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Abstract: DNA self-assembly is a promising paradigm for nanotechnology. Re-
cently, many researches demonstrate that computation by self-assembly of DNA tiles
may be scalable. In this paper, we show how the tile self-assembly process can be
used for implementing the timetable problem. First the timetable problem can be con-
verted into the graph edge coloring problem with some constraints, then we give the
tile self-assembly model by constructing three small systems including nondetermin-
istic assigning system, copy system and detection system to perform the graph edge
coloring problem, thus the algorithm is proposed which can be successfully solved
the timetable problem with the computation time complexity of Θ(mn), parallely and
at very low cost.
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1 Introduction

Since Adleman [1] demonstrated the use of recombinant DNA techniques for solving a small com-
binational search problem, the field of DNA-based computing has experienced a flowering growth and
leaves us with a rich legacy. DNA computing [2,3] potentially provides a degree of parallelism and high
density storage far beyond that of conventional silicon-based computers.

DNA tile self-assembly is an important method of molecular computation and it is also a crucial
process by which objects autonomously assemble into complexes [4]. This phenomenon is common in
nature and yet is poorly understood from mathematical and programming perspectives. It is believed that
self-assembly technology will ultimately permit the precise fabrication of complex nanostructures. The
DNA nanotechnology was initiated by Seeman [5] who proposed self-assembled nanostructures made
of DNA molecules, and the key of this technology is immobilization of Holliday junction (crossover) to
make well-defined DNA structures. Seeman [6] also utilized one of such structures called DX (double
crossover) tile to realize a patterned lattice made of these tiles, which is used to construct not only
simple pattern such as periodic stripes or barcodes, but also the complex algorithmic pattern. Winfree [7]
proposed 2D self-assembly process and showed that computation by self-assembly is Turing-universal.
Eng [8] demonstrated that self-assembly of linear, hairpin, and branched DNA molecules can generate
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regular, bilinear, and context-free languages, respectively. Researchers have used DNA tile algorithmic
self-assembly to create crystals with patterns of binary counters [9, 10] and Sierpinski triangles [11],
which can be used to implement arbitrary circuit [12]. But those crystals are deterministic, generating
nondeterministic crystals may hold the power to solve complex problems quickly.

Because of the complex and special structure of DNA tiles, tile self-assembly is theoretically an ef-
ficient method of executing parallel computation where information is encoded in DNA tiles and a large
number of tiles can be self-assembled via sticky-end associations. Mao et al. [13] experimentally imple-
mented the first algorithmic DNA tile self-assembly which performed a logical computation (cumulative
XOR), however that study only executed two computations on fixed inputs. For the application in arith-
metic, Brun [14] proposed and studied theoretically the systems that computed the sums and products
of two numbers using the DNA tile self-assembly model, which enough revealed that DNA tile self-
assembly had the basic computational ability; For the complex application in combinational problems,
tile self-assembly has been proposed as a way to cope with huge combinational NP-complete problems,
such as solving the satisfiability problem [15] by using 2D DNA self-assembly tiles, nondeterministically
factoring numbers [16], deciding a system of subset sum problem [17]. But generally, the scale is limited
to only moderate size problem at best, which further explores the power of computing using DNA tile
self-assembly. Furthermore, this model can also be used in the cryptography. XOR computation on pairs
of bits can be used for executing a one-time pad cryptosystem that provides theoretically unbreakable
security [18].

It is well known that timetable problems [19] are very difficult and time consuming to solve, es-
pecially when dealing with large instances. The timetable problem is a combinatorial problem [20]
consisting in finding an assignment of a fixed number of teachers to a fixed number of hours in a week,
in such a way that a large number of given constraints are satisfied. And it is also known in general to be
NP-complete [21]. For the most important, the timetable problems are subject to many strict constraints
that are usually divided into two categories: ‘‘hard" and ‘‘soft" [22]. Hard constraints are rigidly enforced
and have to be satisfied for the timetable problem. Soft constraints are those that are desirable but not
absolutely essential. So it is difficult to generate a satisfactory solution within a short time. In order
to avoid the disadvantage of their exponential computation complexity, here we mainly focus on the
timetable problem based on DNA tile self-assembly, which is a kind of better technique and the model
can successfully perform the problem with the operation time complexity of Θ(mn), parallely and at very
low cost.

The rest of this paper is structured as follows: Section 2 describes the mechanism of self-assembly
based on the DNA tiles in detail. Section 3 shows the process of performing the timetable problem by
self-assembling. The conclusion will summarize the contribution of our work.

