way 3-P protocol 3-∆TPec for SAT such that
ComN(∆TPec) = 2, ComR(∆TPec) = V ′′ + V ′, ComW (∆TPec) = 2(V ′′ + V ′), where V ′′ is the
number of satisfying truth assignments to ϕ2, and V ′ is the number of satisfying truth assignments
of Π1 for ϕ1.
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Proof: Let 3-∆TPec = (Γ, 0,Π1,Π2,Π3, R∆) be a dP scheme, where each Πk (k = 1, 2, 3) is the
same as those in Theorem 16. Each Πk has almost the same set of rules presented in Theorem
16 in processing input instance ϕ of SAT. In this model, the following rule is added:

r40 ≡ [ v′l vl y ]0 [ vl ]4 → [ vl ]0 [ v′l y
′ ]4.

Consequently, the following inter-component communication rules for 3-∆TPec will be used.

R1-∆3 = {r′1 ≡ (〈1, 0〉, vl yes /λ, 〈2, 0〉), r′2 ≡ (〈2, 0〉, v′l, yes / λ 〈3, 0〉),
r′3 ≡ (〈3, 0〉, y′ yes/λ, 0), r′4 ≡ (〈3, 0〉, no /λ, 0),
r′5 ≡ (〈2, 0〉, no/λ, 0), r′6 ≡ (〈1, 0〉, no/λ, 0)}.

Communication between components of 3-∆TPec is done successively from Π1 to Π2, then
from Π2 to Π3. After each component processed their part of the input, Π1 starts communication
with Π2 by sending all labels of cell 1. Π2 obtained all these vl, which are labels of cell 1 that
provide satisfying truth assignments for ϕ from Π1. Let T1 be the set of all labels vl of cell 1, if
|T1| = V ′, then Π1 sent 2V ′ copies of object to Π2 in one step.

Now Π3 obtained from Π2 copies of object v′l and yes after 3n+ 3mk + 6 steps. Each v′l is a
label of a satisfying truth assignment made by Π1 and Π2, hence all copies of objects v′l, vl, vl′ ,
yes are contained in 〈3, 0〉 after Π2 sent objects v′l, yes to Π3. Π3 uses r40 and r39 to prepare
using (〈3, 0〉, y′ yes/λ, 0) to declare satisfiability of ϕ. The number of y′ is equal to the number of
satisfying truth assignments of ϕ. In particular, the number of y′ is equal to |T1∩T2∩T3|, where
T1, T2, and T3 are sets of satisfying truth assignments evaluated by Π1,Π2, and Π3, respectively.

Let |T1| = V ′, and |T2| = V ′′. Finally, we have ComN(3-∆TPec) = 2, ComR(3-∆TPec) =
V ′′ + V ′, and ComW (3-∆TPec) = 2V ′′ + 2V ′. 2

Theorem 20. Let ϕ be any instance of the SAT problem in CNF with m clauses and n variables.
Then under a balanced fixed-partition, there is a two-way 3-P protocol 3-∆TPec for the SAT
problem such that ComN(3-∆TPec) = 4, ComR(3-∆TPec) = 2S + V ′ + V ′′, ComW (∆3-TPec) =
2(S + V ′ + V ′′), where S is the number of satisfying truth assignment to ϕ, V ′ is the number of
satisfying assignments of Π1 for ϕ1, and V ′′ = |T1 ∩ T2|, where T1 and T2 are satisfying truth
assignments of ϕ1 and ϕ2, respectively.

Proof: The 3-∆TPec in Theorem 19 is used but the set of inter-component communication rules
R∆ = R2-∆3 uses only the symport-like communication rules. Specifically,

R2-∆3 = R1-∆3 ∪ {(〈2, 0〉, λ / v′l, 〈3, 0〉), (〈1, 0〉, λ / v′l, 〈2, 0〉) }.

From Π1, it is easy to know that 2V ′ copies of object are sent to Π2, where V ′ = |T1|, T1

being the set of satisfying truth assignments for ϕ1 evaluated by Π1.
Using r40 and r39, Π2 will eventually send objects v′l and yes to Π3. The total amount of

objects is equal to 2V ′′ in a single communication. Π3 realizes S labels that give satisfying truth
assignments for ϕ, where S is the total number of labels that are common to all component P
systems.

