
INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL
ISSN 1841-9836, 9(6):749-757, December, 2014.

An Online Load Balancing Algorithm for a Hierarchical Ring
Topology

C.I. Paduraru

Ciprian I. Paduraru
Computer Science Department
University of Bucharest
ciprian.paduraru2009@gmail.com

Abstract: Ring networks are an important topic to study because they have certain
advantages over their direct network counterparts: easier to manage, better band-
width, cheaper and wider communication paths. This paper proposes a new online
load balancing algorithm for distributed real-time systems having a hierarchical ring
as topology. The novelty of the algorithm lies in the goal it tries to achieve and the
method used for load balancing. The main goal of the algorithm is to correctly utilize
the computing resources in order to satisfy the average response time of clients. The
secondary goal is to ensure fairness between the numbers of requests solved per client
with respect to the average response time. A request from a client is moving through
the network until a node considers that it can solve the request in the promised av-
erage time for that client or until it seems like the best opportunity to avoid any
additional delays in solving it. A performance analysis and motivation for the pro-
posed algorithm is given with respect to the goals it tries to achieve. The results show
that the proposed algorithm satisfies its goals.
Keywords: ring; hierarchical; distributed; balancing; algorithm; fairness

1 Introduction

Today, the common approach for processing user requests sent to a web or network-based
service is to handle them using a distributed architecture of computers. In this context, the
performance of the processing system is closely related to user experience and service availability,
and can therefore play an important role in the success or failure of the respective service on the
market. As sufficient hardware resources for processing a large number of requests are generally
expensive, a good algorithm for the distribution of load - between the processing units in the
distributed system - is necessary to save costs in addition to increase client’s satisfaction.
This paper presents a load balancing algorithm for hierarchical ring network. A hierarchical
ring (Figure 1) is an alternative to 2D meshes or tori [5]. Hierarchical type was chosen to
show the generality of the algorithm. Instead, we can have rings combined with other network
topologies. In a ring network every node has exactly two neighbors: Pi is connected Pi+1 to
and Pi−1. In this paper, if we consider that n is the number of processors in the ring, then
we assume that all additions on processors indices are done modulo n. In the hierarchical ring
network considered, each sub-network has a leader which is responsible to store information and
coordinate some activities. In the continuation, when we refer to a sub-network of a leader node
then this includes only the direct nodes under the leader’s level.

Requests are received by a web service which coincide with the leader node of the network -
and are considered to have an estimated average time to complete. The goals of the presented
algorithm are the most significant for services provided in the present. The main goal is to ensure
a certain average response time given for each client, depending on what we call a user license.
The user license can be interpreted as a contract between the service provider and the user,
where parameters referring to the delivery of the service are specified. These include parameters

Copyright © 2006-2014 by CCC Publications

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Agora University Editing House: Journals

https://core.ac.uk/display/236052853?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


750 C.I. Paduraru

L

L

L

Figure 1: Two levels ring hierarchy.

relevant for load distribution, like the average response time of the system for certain types of
requests. The secondary goal is to ensure fairness between the numbers of requests solved per
client with respect to the average response time. A simulator has been created to demonstrate
how the algorithm succeeds to satisfy the desired goals.
The rest of the paper is organized as follows: In Section 2 there is a discussion about research
made on load balancing for ring topologies or other network types but appropriate to our goals.
In Section 3 the design of the load balancing algorithm is discussed. If first starts with the
assumptions made over the proposed algorithm then it describes the main ideas and pseudocode
behind the decision making process. Section 4 shows the simulation results compared with a
general load balancing for a hierarchical ring network . Conclusions are given in the last section.

2 Related work

A description of hierarchical ring networks is given in [5]. They are presented as an interesting
alternative to popular direct networks such as 2D meshes or tori. Advantages of using them are
also described here: simple router designs, wider communications paths and faster networks
than their direct network counterparts. However the paper is not dealing with load balancing
algorithms. Its a study to determine how large hierarchical ring networks can become before
their performance deteriorates due to their bisection bandwidth constraints.
There are not many papers discussing about real time load balancing for ring networks. The
most appropriate paper for our presentation is [1]. In comparison with [1], which is a general
load balancer for rings, the new proposed load balancing algorithm has another two goals: satisfy
the average response time specified in the owners license type and ensure some fairness between
the requests with respect to their specified response times. Other papers, like [6], are performing
a statical load balancing of requests on a ring network. Paper [2] presents a load balancing
algorithm for distributed systems having the same two goals. However, the algorithms presented
there are inapplicable to the ring networks. It uses the fact that nodes can communicate directly
with a master and it would be too much overhead to simulate the same implementation algorithm
on a ring. Both the requests and results are exchanged directly from master to workers.