2 Algorithmic DNA tile self-assembly

Algorithmic DNA self-assembly is both a form of nanotechnology and a model of DNA computing.
As a nanotechnology, the aim of algorithmic DNA self-assembly is to design tiles with carefully choosing
glue types on their sides. Two tiles are said to be of different types if their sides have different glue types.
Useful tile types are nontrivial to design but relatively easy to duplicate in large quantity. A key design
challenge for algorithmic DNA tile self-assembly is to use only a small number of different tile types to
assemble a target nanostructure to complete the corresponding computation.

2.1 Models for algorithmic DNA tile self-assembly

The tile assembly model extends the theory of Wang tilings [23] of the plane by adding a natural
mechanism for growth. As a computational model, algorithmic DNA self-assembly encodes the input of
a computational problem into DNA patterns and then manipulates these patterns to produce new DNA
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patterns that encode the desired output of the computational problem. Informally, the model consists
of a set of four sided Wang tiles whose sides are each associated with a type of glue. The bonding
strength between any two glues is determined by a glue function. A special tile in the tile set is denoted
as the seed tile. Assembly takes place by starting with the seed tile and attaching copies of tiles from
the tile set one by one to the growing seed configuration whenever the total strength of attraction from
the glue function meets or exceeds a fixed parameter called the temperature. Generally, the tile set and
the seed configuration should be constructed before the biological operations together with the suitable
temperature.

In addition, the tile assembly model [24] is a formal model of crystal growth. It was designed to
model self-assembly of molecules such as DNA. Rothemund and Winfree [25] defined the abstract tile
assembly model, which provides a rigorous framework for analyzing algorithmic self-assembly. Here,
we mainly use the abstract tile assembly model to solve the timetable problem. Intuitively, the model
has tiles or squares that stick or don’t stick together based on various binding domain on their four sides.
Figure 1 gives the structures of DNA tiles, mainly including the TAO and TAE tiles. Figure 1(a) describes
the structure of TAO tile. Figure 1(b) shows the three TAO tiles joining diagonally. The TAE tiles and
the corresponding abstract tiles can be seen in (c), (d) and (e). Figure 1(f) gives the structures which are
assembled to form a compact lattice.

(a)

(b)

(c)

(e)

(f)

(d)

Figure 1: DNA Tiles. (a)Structure of TAO tile. (b)Three TAO tiles join diagonally. (c)Structure of TAE
tile. (d)TX tile. (e)Two TAE tiles join. (f)The two types of tiles can assemble to form a compact lattice
structure.

2.2 Computation by DNA tile self-assembly

Computation by self-assembly is the spontaneous self-ordering of substructures into superstructures
driven by annealing of Watson-Crick base-pairing DNA sequences. Computation by DNA tile self-
assembly entails the building up of superstructures from starting units such that the assembly process
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itself performs the actual computation.
DNA tile self-assembly is also a highly parallel process, where many copies of different molecules

bind simultaneously to form intermediate complexes. One might be seeking to construct many copies of
the same complexes at the same time, as in the assembly of periodic 1D or 2D arrays; Alternatively, one
might wish to assemble in parallel different molecules, as in DNA-based computation, where different
assemblies are sought to test out the combinatorics of the problem.

A sequential or deterministic process of DNA tile self-assembly has three highly parallel instruction
steps [4]. The first one is molecular recognition: elementary molecules selectively bind to others. The
second is growth: elementary molecules or intermediate assemblies are the building blocks that bind to
each other following a sequential or hierarchical assembly. The cooperativity and non-linear behavior
often characterize this process. The third way is termination: a built-in halting feature is required to
specify the completion of the assembly. In practice, their growth is interrupted by physical and/or envi-
ronmental constraints. DNA tile self-assembly is a time-dependent process and because of this, temporal
information and kinetic control may play a role in the process before thermodynamic stability is reached.

3 Implementing the timetable problem based on DNA tile self-assembly

In this section, we first give the definition of the timetable problem, then we mainly show the al-
gorithm for solving the timetable problem based on DNA tile self-assembly, and concretely introduce
the process how they can perform this problem. Finally, examples of success and failure in the tile
attachments are given to demonstrate the reasonability and validity of the algorithm.