After 3n+ 3mk + 10 steps, y′ and yes will be sent by Π3 to 0, simultaneously, objects v′l and
yes are sent to Π2. Hence Π2 sends the same copies of objects to Π1. The communication going
back from Π3 to Π1 requires 2S copies of objects using 2S rules in two communications.

Therefore, ComN(3-∆TPec) = 4, ComR(3-∆TPec) = S + V ′ + V ′′, and ComW (3-∆TPec) =
S + 2V ′ + 2V ′′. 2

Theorem 21. Let ϕ be any instance of the SAT problem in CNF with m clauses and n variables.
Then under a balanced fixed-partition, there is a bi-directional 3-P protocol 3-∆TPec for the SAT
problem such that ComN(3-∆TPec) = 1, ComR(3-∆TPec) = S, ComW (∆3-TPec) = 6S, where S
is the number of satisfying truth assignment to ϕ.
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Proof: The 3-P protocol 3-∆TPec used in this proof will have component P systems similar to
that in Theorem 15, but we use the following additional rules:

r41 ≡ [ vl yes ]3 [ vl ]4 → [ ]3 [ v′3l yes3 ]4, and r42 ≡ [ ]0 [ v′l yes ]4 → [ vl yes ]0 [ ]4,
and the set of inter-component communication rules R∆ as follows:

Rbi-∆3 = {r′1 ≡ (〈1, 0〉, yes vl/yes vl, 〈2, 0〉), r′2 ≡ (〈1, 0〉, yes vl/yes vl, 〈3, 0〉),
r′3 ≡ (〈2, 0〉, yes vl/yes vl, 〈3, 0〉),
r′4 ≡ (〈1, 0〉, y yes /λ, 0), r′5 ≡ (〈2, 0〉, y yes /λ, 0), r′6 ≡ (〈3, 0〉, y yes /λ, 0),
r′7 ≡ (〈1, 0〉, no/λ, 0), r′8 ≡ (〈2, 0〉, no/λ, 0), r′9 ≡ (〈3, 0〉, no/λ, 0)}.

Furthermore, each component of 3-∆TPec is as follows:

Πk(〈n,m〉) = (Γk,Σk, Ek,Mk,1,Mk,2,Mk,3,Mk,4,Mk,x, Rk, ikin = 2, ikout = 0),

such thatMk,4 = {ai | 1 ≤ i ≤ n} and Γk = Γ′ ∪ V ∪ V ′ ∪ {εi, ε′i, κi, κ′i γi, γ′i}, r34 6∈ Rk.
In this modified 3-∆TPec, the additional rules allow each component P system to triple its vl

and yes in order to prepare for a simultaneous antiport-like communications. If ϕ is satisfiable,
then rules r′1, r′2, and r′3 could be used. Simultaneously, by all component P systems send y, yes
to 0. Since the communication is bi-directional, this is done in one step, using S rules and total
of 6 objects. Note that S is the number of satisfying assignments for ϕ.

Therefore, ComN(3-∆TPec) = 1, ComR(3-∆TPec) = S, ComW (∆3-TPec) = 6S, where S is
the number of satisfying truth assignment to ϕ. 2

6 Relative performance of k-∆TPec

The relative performance and parallelizability of k-∆TPec is considered in this section. The
concept of weak parallelizability introduced in [21] is also considered.

A problem L is said to be (k,m)-weakly ComX parallelizable, for some k ≥ 2,m ≥ 1 and
X ∈ {, N,R,W}, if there is a dP scheme ∆ with k components and there is a finite F∆ ⊆ L such
that each string x ∈ L− F∆ can be written as x = x1x2 · · ·xk, such that ||xi| − |xj || ≤ 1 for all
1 ≤ i, j ≤ k, each component Πi takes as input the string xi, 1 ≥ i ≤ k and string x is accepted
by ∆ in a halting computation δ such that ComX ≤ m. A problem L is called weakly ComX
parallelizable if it is (k,m)-weakly ComX parallelizable for some k ≥ 2,m ≥ 1.

In the case of k-∆TPec, k = 2, 3 deciding on the SAT problem, the following results on
parallelizability are obtained. In particular, results presented in Section 3 implies the following.

Theorem 22. Let SAT= {ϕ | ϕ has n variables and m clauses}.

1. Let 2-∆TPec be a uniform bi-directional 2-P protocol for SAT under balanced fixed-partition,
then SAT is (2, r)-weakly ComX parallelizable, where
(r, ComX) ∈ { (1, ComN), (S,ComR), (4S,ComW ) }, S is the number of satisfying truth
assignments for ϕ.