3 Design of the algorithm

3.1 Assumptions

It is assumed that when a node finishes a request, the results are sent back to clients directly
from that node. The algorithm allows for the system to be heterogeneous, workstations may differ
in processing capacity. The processing time of a request is expressed as the ”request’s length”
and can be predetermined. We assume that GetEstTimeToCompute(request) returns the



An Online Load Balancing Algorithm for a Hierarchical Ring Topology 751

estimated processing time of a request on any node and its time complexity is constant. One
simple way to do this is to benchmark how fast each node can execute different requests length
intervals, then group and store these results in a data structure on the node. It is considered
that request processing is workstation independent (all types of requests can be processed by
any of the nodes). Requests are independent (the order in which requests are processed does
not affect the correctness of the result) and indivisible (can only be handled by a single worker
at one moment). The communication time is not generally important for the algorithm. The
reason is that while a request spends time moving through the network its priority increases.

3.2 High level implementation and the communication protocol

The main responsibilities of nodes are to take decisions, solve requests and communicate
with neighbors. The communication and request’s solving should run in different threads to
avoid communication blocking. Requests are received by the leader of the ring and send further
until a node can execute it in the required time or when that node is a good opportunity to save
additional delay in response time. Nodes evaluates if a request can be executed by them or not
depending on the time needed to complete all other requests waiting there and having a higher
priority than the considered request. Also, in the case of requests that are close to their deadline
(or already passed deadline), if they have a higher priority than all other requests waiting on a
node then we choose that node to minimize the additional delays in the response time.
By using the above two conditions there is a possibility that all nodes to decline solving a new
request. In this case measures need to taken in order to avoid affecting the performance of the
system with the new request running too many times through the ring. The method used is to
have a variable on each request that represents a bonus time considered when a node evaluates
if it has enough time to execute the request. Each time the request goes back through the node
that initiated it, the leader of the ring, this variable is incremented by some value determining
the nodes to accept it faster.
In the continuation of this section these ideas are presented in more details. It starts with the
high level operations and messages exchanged between nodes, then it continues to explain the
implementation of data structure and decision making in more details using pseudocode and
complexity analysis.

To send data between nodes, two functions are used: Send(data) used to send data to the
next node on the same sub-network and SendToSubNetwork(data) which sends a message
from a leader to its coordinated sub-network (this helps moving a message from a higher level
network to a sub-network). Another important function is IsLeaderNode which has two pro-
totypes. The first one doesn’t have any parameters - tests if the node is the leader of a sub-ring
- and the second one with a parameter representing a message - tests if the node is a leader and
the one who created/added that message in its sub-network.
There are two types of messages used in the communication protocol: Gather and Request.
A Request message is used for sending requests between nodes and contains the following: data
context for request execution, the average response time specified in the owners license, times-
tamp when created, the time when should ideally finish and the current bonus time. The code
below shows the high level implementation of the decision making when a Request message is
received by a node. A node that is not the leader at the level where a request message is sent
can either store the request for later execution or send it further in the same network level.
Additionally, a leader node has the option to send the request down in its sub-network.
Users might also want to relax the conditions and not decrease the bandwidth performance
with requests that are travelling the ring many times in order to find a node that accepts them



752 C.I. Paduraru

(BONUS_STEP variable is considered as input given by user). To make this possible, when a
leader receives back a request that it previously sent to its sub-network, the bonus time variable
on the request will be increased. An interesting property of this communication protocol is that
if a request travels again back to the leader node of a sub-network because of the high workload,
it can eventually get to another sub-network, if the leader evaluates that it is better to do so.

OnRequestReceived(request)

if (CanExecuteRequest(request))

AddRequest(request);

else if (IsLeaderNode(request) AND CanExecuteOnMySubNetwork(request))

{

if (already received this request)

request.bonusTime += BONUS_STEP

SendToSubNetwork(request)

}

else

Send(request);

Leader stores info 

about its sub-nodes

Pi 

Pi+1 

If Pi is a not a 

leader, and can’t 

execute a request 

it send it to Pi+1

Request message contains: 

(data, id, length class, average time in 

owner’s license)

L

L
L

When a leader node receives a 

request it evaluates in order the 

following possibilities: execute 

itself, send it down in the 

coordinated sub-network or send 

to another node on the same 

level.