3.1 The timetable problem

The typical timetable problem consists in assigning a set of activities/actions/events (e.g. work shifts,
duties, classes) to a set of resources (e.g. physicians, teachers, rooms) and time periods, fulfilling a set
of constraints of various types. Constraints stem from both nature of timetable problems and specificity
of the institution involved. In other words, timetable or planning is a process of putting in a sequence
or partial order a set of events to satisfy temporal and resource constraints required to achieve a certain
goal, and is sometimes confused with scheduling, which is the process of assigning events to resources
over time to fulfill certain performance constraints. However, many scientists consider scheduling as a
special case of timetable and vice versa [26].

In this paper, we solve a special kind of timetable problem which is the coursetable problem [27]. The
problem consists in scheduling courses for a set of courses in a university, taught by available teachers in
a given period composing a number of weeks, and in available classrooms. Although the constraints of
timetable problem vary from case to case, one can classify all constraints into hard constraints and soft
constraints. Hard constraints must be strictly satisfied because any timetable that violates just one will
become useless. A timetable that violates some soft constraints can still be usable although it may cause
some inconvenience to the users. It is often very difficult to satisfy all the soft constraints in a real life.
Some concrete definitions of hard constraints and soft constraints in a coursetable problem will be given
as follows [28]. Some examples of hard constraints are:

HC0 - A teacher can only teach in a single place at a time.
HC1 - A teacher can only give one course at a time.
HC2 - A room can only host one course at a time.
HC3 - A student can only attend one course at a time.
HC4 - Room capacities must be respected.
HC5 - No more than a teacher is scheduled to teach in a room each time.
HC6 - Each subject is scheduled in a proper room (for example, a laboratory needs a proper equip-

ment).
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HC7 - Every teacher must have scheduled all his hours.
HC8 - Every student must have scheduled all his hours.
We denote the fact that some conditions can be deduced from other constraints. For example, HC0,

HC2→ HC1. Some examples of soft constraints are:
SC0 - The courses should be scheduled in the morning and the seminaries and laboratories in the

afternoon.
SC1- Some courses are scheduled with a prior consideration.
SC2 - As much as possible the preferences of the teachers and the ones of the students should be

respected.

3.2 Solving the timetable problem based on DNA tile self-assembly

Here, we mainly introduce the algorithm for implementing the timetable problem based on DNA
tile self-assembly. First, the timetable problem can be converted into the graph edge coloring problem,
then the tile self-assembly model is used to solve the graph edge coloring problem with some constraints
including mainly constructing three small systems which are nondeterministic assigning system, copy
system and detection system, thus the timetable problem can be successfully carried out. Examples can
be given to indicate how the tile self-assembly model performs in this problem.

The graph edge coloring problem

Let G be an undirected graph where V is the set of vertices and E is the set of edges. Mathematically,
an assignment of colors to the edges of a graph G(one color to each edge so that adjacent edges are
assigned different colors) is called a coloring of G. Edges with a same color define a color class. A
k-coloring of G is proper if incident edges have different colors; that is, if each color class is a matching,
otherwise conflicts happen. A coloring with at least one conflict is called an infeasible coloring. A graph
is k-edge-colorable if it has a proper k-edge-coloring. For the given coloring of a graph G, a set consisting
of all those edges assigned the same color is referred to as a color class.

In this study, the timetable problem can be converted into the graph edge coloring problem. First,
a complete bipartite graph, denoted as Km,n, is a graph consisting of two sets of vertices, one with m
vertices and the other with n vertices. There is exactly one edge from each vertex in the one set to each
vertex in the other set. There are no edges between vertices within a set. Then we give the bipartite
graph from the arrangement matrix of the timetable problem. Second, the hard and soft constraints can
be considered as the constraints of the graph edge coloring problem. According to the graph theory, the
feasible solutions of the edge colorings are the arrangements of courses in the timetable problem. Here,
we mainly propose non-deterministic algorithm to solve the graph edge coloring problem by using the
massive parallelism possible in DNA tile self- assembly, thus the timetable problem with some given
constrains can be successfully solved.