2. Let 2-∆TPec be a uniform two-way 2-P protocol for SAT under balanced fixed-partition,
then SAT is (2, r)-weakly ComX parallelizable, where
(r, ComX) ∈ { (2, ComN), (S + T,ComR), (2(S + T ), ComW ) }, where S is the number
of satisfying truth assignment to ϕ1, and T is the number of satisfying truth assignments
for ϕ.

3. Let 2-∆TPec be a uniform one-way 2-P protocol for SAT under balanced fixed-partition,
then SAT is (2, r)-weakly ComX parallelizable, where
(r, ComX) ∈ { (1, ComN), (S,ComR), (2S,ComW ) }, where S is the number of satisfying
truth assignment of ϕ1.
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In the case of 3-∆TPec for solving the SAT problem under balanced fixed-partition, the results
in Section 5 implies the following.

Theorem 23. Let SAT= {ϕ | ϕ has n variables and m clauses}.

1. Let -∆TPec be a uniform bi-directional 3-P protocol for SAT under balanced fixed-partition,
then SAT is (3, r)-weakly ComX parallelizable, where
(r, ComX) ∈ { (1, ComN), (S,ComR), (6S,ComW ) }, where S is the number of satisfying
truth assignments for ϕ.

2. Let 2-∆TPec be a uniform two-way 3-P protocol for SAT under balanced fixed-partition,
then SAT is (3, r)-weakly ComX parallelizable, where
(r, ComX) ∈ { (4, ComN), (2S+V ′+V ′′, ComR), (2(S+V ′+V ′′), ComW ) }, where S is
the number of satisfying truth assignment to ϕ, V ′ is the number of satisfying assignments
of Π1 for ϕ1, and V ′′ = |T1 ∩ T2|, where T1,and T2 are satisfying truth assignments of ϕ1,
and ϕ2, respectively.

3. Let 2-∆TPec be a uniform one-way 3-P protocol for SAT under balanced fixed-partition,
then SAT is (3, r)-weakly ComX parallelizable, where
(r, ComX) ∈ { (2, ComN), (V ′′ + V ′, ComR), (2(V ′′ + V ′), ComW ) }, where V ′′ is the
number of satisfying truth assignment to ϕ2, and V ′ is the number of satisfying assignments
of Π1 for ϕ1.

The relative efficiency of performance of k-∆TPec (k = 2, 3) can also be viewed with respect to
its computation time spent solving a problem. In this respect, k-∆TPec will be compared to the
efficient solution presented in [39]. Let TIMEΠ(〈n,m〉)(n,m) be the running time of Π(〈n,m〉),
and TIME∆TPec

(n,m) denotes the running time of ∆TPec .

In [39], TIMEΠ(〈n,m〉)(n,m) = 2n+ 3m+ 2, while Theorem 14 gives TIME2-∆TPec
(n,m) =

3n+3mk +4. The following limit represents the speed up ratio between Π(〈n,m〉) and 2-∆TPec(n,m).

lim
n→∞

TIMEΠ(〈n,m〉)(n,m)

TIME2-∆TPec
(n,m)

= lim
n→∞

2n+ 3m+ 2

3n+ 3mk + 4
.

The value of this limit is required to be at least 2, to imply improvements of the computation
by 2-∆TPec(n,m) compared with that by Π(〈n,m〉)(n,m) solving the same problem.

Let k = 2, and m = n, the speed-up ratio is:

lim
n→∞

TIMEΠ(〈n,m〉)(n,m)

TIME2-∆TPec
(n,m)

= lim
n→∞

5n+ 2

4.5n+ 4
≈ 1.11.

This suggests that for any k ≥ 2, as long as m ≤ n, k-∆TPec could not do significant
advantage compared with Π(〈n,m〉) for solving SAT. It can also be observed that if for any k,
n = m2, we would have

lim
n→∞

TIMEΠ(〈n,m〉)(n,m)

TIME∆TPec
(n,m)

= lim
m→∞

2m2 + 3m+ 2

3m2 + 3mk + 4
<

2

3
.

This would mean no parallelism.
If we let m = n2, then speed-up ratio becomes

lim
n→∞

TIMEΠ(〈n,m〉)(n,m)

TIME∆TPec
(n,m)

= lim
n→∞

2n+ 3n2 + 2

3n+ 3
kn

2 + 4
= k ≥ 2.
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This shows that k-∆TPec computes in at least half the required number of steps by Π(〈n,m〉),
if m ≥ n2, for any k.