Figure 2: High level decision making for a new request.

A Gather message is initiated by leaders of each sub-network at fixed time periods and
sent only to the nodes on the same level. The role of this message is to have a snapshot of the
current load inside nodes. This information will be used to take a decision if a leader node should
accept a request or not to be executed in its sub-network. The gather messages are asynchronous
between different sub-networks. When a node receives a gather message, it adds its local load
information (like how much load is in there) to the message and sends it further. When the
message is received by the leader it updates its load information table. Figure 3 is representative
for this flow.

The code below presents the action code of every node and the handler function for receiving
Gather messages. lastTimeGatherSent is a variable where we store the timestamp of the last
Gather message sending occured. T is threshould value set by the user, depending on how often
he wants to send the Gather message. Solve function is supposed to run the effective job on the
request. Function ExtractNextRequest selects the task with the highest priority from the local
list of tasks.

OnUpdate()

if (IsLeaderNode() AND (GetCurrentTime() - lastTimeGatherSent) > T)



An Online Load Balancing Algorithm for a Hierarchical Ring Topology 753

L

1

2

3

When a node receives 

this, it adds the current

state to the message 

and send further

Leader initiates the 

Update message

At this point, the Leader will 

receive a message with the 

combined states of the 

nodes at the same level

Figure 3: An update message in the ring.

{

lastTimeGatherSent = GetCurrentTime()

Gather msg

SendToSubNetwork(msg)

}

request = ExtractNextRequest()

if (request != null)

Solve(request)

OnGatherReceived(msg)

if (IsLeaderNode(msg))

UpdateLocalState(msg)

else

{

AddLocalState(msg)

Send(msg)

}

3.3 Decision making to execute a request locally on a node (leaf or leader)

To make computations easier, the average response times specified in the clients licenses
are normalized. If t1, t2, t3, ..., tn are the average response times and tmax = max ti, then tk =
tk

tmax
. Requests are stored and evaluated based on their priorities. The priority of a request is

defined as the waiting time for the request to be solved divided by the inverse of the normalized
average response time specified in the owners license. If we denote withWaitingTime(request)
the waiting time of the request to be solved, and Owner(request) the index of the owner license
then the priority computation can be written as Priority(request) = WaitingT ime(request)

1
tOwner(request)

, where

WaitingTime(request)=CurrentTime()-request.createTime. Priorities of requests waiting on a
node are dynamic and could modify in time. This is a key point of the algorithm which gives the
fairness between the clients with respect to their average response times. The formula used also
helps in the case of requests that travel in the network for a long time. The priority of a request
increases with its waiting time regardless of the license’s specifications. If a requests travel a long
time then it has a bigger priority and its chances to be added in a node are increased. Requests
are stored in a node using a linked list. At each query of function CanExecuteRequest(request)
the algorithm iterates over the existing items and sum up the time needed to compute all requests



754 C.I. Paduraru

that have a priority higher than the new request. Using the bonus modifier and comparing the
result with the average response time of the request’s owner we can find out if the request
can be executed on that node or not. Also, in the case of requests that are close to ideal
execution deadline or should have been executed until now, we check if their priorities are higher
than all other priorities waiting in the node. If this is valid then this node is good fit for the
request because it will be the first request selected for execution, thus minimizing the delays in
response time. A pseudocode for this is given below. requestsList is storing requests of a node.
request.bonus represents the bonus time given by the leader, while request.idealTimeOfFinish is
the precomputed time when the request should be solved in order to satisfy the owner’s license
specfication. T is a threshold value defined by user. It could be either the average time for
moving data between consecutive nodes, the average time needed for processing it, or a heuristics
combining these.

