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Abstract: The application of spiking neural P systems with rules and weights on
synapses to arithmetic operations is discussed in this paper. We design specific spik-
ing neural P systems with rules and weights on synapses for successfully performing
addition, multiplication and the greatest common divisor. This is the first attempt
to discuss the application of the new variant of spiking neural P systems, spiking
neural P systems with rules and weights on synapses, and especially the use of spik-
ing neural P systems to perform the greatest common divisor. Comparing with the
results reported in the literature, smaller number of neurons are required to fulfill the
arithmetic operations.
Keywords: SN P systems, rules and weights on synapses, addition, multiplication,
the greatest common divisor.

1 Introduction

Membrane computing was initiated in [12]. The distributed and parallel computing devices
in membrane computing are called P systems [13]. Some applications of P systems were reported
in [2, 28, 29]. Especially, applications of P systems to arithmetic operations were discussed in
[1, 2, 4, 31]. Some views on membrane computing were given in [3, 14]. For more information
about membrane computing, one can refer to [15, 33]. Spiking neural P systems (in short, SN
P systems) are a variant of P systems, which were introduced in [5] as a class of parallel and
distributed computing models.

In recent years, SN P systems have been widely investigated in theory and applications. For
instance, various variants of SN P systems were constructed by considering different biological
sources [9,11,17,19,20,22,27] and the computing power/computational efficiency of some variants
was discussed [10,18,26]. A wide range of applications of SN P systems was also presented, such
as optimization [30], knowledge representation [23], fault diagnosis [16,24], and logical gates and
circuits [6, 21]. SN P systems have been also used to perform arithmetic operations [8, 25, 32].
In order to answer the open problem in [8], SN P systems with a single input neuron for the
addition and multiplication were constructed in [32]. These studies indicate that arithmetic/logic
operations are promising applications of SN P systems.

In this paper, the application of SN P systems with rules and weights on synapses (RWSN P
systems) is discussed to perform arithmetic operations. Smaller number of neurons are required to
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construct the SN P systems for addition of n natural numbers and multiplication of two arbitrary
natural numbers compared with the ones in [32]. This is the first attempt to discuss the use of
spiking neural P systems to perform the greatest common divisor. We divide the solution for the
greatest common divisor into several individual modules, and the binary representation method
in [34] is used here. The inputs and outouts of these systems are natural numbers expressed in
binary form, which are encoded as appropriate sequences of spikes.

This paper is organized as follows. Section 2 briefly introduces the SN P systems with rules
and weights on synapses. In Section 3, SN P systems with rules and weights on synapses are
used to perform arithmetic operations. Conclusions and future work are presented in Section 4.

2 Spiking neural P Systems with rules and weights on synapses

In this section, SN P systems with rules and weights on synapses are briefly described. More
details can be referred to [7].

Such a system of degree m ≥ 1 is a construct of the form:

∏
= (O, σ1, σ2, . . . , σm, syn, σin, σout),

where:

• O = {a} is the singleton alphabet (a is called spike);

• σ1, σ2, . . . , σm are neurons of the form σi = (ni), with 1 ≤ i ≤ m, where ni is initial number
of spikes in neuron σi;

• syn is the set of synapses; each element in syn is a pair of the form ((i, j), w, R(i,j)),
where (i, j) indicates that there is a synapse connecting neurons σi and σj , with i, j ∈
{1, 2, . . . ,m}, i 6= j; w ∈ N(w 6= 0) is the weight on synapse (i, j); R(i,j) is a finite set of
rules of the following two forms:

(1) E/ac → a; d, where E is a regular expression over O, c ≥ 1 and d ≥ 0;

(2) as → λ, for some s ≥ 1, with the restriction that as /∈ L(E) for any rule E/ac → a; d
from any R(i,j);

• σin and σout indicates the input neuron and the output neuron, respectively.

A rule E/ac → a; d is called a standard firing rule; if L(E) = {ac}, then the rule can be
written in the simplified form ac → a; d. A rule of the form as → λ is called a forgetting rule.
The firing rules are applied as follows. If E/ac → a; d ∈ R(i,j), and neuron σi contains k spikes
such that ak ∈ L(E), k ≥ c, then the rule is enabled. This means consuming (removing) c spikes
(thus only k−c remain in σi) from neuron σi. Neuron σi is fired, and it produces one spike. This
one spike is multiplied w times by the weight w of the synapse in the process of transmission,
and then reaches neuron σj after d time units (that is, w spikes arrive at neuron σj). When
neuron σi contains exactly s spikes, then forgetting rule as → λ ∈ R(i,j) is enabled. By using it,
s ≥ 1 spikes are removed from the neuron σi.