The uniform recognizer tissue P systems in [39] may not be the optimal uniform recognizer
tissue P systems for solving the SAT problem, that is, deciding SAT with the smallest possible
steps, but it is efficient enough to compare the relative performance of k-∆TPec for solving SAT.

7 Conclusions and discussions

In this work, a distributed P scheme that solves instances ϕ of SAT is presented. The power of
the recognizer tissue P systems with evolutional communication rules and cell division from [39]
is capitalized in a dP scheme. Labelling of all cells 1 after cell division is suggested to give pre-
cise and exact decision on the satisfiability of ϕ. Moreover, ∆TPec requires that whatever is the
decision for ϕ, all component P systems know the decision. Two possible types of communica-
tion that ∆TPec could be performed, namely, antiport-like inter-component communication and
symport-like inter-component communication. Thus, the concept of a P protocol is introduced.
Taking into account the types of inter-component communications on dP scheme, one-way P pro-
tocol, two-way P protocol and bi-directional P protocol are defined. The concept of a uniform P
protocol is also mentioned. The idea of balanced and unbalanced partitions are also presented
and, in particular, a so-called (un)balanced fixed-partition is considered in distributing parts of
the input to component P systems of dP scheme.

It is shown that under a balanced fixed-partition k-∆TPec , could be able to decide on the
satisfiability of any instance ϕ of SAT using only one communication under a bi-directional k-P
protocol. The number of inter-component rules is the number of satisfying truth assignments for
ϕ. But the number of objects sent by the k component P systems increases with respect to k. In
the case k = 2, 3, we obtained ComN(2-∆TPec) = 1, ComR(2-∆TPec) = S, ComW (2-∆TPec) =
4S, and ComN(3-∆TPec) = 1, ComR(3-∆TPec) = S, ComW (∆3-TPec) = 6S, where S is the
number of satisfying truth assignment to ϕ.

Notice that k-∆TPec is a uniform dP scheme, that is, each component P system Πk has
(almost) the same set of rules being implemented during every computation. It is also assume that
each cell in tissue P systems is connected to every other cells in the system and can communicate
directly with each other. The only trade-off is extra steps for each component to reproduce the
objects to be communicated using bi-directional mode of communication. This is polynomial with
respect to the number of component P systems. This implies that under k-∆TPec , SAT is (k, 1)-
weakly ComN parallelizable, for all k. Note that this invariance with respect to weakly ComN is
obtained under a balanced fixed-partition of input, fixed encoding and with a bi-directional k-P
protocol.

The same invariance could be observed in the case of (k, S)- weakly ComR parallelizability
of k-∆TPec under a balanced fixed k-partition using bi-directional communication mode, for any
k. Notice that the k components P systems in k-∆TPec will have to produce k copies of the
labels of cell with satisfying truth assignments of their respective part of the input. Eventually,
k-∆TPec uses the antiport-like inter component communication rule that matches these labels
together with yes. Finally every cell in k-∆TPec sends object yes to 0 to signal the end of the
computation and decided the satisfiability of ϕ.

Note that in Remark 18, it was stated that Theorem 15 and Theorem 16 could be re-stated
in the case of unbalanced partition. Then at least for k = 2, 3, SAT is (k, 1)-weakly ComN paral-
lelizable and (k, S)-weakly ComR parallelizable under an unbalanced fixed-partition. It is believe
that SAT is (k, 1)-weakly ComN parallelizable and is also (k, S)-weakly ComR parallelizable for
any k under an unbalanced k fixed-partition.
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Statement 1 of both Theorem 22 and Theorem 23 shows that SAT belongs to the class of
problems that could be solved by uniform k-∆TPec , k = 2, 3 with ComW (2-∆TPec) = 4S, and
ComW (3-∆TPec) = 6S, where S is the number of satisfying truth assignment to ϕ, which implies
that the objects needed to be communicated by the system increases with the number compo-
nents. Note that a uniform 3-∆TPec for SAT needs more 2S objects to decide the satisfiability
of ϕ compared with 2-∆TPec . Using the uniform k-∆TPec in this paper, it might be reasonable
to believe that SAT may be (k, s)-weakly ComW parallelizable, but it is not (k + 1, s)-weakly
ComR parallelizable, for any k and for some s.