In the process of implementing the tile self-assembly systems, many assemblies happen in parallel by
creating billions of billions of copies of the participating DNA tiles, so this is simulated by an exponential
number of DNA assemblies which can be converted into the space occupied by the DNA molecules,
thus we expect that the procedure will run in parallel on all possible colorings. In this case, there are
many possible valid tilings, any or all of which may be produced. When tiles are implemented by
real molecules, one would expect a set of tiles to nondeterministically generate a combinatorial library
of input assemblies, and then a deterministic set of rule tiles could evaluate each input assembly to
determine whether it represents the desired answer.
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The nondeterministic assigning system

Non-determinism implies that at some steps the algorithm makes a non-deterministic choice. Of
course, there are many differences between the deterministic computation and nondeterministic compu-
tation. In terms of deterministic computation, it can be defined as a tile system to produce a unique final
seed configuration if for all sequences of tile attachments, all possible final configurations are identical.
Comparing to the deterministic computation, the nondeterministic computation is a system in which dif-
ferent sequences of tile attachments can attach different tiles in the same position. Intuitively, a system
nondeterministically computes a function if at least one of the possible sequences of tile attachments
produces a final configuration, which contains the computation results. Furthermore, in many implemen-
tations of the tile assembly model that would simulate all the nondeterministic executions at once, it is
useful to be able to identify which executions succeed and fail in a way that allows selecting only the
successful ones.

The nondeterministic assigning system can give a color set to the edges of the graph. First, the
edges of the given graph can be labeled as ‘‘e1,e2, · · · ,em", the vertices can be noted as Xi(1 ≤ i ≤ n).
Here, m, n is the number of edges and vertices of the graph respectively. Each edge in the graph can be
nondeterministeically obtained one color. The same edge connecting different vertices should share the
same color. If there is only one edge which is adjacent to the vertex, the information about the vertex and
the edge needn’t be arranged on the rightmost column in the seed configuration, but should be assigned
with one color at the bottom of the seed configuration of the nondeterministic assigning system.
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Figure 2: The framework of the nondeterministic assigning system. (a) The basic tile types of this
system. (b) The seed configuration of the system. (c) An example of the nondeterministic assigning
system.

The color set of the edges can be nonderministically generated by the tile self-assembly configuration.
Here, suppose the edge e j is on the vertex Xi which is labeled as Xie j. C(e j) is denoted as the edge e j

with the color ‘‘C". The same edge on the remainder vertices can pass the information from the bottom
to the upper in the tile and can obtain the same color. The basic tile types of this system can be shown
in Figure 2(a). Figure 2(b) shows the seed configuration of the system. Figure 2(c) is an example of the
nondeterministic assigning system which can assign a color set to the edges.

The copy system

The copy system mainly carries out three functions by designing three basic tile types which can be
shown as follows in Figure 3. Here, Xie j denotes the edge e j is adjacent to the vertex Xi(1≤ i ≤ n). ‘‘C"
is the color of the edge e j on the vertex Xi.
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The first function is to pass the color of the edge given by the nondeterministic assigning system to
the same edge on different vertices, so it can make sure that the same edge adjoining different vertices
has the same color. The tile type is labeled with blue. If the edge is adjacent to different vertices, ‘‘Xie jC∗"
and Xie j should be passed to the left and the upper of the tile respectively. Otherwise, the color ‘‘C" can
be passed to the edge Xie j. At the same time, if the input at the bottom of the tile includes the information
of the colors, the outputs are only needed to copy the information of the inputs from left to right, and
synchronously from bottom to upper in the tile.

The second is to copy the possible colorings generated by the nondeterministic assigning system
from the bottom of the seed configuration to the uppermost of the self-assembly complexes. After the
edges sharing the common vertex have been checked the colorings by the detection system, there would
be a condition that the edges adjoining different vertices (k ̸= i) and with different colors (C1 ̸=C2) will
meet together, but they have no need to be checked the coloring and also should be passed to the left tiles
which is shown in the second tile type with the color turquoise.

The third is to copy the information with the edges which are adjacent to the vertices on the rightmost
column to the left tiles, so the detection system can check up whether colorings of the edges sharing the
common vertex are feasible, and synchronously, they also should be passed to the upper in the tile. Here,
Xie j is the edge which has at least two adjacent edges sharing a common vertex. Once a vertex has l
adjacent edges, (l−1) edges with the labels smaller then should be arranged on the rightmost column in
the seed configuration of the problem, but all the edges should be at the bottom of the seed configuration.
The tile type can be shown as follows with the color rosiness.
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Figure 3: The basic tile types of the copy system

The detection system

The key to the detection system is to make one system implement the checking operations. If the
adjacent edges sharing the common vertex have different colors, the feasible coloring of the edges for
the vertex has been completed with the symbol ‘‘Ok". Once the edges sharing one common vertex have at
least two same colors, the self-assembly complexes will stop to grow with the information ‘‘No tile can
match" and the coloring is not feasible. Here, the coloring of the adjacent edges for each vertex should
be satisfied with the same constraints. For the timetable problem, the hard and soft constraints can be
described by the constraints of the edges coloring for the corresponding graph.