In order to express the synapse between the output neuron and the environment, the en-
vironment is represented by the letter e, and the synapse between the output neuron and the
environment can be expressed as (out, e).
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3 Arithmetic operations with SN P systems with rules and weights
on synapses

In this section, SN P systems with rules and weights on synapses are used to design specific
systems to perform three types of arithmetic operations, addition, multiplication and the greatest
common divisor.

3.1 Addition

In this subsection, we describe an SN P system with rules and weights on synapses that
performs the addition of n natural numbers. Such a system is called the SN P system with rules
and weights on synapses for n − addition. The system has only one input neuron and can be
used to perform the sum of arbitrary n natural numbers with k binary bits, where n ≥ 2, k ≥ 1.
Compared with the standard SN P system, this type of SN P systems can reduce the number of
neurons.

As shown in Fig. 1, we construct an SN P system
∏
Add(n, k) with rules and weights on

synapses to solve the n− addition problem. Its formal definition is omitted.

Figure 1: The SN P system
∏
Add(n, k) with rules and weights on synapses for addition

The SN P system with rules and weights on synapses for n − addition outputs the sum in
binary form of n natural numbers with k binary bits, provided that the neuron σin is in binary
form.

Let t denote the current time step. In the initial configuration (t = 0), only the neuron σa0
in the system contains 2 spikes and the neuron σc contains k spikes. The computing procedure
of the SN P system with rules and weights on synapses in Fig. 1 is composed of the following
steps:



Arithmetic Operations with Spiking Neural P Systems
with Rules and Weights on Synapses 577

1. Preprocessing of inputs. At time t = 0, with two spikes in the auxiliary neuron σa0 ,
the rules on synapses (a0, in) and (a0, a1) can be applied. One of the two spikes is consumed by
the firing rule a2/a→ a on synapse (a0, a1), and one new spike is produced. Then this new spike
is multiplied by the weight 2 on synapse (a0, a1) during the transfer. That is, at the next time,
two spikes will arrive at neuron σa1 , so that the rules on the two synapses emitted by neuron
σa1 will be enabled and applied. The other spike is consumed by the forgetting rule a2/a → λ
on synapse (a0, in), so the number of spikes that neuron σin receives from the auxiliary neuron
σa0 is 0 at t = 1.

Similarly, the above process is repeated and then we can get that when time t = 2, neuron σin
receives two spikes from the auxiliary neuron σa1(the weight on synapse (a1, in) is 2); until time
t = k, neuron σin receives 2(k − 1) spikes from neuron σak−1

(the weight on synapse (ak−1, in)
is 2(k − 1)). Then the auxiliary neurons send spikes to σin again, from σa0 to σak−1

, until the
computation ends.

2. Input and store the first n-1 numbers. At time t = 1, the digit which is associated
with the power 20 in the binary representation of the first natural number is provided to the
input neuron σin, while the auxiliary neuron σa0 sends 0 spikes to σin. At this time, the number
of spikes that neuron σin contains may be 0 or 1. If there is no spike and no rule is activated,
then 0 spike will be sent to neuron σb0 at the next time. If there is one spike, then the firing rule
a→ a on synapse (in, b0) is triggered. This means that neuron σb0 can receive one spike at the
next time. In this way, we can store the lowest bit of the first natural number into the neuron
σb0 .

Similarly, we can store the digits which are associated with the power 21, 22, . . . , 2k−1 of the
first natural number into σb1 , σb2 , . . . , σbk−1

, respectively. At the next time, the second natural
number will begin to be input to the system, and the input process is same as that of the first
number.

3. Input the last natural number and calculate the sum of each bit. At t =
(n − 1)k + 2, the spikes of the lowest bit of the last natural number arrive in σb0 , and at the
same time, n spikes transmitted by synapse (c, b0) also arrive at σb0 after (n − 1)k + 1 steps of
delay. The rules on synapses (b0, out) and (b0, b1) can be applied when the number of spikes in
σb0 is at least n and n + 2, so the system starts to calculate the sum and binary carry at this
step, which corresponds to the power 20 of the n natural numbers. Then the sum is sent to the
output neuron σout, and the carry is sent to the next neuron σb1 .

By the same token, the binary digits corresponding to the power 2i of the last natural number
and the n spikes transmitted by synapse (c, bi) arrive at σbi at the same time. Differing from
σb0 , the carry from σbi−1

also arrives at σbi at this time, where i = 1, 2, . . . , k−1, and the neuron
σbk only receives the carry from σbk−1

.
In neuron σbi , we assume that the number of spikes receiving from the input neuron σin is

p, and the number of spikes that receives from the previous neuron σbi−1
is q, then the neuron

σbi contains n + p + q spikes. The rules on the synapse (bi, out) can be divided into two cases,
where i = 0, 1, . . . , k − 1.