In the case of one-way and two-way uniform k-P protocols under balanced fixed-partition
(k = 2, 3), it was demonstrated that the total amount of objects to be communicated and the
total number of inter-component rules are increased with respect to the number of component P
systems of k-∆TPec . These results suggest that ComX, X ∈ {N,R,W} is directly proportional to
k. In particular, SAT belongs to the class of problems that is (2, r)-weakly ComX parallelizable,
which do not belong to the class of problems that are (3, r)-weakly ComX parallelizable, where
(r, ComX) ∈ {(r, ComN), (r, ComR), (r, ComW )}. It is of interest to know if these observed
relations between 2-∆ and 3-∆ could be extended to k-∆ and (k + 1)-∆ with one-way and
two-way uniform k P protocols under balanced fixed-partition.

It is also realized that the amount of clauses related to the number of variables is quite
necessary in order to obtain efficiency in using k-∆TPec to solve SAT. In particular, if m ≤ n, the
relative efficiency of k-∆TPec cannot be equal to 2. This is regardless if we increase the number
k of component P systems. But at m = n2, we obtain a reasonable relative efficiency k, for any
k ∈ O(n). Notice here that this efficiency is an upper bound of the precise efficiency we wanted
to obtain, since k-∆TPec is compared only to a particular Π(〈n,m〉) for solving SAT.

In [21], a problem L is said to be (k, r, s)-efficiently ComX parallelizable, for some k ≥ 2, r ≥
1, s ≥ 2, and X ∈ {N,R,W}, if it is (k, r)-weakly ComX parallelizable, and there is a dP scheme
∆ such that

lim
n→∞

TIMEΠ(x)

TIME∆(x)
≥ s,

for all P systems Π such that L = L(Π). Moreover, TIMEΠ(x) is the smallest number of
steps need for Π to accept string x should be estimated with respect to all Π for L, while
TIME∆(x) is just given by means of a construction of a suitable dP scheme ∆. It might be
reasonable to believe that SAT is (k, r, s) efficiently ComX parallelizable, where (rComX) ∈
{(r1, ComN), (r2, ComR), (r3, ComW )}, for some real numbers ri, i = 1, 2, 3; s ≤ k is the speed
up ratio and k is the number of components in the uniform dP scheme under bi-directional,
one-way and two-way uniform k-P protocol.

Notice that in order to minimize the amount of objects to be communicated proper, encoding
of objects is necessary. We need not to communicate the whole multiset of objects, but an encoded
version of them. This encoding add-up to the time and number of cells to be used by component
P systems in the systems. In the case of this paper, cell labelling is proposed to encode the truth
assignment uniquely to maintain consistency of assigning truth values to variable being evaluated
by the whole systems. In order to keep the use of rules efficiently, we have to expect to produce
at most exponential amount of cells. Finally, we suggest that one of possible path to take in
this line of research is to minimize the amount of objects to be communicated by component P
systems in solving problems, keeping the performance of component P systems within reasonable
efficiency.

Uniform P protocols under balanced fixed-partition are the ones considered, and remarked
on the unbalanced fixed-partition for solving SAT is provided. It would be nice to consider what
may be called optimal-partition, where we design partition of the objects of the input and see
how it fared with fixed-partition with respect to communication measures. Non-uniform k-P
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protocol solving hard problems might also be a nice direction to pursue. By non-uniform, means
allowing each component P system to perform what it thinks necessary with respect to the input
part. Furthermore, it is of interest to consider communication resources with respect to some
communication P protocols or dP schemes for solving other hard problems.
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Appendix: Some Tables for Inter-component Communications

The following tables below show how communication between component P systems trans-
fer. The table of communications starts when the systems already obtained a satisfying truth
assignments of their respective input parts. Notice that Table 6 which is continued in Table 7
starts at step 4. This initially started when Emk+1 appeared in any of the cell 1, which will be
the step 1 of the table.

Below are tables for cases where there are at most three component recognizer tissue P systems
with evolutional communication rules and cell division. one-way, two-way and bi-directional P
protocol are considered below. Notice that the set of communication rules differs per kind of P
protocol model. The set of rules used by each component P systems are mostly based on the
results in [39]. Variations on rules Rk for each k depends on the P communication mode required
of the systems.

The tables provide labels of each column and each row provides information on specific action
transferred with respect to the preceding row.