When the edges which are adjacent to the vertices on the rightmost column and the coloring of each
edge from the copy system are passed to the detection system, it can check up whether the coloring
is feasible or not. If the comparison result at this step is ‘‘Ok", it should be passed to the left tiles to
continuously make the next color checking until the edges don’t share the same vertex, then it doesn’t
check the coloring with the left tiles any more, and synchronously the colors of the edges at the bottom
of the seed configuration in the nondeterministic assigning system should be passed to the higher layers.
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Here, ek and e j(k ̸= j) are the adjacent edges on the common vertex Xi, and they have different colors,
so the comparison result is ‘‘Ok". For the second tile type, the edge e j which is adjacent to the vertex
labeled as Xi meets the color ‘‘C", then it can pass ‘‘Xie jC" to the right in the tile, and the value of the tile
is the color ‘‘C" of the edge e j.

If the result is ‘‘No tile can match", the self-assembly complexes can’t grow any more and the input
colors of the edges are not the feasible solutions of the graph edge coloring problem. The formula of the
detection system can be described as follows:
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Figure 4: The basic tile types of the detection system

Here, this system will use the L-configuration to encode inputs, and produce its output on the top row
of an almost complete rectangle. Therefore, systems could chain results together. The input structure
encodes the edges colorings of the graph on the bottom row and encodes the edges and their adjacent
vertices on the rightmost column. The output tiles needs three different kinds of tiles as follows in
Figure 5. The pink tile shows the edge e j with the color ‘‘C" adjoining the vertex Xi which is the feasible
coloring for the graph. Only if all the edges adjoining different vertices have feasible colorings, the result
is ‘‘Success", and the feasible solution can’t be obtained otherwise.

C

**

Success

*

XiejC

*

Figure 5: The output tiles of the timetable problem

Here, we design the algorithm to implement the timetable problem as following steps:
Step 1: Convert the timetable problem into the graph edge coloring.
Step 2: Generate all possible input combinational colors of the edges to the given graph for the

timetable problem with some constraints.
Step 3: According to the rules for dealing with the constraints using the massive parallelism of DNA

self-assembly to check up whether all the possible inputs are the feasible colorings for the edges in the
graph. In this process, the copy system can pass the color of each edge in the graph from the bottom of
the seed configuration to the higher layers, and synchronously copy the information of edges which are
adjacent to the vertices, then the detection system can judge whether the colorings of the edges sharing
the common vertices are feasible or not.

Step 4: Reject all infeasible solutions according to constraints of the edge coloring and reserve all
feasible solutions, therefore we can obtain feasible solutions of the graph edge coloring problem which
are also the solutions of the timetable problem.

Step 5: Reading the operation result is done by the reporter strand method. Under certain biological
operations, we can obtain all the result strands which run through all the results of the feasible colors of
the edges for the given graph. Each report strand records the result of one feasible input. The strands
can be amplified by polymerase chain reaction using the primers to ligate each end of the long reporter
strand. Then through gel electrophoresis and DNA sequencing, we can read out the result strands of
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different lengths representing the information with the feasible coloring results. Finally, we can easily
get the feasible solutions of the timetable problem.

The actual implementation detail is not discussed here since they fall outside of the scope of this
paper. However, we believe that we make no arbitrary hypotheses. In fact, our work is based on the
achievements that come with DNA tiling computation in general.

Examples of the timetable problem

Here, we take an example of timetable problem to verify the validity of our method. Suppose there
are three teachers X1, X2, X3, and four classes Y1, Y2, Y3, Y4. The arrangement matrix of the courses is
shown as follows:

Y1 Y2 Y3 Y4

P =
X1

X2

X3

 1 0 1 0
0 1 1 0
0 1 1 1


The timetable problem has the hard constraints are:
HC0 - A teacher can only teach in a single place at a time.
HC1 - A teacher can only give one course at a time.
HC2 - A room can only host one course at a time.
HC3 - A student can only attend one course at a time.
HC4 - No more than a teacher is scheduled to teach in a room each time.
HC5 - The teacher X3 should give a course to the class Y2, which is arranged in the second period in

the morning time.
HC6 - There are enough rooms for the courses where the students attend. Some soft constraints are:
SC0 - Some courses are scheduled with a prior consideration.
SC1 - As much as possible the preferences of the teachers and the ones of the students should be

respected.
SC2 - If possible, the order of the courses classes taken Yj are more earlier than Yj+1.
First, we should convert the timetable problem into the graph edge coloring problem with some

constraints. The bipartite graph from the arrangement matrix of the timetable problem can be shown in
Figure 6. All the edges of the graph are ‘‘e1,e2,e3,e4, e5,e6,e7" and the vertices are ‘‘X1, X2, X3, Y1, Y2,
Y3, Y4".