CanExecuteRequest(request)

totalEstTime = 0;

newEstTime = GetEstTimeToCompute(request) / request.bonus

bestPriority = null;

foreach req in the requestsList

{

if (Priority(req) > Priority(request))

totalEstTime = totalEstTime + GetEstTimeToCompute(req);

if (Priority(req) > bestPriority)

bestPriority = Priority(req)

}

remainingTime = request.idealTimeOfFinish - (GetCurrentTime() + totalEstTime)

isCloseToDeadline = (request.idealTimeOfFinish - GetCurrentTime()) <= T

return (remainingTime >= 0 OR

(isCloseToDeadline AND bestPriority < Priority(request)*request.bonus)

3.4 Decision making to execute a request on a sub-network

This type of decision is valid only for leader nodes. In order to make this possible the gather
messages are sent in the sub-network in order to collect workload information. In an ideal
case, a leader would know informations about all waiting requests in its sub-network nodes and
run the same CanExecuteRequest function. But such a message would be too large creating a
bandwidth and processing time overhead. A tradeoff solution between performance and quality
of the decision result is to gather statistics on how much time the current requests would take to
execute on different intervals of priorities. If Phigh and Plow are estimated bounds of the priorities,
then splitting on N equal intervals would result in TimeSumi storing the sum of times to solve the
requests with priorities in interval

[
Plow +

Phigh−Plow

N ∗ i, Plow +
Phigh−Plow

N ∗ (i+ 1)− 1
]
. The

tradeoff can be adjusted using variable N .
The gather message will contain the TimeSum array. When adding the local state to a gather

message, a nodes responsibility is to iterate through all its waiting requests and for each one to
add in the corresponding array index (the correct priority interval) the time needed by the node
to solve it. The leader will keep the final TimeSum array and use it for decision making. To
find out if a request can be executed by the leaders sub-network we need to sum up the values
of all intervals of greater priority than the considered request. Then, we divide this sum to the
number of nodes in the sub-network to find out the average time needed to finish all higher
priority requests. The close to ideal deadline test is used here too, but this time we check if there



An Online Load Balancing Algorithm for a Hierarchical Ring Topology 755

are any values bigger than zero on intervals with greater priority than the considered request.
Below is presented the pseudocode for adding a local state to the gather message and the decision
making of a leader if it should accept or not a request in its sub-network. GetPriorityInterval
does simple math to get the interval index from the priority of a request.

AddLocalState(message)

foreach req in the requestsList

message.TimeSum[GetPriorityInterval(req)] += GetEstTimeToCompute(req)

CanExecuteOnMySubNetwork(request)

P = Priority(request)

totalTime = 0;

for i = P +1 to N

totalTime += TimeSum[i]

averageTotalTime = totalTime / NumNodesInSubNetwork

remainingTime=(request.idealTimeOfFinish - (GetCurrentTime() + averageTotalTime))

isCloseToDeadline = (request.idealTimeOfFinish - GetCurrentTime()) <= T

return remainingTime>= 0 OR

(isCloseToDeadline AND there is no TimeSum[k]>0 with k from P+1 to N)

The complexities of the operations used here are linear which can be good or bad depending
on request’s granularity. If there are generally very small requests to execute then this linear
time might affect the global performance. An idea to solve this case would be to use a heap
tree data structure (which provides logarithmic time for operations) and to rebuild the tree at
different time intervals considering the newest priorities.

4 Simulation results

To demonstrate that the algorithm satisfies the proposed goals, a simulator in MPI has been
created. The nodes are processes on different machines connected in a network. The test im-
plies a total of 64 processes over 8 machines. Random requests where continuously generated
with a normal distribution in length classes. The estimated times to compute the requests were
between [10, 500] milliseconds (depending on the computing power of the nodes). Same interval
was used for the average response times in the clients licenses. Two relevant tests are used to
show how the load balancer works. The results are compared to the results of the algorithm in [1].

Test 1: Check the response times with different workloads.
For this test, the simulator created random requests considering the total computing power of
the system. Table 1 shows a comparison between both algorithms in terms of response time
delays, given as a percentage value from the value promised in the owner’s license. Final results
were obtained by averaging multiple simulation results. In the proposed algorithm the average
response time goal is satisfied, with important delays appearing just when the workload was too
high.

Test 2: Check the fairness between requests with respect to the average response time when
the available hardware resources are not enough for satisfying the requests. The simulator creates
random requests to simulate a high workload then checks how many of them were solved per
interval of average response time. The initial interval of average response times [10,500] was
split in 5 intervals as the Table 2 shows. Ideally, the number of requests solved per each interval
should be inverse proportional to the average value of the interval.