One would notice that the set of inter-component rules of other P communication mode are
similar as stated in the proof of some of the Theorems.
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Table 1: Expanded Communication Configuration for k-∆. Rejecting Communication (1).

step rule cell 1 cell 2 cell 3 cell x 〈1, 0〉 0 〈2, 0〉 cell x cell 3 cell 2 cell 1

1 r26 vl αp, d vl vl αp vl
2 r29 y αp+1, d vl, vl, yes αp+1, d y

3 r′6 no vl, yes y′ αp+2, d

4 no vl, yes y′ αp+3, d

Table 2: Expanded Communication Configuration for k-∆. Rejecting Communication (2).

step rule cell 1 cell 2 cell 3 cell x 〈1, 0〉 0 〈2, 0〉 cell x cell 3 cell 2 cell 1

1 r26 vl αp, d vl vl αp vl
2 r29 y αp+1, d vl, vl αp+1, d y

3 r′2 y no no y

4 y no y

Table 3: Expanded Communication Configuration for bi-∆2. Accepting Communication.

step rule cell 1 cell 2 cell 3 cell x 〈1, 0〉 0 〈2, 0〉 cell x cell 3 cell 2 cell 1

1 r26, r27 Emk+1, vl αp, d vl vl αp Emk+1 vl
2 r28, r35 y αp+1, d vl, yes vl, yes αp+1, d y

3 r′1, r34, r36 αp+2, d y′ vl, yes vl, yes y′ αp+2, d

4 r′7, r
′
5, r37 αp+3, d yes vl yes vl yes yes αp+3, d

vl 6∈ T1 vl 6∈ T2

5 y, vl yes yes y, vl yes

Table 4: Expanded Communication Configuration for 2∆2 and 1-∆2. Accepting Communication.
Note that vl′ found in cell x are those which are elements of T1 ∩ T2.

step rule cell 1 cell 2 cell 3 cell 4 cell x 〈1, 0〉 0 〈2, 0〉 cell x cell 4 cell 3 cell 2 cell 1

1 r26 Emk+1 αp vl εi εi vl αp Emk+1

r27 vl d γi γi d vl
vl vl

2 r26 y αp+1 vl yes εi εi vl yes αp+1 y
r28 d γi γi d
r35 vl vl

3 r26 αp+2 y′ εi vl yes vlyes εi y′ αp+2

r36 d γi γi d
r′1 vl vl

4 r26, r34, αp+3, d vl, εi, γi y v2
l yes2 vl, εi, γi αp+3, d

r38, r37 y vl′ 6∈ T1

yes y vl, εi, γi αp+3, d

5 r26, r39 αp+4, d vl, εi, γi y vl yes2 yes y v′l y
′ εi αp+6, d

vl′ γi vl′′ ,
l′′ 6= l

6 r26, r
′
2 αp+7, d vl, εi, γi y vl v

′
l yes y v′l y

′ εi αp+7, d
y′ yes2 vl′ γi vl′′ ,

l′′ 6= l

7 αp+8, d vl, εi, γi y v′l yes y′ yes vl yes y v′l y
′ εi αp+7, d

vl′ γi vl′′ ,
l′′ 6= l
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Table 5: Expanded Communication Configuration for 1∆3. Accepting Communication.

step rule cell 1 cell 2 cell 3 cell 4 cell x 〈2, 0〉 0 〈3, 0〉 cell x cell 4 cell 3 cell 2 cell 1

4 r26 αp+3 εi v2
l y vl εi αp+3

r37 d γi yes2 yes γi d
r38 vl vl′ , yes y vl

5 r26 αp+4 εi vl vl y εi αp+4

r39 d γi yes2 yes γi d
v′l vl′ vl
vl, yes
y

6 r26 αp+5 εi v′l vl y εi αp+5

r′ d γi y′ yes γi d
vl′ yes2 vl

7 r26 αp+6 εi y′ v′l yes εi αp+6

r40 d γi yes vl yes γl d
vl′ vl′ yes vl

8 r26 αp+7 εi y′ vl yes εi v
′
l αp+7

r39 d γi yes vl′ yes γi y
′ d

vl′ vl
9 r26 αp+8 εi y′ v′l y

′ y εi αp+8

r′ d γi yes vl yes γi d
vl vl′ yes vl

10 αp+8 εi y′ v′l y εi αp+8

d γi yes vl γi d
vl vl′ yes vl