X1 X2 X3

Y2 Y3 Y4Y1

e 1

e
2

e 3

e
4

e 5

e
6

e
7

Figure 6: The bipartite graph from the arrangement matrix of the timetable problem

Second, according to the method introduced above, we need construct the basic tile types in each of
the three small systems and they are the same as the tiles described above and the seed configuration,
which can be shown in Figure 7. When all the tiles and the seed configuration are prepared, we put them
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together into the reaction buffer. According to the DNA tiles prepared and the mechanism of algorithmic
DNA tile self-assembly through Watson-Crick base pairing, the self-assemble process starts at the same
time with the connector tiles, so the final stage can be seen in Figure 8.

We also can see that the process of the three small systems performing. The nondeterministic assign-
ing system can give a color set ‘‘RBRYBRY" to all the edges of the graph ‘‘e1,e2,e3,e4,e5,e6,e7" which
are adjacent to the vertices ‘‘X1, X2, X3, Y1, Y2, Y3, Y4" respectively. All the edges on different vertices
should be arranged at the bottom of the seed configuration no matter whether the vertices adjoin only
one edge or not. At the same time, the edges ‘‘X1e1,X3e5,Y2e3,Y3e2,Y3e4" are on the rightmost column
of the seed configuration. The copy system can pass the colors of the edges from the bottom of the seed
configuration to the upper layers, and pass the edges and their adjacent vertices on the rightmost column
to the left tiles, so that the detection system can check whether the colorings of the edges sharing one
common vertex are feasible. The vertex X1 which has two adjacent edges e1 and e2 with different colors
‘‘R" and ‘‘B" respectively is checked up the feasibility of the colorings by the detection system and the
result is ‘‘Ok". For the vertex X3, it has three adjacent edges e5, e6 and e7 which are at the bottom of the
seed configuration. One of the two edges e5, e6 with the smaller subscripts than e7 are on the rightmost
of the column. The detection system only need verify the colors of e5 and e6, e5 and e7, e6 and e7, and
the three comparison results are all ‘‘Ok". The method of checking the colorings of other vertices is also
the same.

Finally, to output the computation result, we would implement a modification of the standard sequence-
reading operation that uses a combination of PCR and gel electrophoresis. On adding these tiles, and
allowing them to anneal, then we get the final tile assembly. On adding ligase to seal the bonds, we will
have a single strand of DNA passing through the tiles in the final output layer, which encodes the col-
orings of the edges. This single strand begins with the unique nucleotide sequence labeled ‘‘Success".
Therefore, the feasible assignment of the edge colorings can be obtained if and only if the symbol
‘‘Success" appears in the result DNA strand. Through using the operations, we can extract the strands of
different lengths representing the output tiles in the result strands. In this example, we can obtain the
feasible solution of the ‘‘RBRYBRY". The color sets ‘‘R", ‘‘B" and ‘‘Y" have the corresponding relation-
ship with the edge sets ‘‘e1,e3,e6" , ‘‘e2,e5" and ‘‘e4,e7" which are also ‘‘X1Y1, X2Y2, X3Y3", ‘‘X1Y3, X3Y2" and
‘‘X2Y3, X3Y4". Thus the feasible solution of the timetable problem which is also the arrangement of the
courses can be described as: ‘‘X1Y1, X2Y2, X3Y3" are arranged in the first period, ‘‘X1Y3, X3Y2" and ‘‘X2Y3,
X3Y4" in the second and third period respectively which are satisfied with the constraints in the problem.