756 C.I. Paduraru

System workload Average delays in response time -
proposed algorithm

Average delays in response
time algorithm in [1]

20 % 1.23 % 15 %
50 % 1.45 % 26.4 %
100 % 1.72 % 54.8 %
200 % 103.14 % 104.2 %

Table 1: Shows average response times with different system workloads.

Intervals of average
response times

Average number of requests solved
in proposed algorithm

Average number of requests
solved in [1]

10-100 4233 1651
101-200 2397 1675
201-300 1683 1649
301-400 779 1693
401-500 541 1680

Table 2: Number of requests solved for different average response time intervals.

The results show that the second goal is satisfied too in the proposed algorithm, while in the
other load balancer there is no fairness between the clients.

The proposed algorithm performs much better when comparing the maximum waiting times
of requests thanks to the priority formula. Because of the overhead needed to satisfy the goals,
the proposed algorithm had a throughput with 2.11% smaller than the reference algorithm. With
a proper tuning of the BONUS_STEP, the number of intervals for splitting the local state data
and the time to initiate a new Gather message the algorithm can obtain peak performance with
minimizing the overhead. These variables should be tuned considering the granularity of the
nodes and the available bandwidth. In the simulation, BONUS_STEP was equal to 2, the
number of intervals was 5 and the time to initiate Gather messages was 300 milliseconds. As
a recommendation, these variables values should actually represent a percentage value of real
input data.

5 Conclusion

This paper presented a load balancing algorithm for distributed real-time systems which have
a hierarchical ring topology. The algorithm has two proposed goals: satisfy the average response
time if the computing power allows this and keep the fairness between clients with respect to the
response times specified in their license. The results presented in Section 4 demonstrate that the
algorithm satisfies the proposed goals.

Bibliography

[1] Oguz AKAY, Kayhan ERCIYES, A Dynamic Load Balancing model for a distributed system,
Mathematical & Computational Applications, 8(3):353-350, 2003.

[2] Ciprian Paduraru, A New Online Load Balancing Algorithm in Distributed Systems, Symbolic
and Numeric Algorithms for Scientific Computing, SYNASC 14th edition, Pages:327-334,
2012.



An Online Load Balancing Algorithm for a Hierarchical Ring Topology 757

[3] Andrew S. Tanenbaum, Modern Operating Systems (3rd Edition), Prentice Hall, December
2007.

[4] Kwang Soo Cho, Un Gi Joo, Heyung Sub Lee, Bong Tae Kim, and Won Don Lee, Effi-
cient Load Balancing Algorithms for a Resilient Packet Ring Using Artificial Bee Colony,
Applications of Evolutionary Computation, LNCS, 6025:61-70, 2010.

[5] G. Ravindran and M. Stumm, Hierarchical Ring Topologies and the Effect of their Bisection
Bandwidth Constraints, Proc. Intl. Conf.Parallel Processing, I:51-55, 1995.

[6] Perry Fizzano and Clifford Stein, Scheduling on a Ring with Unit Capacity Links, Proceedings
of the sixth annual ACM symposium on Parallel algorithms and architectures, Pages:210-219,
1994.

[7] Johannes E. Gehrke , C. Greg Plaxton and Rajmohan Rajaraman, Rapid Convergence of
a Local Load Balancing Algorithm for Asyncronous Rings, Distributed Algorithms, LNCS,
1320:81-95, 1997.

[8] Young-Soo Myung, Hu-Gon Kim, Dong-Wan Tcha, Optimal Load Balancing on Sonet Bidi-
rectional Rings, Operations Research, 45(1):148-152, 1997.

[9] Dekel Tsur, Improved scheduling in rings, Journal of Parallel and Distributed Computing,
67(5):531-535, 2007.

[10] Amir Gourgy, Ted H. Szymanski, Cooperative Token-Ring Scheduling For Input-Queued
Switches, Journal of Parallel and Distributed Computing, 58(3):351-364, 2009.

[11] Leonidas Georgiadis, Wojciech Szpankowski, Leandros Tassiulas, A scheduling policy with
maximal stability region for ring networks with spatial reuse, Queueing Systems (Springer),
19(1-2):131-148, 1995.

[12] Joseph (Seffi) Naor, Adi Rosen, Gabriel Scalosub, Online time-constrained scheduling in
linear and ring networks, Journal of Discrete Algorithms, 8(4):346-355, 2010.