For the nondeterministic algorithm, we give the same example to show the failure in attaching tiles
in Figure 9 and don’t get the right results. If the nondeterministic assigning system gives a color set
‘‘RBRYBBY" to the edges ‘‘e1,e2,e3,e4,e5,e6,e7" respectively, there will be some conflicts in the process
of the growth for the assembly complexes. When the detection system checks up the coloring of the
vertex X3, the colorings of the edges e5 and e6 are the same which are both ‘‘B", so the conflict generates
and the result is ‘‘No tile can match", thus the self-assembly complexes can’t grow any more, therefore,
the coloring of the edges assigned is the infeasible solution of the problem. It means that ‘‘X1Y1, X2Y2",
‘‘X1Y3, X3Y2,X3Y3" and ‘‘X2Y3, X3Y4" are not the feasible arrangements of the courses, here there is a
conflict that the teacher X3 can’t give a course in two different classes Y2 and Y3 at the same period.

Complexity analysis

The complexity of the design is considered in terms of computation time, computation space and the
number of distinct tiles required. Generally, suppose there are m teachers, and n classes for the timetable
problem.

It is obvious from the given examples that the upper bound of the computation time T is T = m(n−
1)+n(m−1)+mn+4+mn+mn+2=Θ(mn).

The upper bound of the computation space S taken for each assembly is the area of the assemble
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Figure 9: The failure of the example for the problem because of infeasible coloring sets
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complexes represented by S = [m(n−1)+n(m−1)+mn+4]∗ [mn+mn+4] =Θ(m2n2) which is upper-
bounded polynomially to the number of variables.

Finally, suppose the graph G which is converted from the given timetable is k-edge-colorable. The
upper bound of tiles needed contain the following tiles:

Boundary tiles. These tile types include the input boundary tiles and computation boundary tiles.
According to the number of the edges in the graph, there are 2mn tiles for the input tiles at the bottom
of the seed configuration, and [m(n− 1) + n(m− 1) + 3] on the rightmost column. The computation
boundary tiles contain (kmn+ km+3) types. So the upper bound of the boundary tiles is [2mn+m(n−
1)+n(m−1)+ kmn+ km+6].

Computation tiles. For the assigning operations, there must be (kmn+mn) tiles with the upper bound,
and they are shown in Figure 2. For the copy system which can be seen in Figure 3, the upper bound
of the tile types is [km(n− 1)+ kn(m− 1)+ kmn+ kmn+ kmn]. For the detection system in Figure 4,
there must be [km(n− 1)+ kn(m− 1)+ kmn] tiles with the upper bound. Thus the upper bound of the
computation tiles is [9kmn+mn− k(m+n)].

Output tiles. Finally, there must be some tiles to output the results. The upper bound is (2kmn+2)
and the tiles are shown in Figure 5.

Summing up all the tile types, because the value of k can be determined for the given timetable
problem, so we can have the upper bound of the total number of tiles: [2mn+m(n− 1)+ n(m− 1)+
kmn+ km+6]+[9kmn+mn− k(m+n)]+(2kmn+2)=Θ(mn).

4 Summary and Conclusions

DNA tile self-assembly is looked forward to many applications in different fields. In this paper, we
show how the DNA self-assembly process can be used for solving the timetable problem. The advantage
of our method is that once the initial strands are constructed, each operation can compute fast parallelly
through the process of DNA self-assembly without any participation of manpower, thus the algorithm is
proposed which can be successfully implemented the timetable problem with the operation time com-
plexity of Θ(mn), parallely and at very low cost. A limitation of the algorithm, which is common for
most DNA computations, comes from the fact that the exponential dimension of the problem has been
pushed into the physical space (volume) occupied by the DNA molecules. This will eventually become
a restrictive factor. The input size and thus the DNA volume can’t grow forever. This implies an upper
bound to the size of instances that can be solved in practice.

While DNA tile self-assembly suffers from high error rates, the possible sources of errors are, either
an error in constructing the tiles, or an erroneous binding of tiles, methods of error control and error
correction may be used to decrease the error rates in the computation of DNA tile self-assembly model.
Many experimental results in DNA tile self-assembly have not appealed to the advantages of crystal
growth; however, these early works on the fundamentals of self-assembly and the physical experimental
evidence of actual DNA tile crystals suggest a bright future for DNA tile self-assembly. The field of
nanotechnology holds tremendous promise, but many technical hurdles will have to be overcome before
algorithmic DNA tile self-assembly can be developed into a practical commercial technology. If the
molecules and supramolecules can be controlled at will, then it may be possible to achieve vastly better
performance for computers and memories. So we can see that the DNA tile self-assembly model has
various applications in many fields and it also might open up a host of other applications in materials
science, medicine, biology and other ways.
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