• If the value of p + q is odd, that is p + q = 2j + 1, where j = 0, 1, . . . , n − 1, the rule
an+2j+1/an+1 → a on synapse (bi, out) is applied and consumes n+ 1 spikes in neuron σbi ,
then one spike is sent to the output neuron σout. The output neuron will send this one
spike to the environment at next time, that is, the corresponding binary bit of sum is 1.

• If the value of p+ q is even, that is p+ q = 2j, where j = 0, 1, . . . , n− 1, then n spikes in
neuron σbi are forgotten by the rule an+2j/an → λ on synapse (bi, out), and no new spikes
are produced. That is, the corresponding binary bit of sum is 0.
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At the same time of producing each bit of the sum, it is possible to generate carry. When
j 6= 0 (without 0 or 1 spike), the rule (an+2j , an+2j+1)/a2j → a on synapse (bi, bi+1) is applied
and produces one spike. Then j spikes are sent to the next neuron (the weight on synapse
(bi, bi+1) is j), where j = 1, 2, . . . , n − 1. It should be noted that the neuron σbk only receives
the carry spikes from the previous neuron σbk−1

.

4. Output the result. Each of the binary bits of the sum can be sent to the output neuron
σout at different steps, and σout uses the rule a → a to output the result to the environment
based on the number 0 or 1 of spikes in σout.

Based on the above description, the system shown in Fig. 1 can calculate the sum of the n
natural numbers with k binary bits, where n ≥ 2, k ≥ 1, and send the result to the environment.

As an example, let us consider the addition 1102 + 0112 = 10012, that is, n = 2, k = 3.
Fig. 2 depicts the SN P system

∏
Add(2, 3) with rules and weights on synapses. Table 1 reports

the spikes contained in each neuron of
∏
Add(2, 3), as well as the number of spikes sent to the

environment, at each step during the computation. The input and the output sequences are
written in bold. Note that the first instance of time for which the output is valid is t = 7.

Figure 2: The SN P system
∏
Add(2, 3) with rules and weights on synapses for addition

Compared with the example in [32], when k = 3, the number of neurons required to solve this
problem by using the standard SN P system is 14; as shown in Fig. 2, the number of neurons
required in SN P system with rules and weights on synapses is 10, which effectively reduces the
number of neurons.



Arithmetic Operations with Spiking Neural P Systems
with Rules and Weights on Synapses 579

Table 1: The configurations and outputs of
∏
Add(2, 3) at each time step during the computation

of the addition 1102 + 0112 = 10012

t in a0 a1 a2 c b0 b1 b2 b3 out output

0 0 2 0 0 3 0 0 0 0 0 0

1 0 0 2 0 O(4)O(5)O(6) 0 0 0 0 0 0

2 1+2 0 0 2 O(3)O(4)O(5) 0 0 0 0 0 0

3 1+4 2 0 0 O(2)O(3)O(4) 0 1 0 0 0 0

4 1 0 2 0 O(1)O(2)O(3) 0 1 1 0 0 0

5 1+2 0 0 2 O(1)O(2) 3 1 1 0 0 0

6 0+4 2 0 0 O(1) 0 4 1 0 1 0

7 0 0 2 0 0 0 0 4 0 0 1

8 2 0 0 2 0 0 0 0 1 0 0

9 4 2 0 0 0 0 0 0 0 1 0

10 0 0 2 0 0 0 0 0 0 0 1

3.2 Multiplication

Multiplication of two arbitrary natural numbers is also called the general binary multiplica-
tion, which has been performed on an SN P system in [32]. In order to reduce the number of
neurons in the system, for two binary numbers m and n with k binary bits, we construct the
SN P system

∏
Multiple(k) with rules and weights on synapses as shown in Fig. 3 to perform the

general binary multiplication, where k ≥ 1, m ≥ 0, n ≥ 0.
The SN P system with rules and weights on synapses for the general binary multiplication of

Fig. 3 outputs the product m×n in binary form of two natural numbers m and n with k binary
bits, provided that the neuron σin is in binary form. Assuming that m and n are two natural
numbers with k binary bits, and m and n are rewritten as follows:

m =
k−1∑
i=0

mi2
i, n =

k−1∑
j=0

nj2
j ,then:

m× n = n0m02
0 + (n0m1 + n1m0)2

1 + · · ·+ (n1mk−1 + n2mk−2 + · · ·+
nk−1m1)2

k + · · ·+ nk−1mk−12
2k−2

From the above expression we can see that the product of m and n can be decomposed into
the sum of 2k − 1 terms.

Let t denote the current time step. In the initial configuration (t = 0), the neuron σa0 contains
2 spikes and σgi contains k spikes, where i = 2, 3, . . . , k. Fig. 3 shows the SN P system with
rules and weights on synapses for the general binary multiplication, and the operation process
consists of the following steps:

1. Preprocessing of input. It is similar to the input preprocessing part of the system∏
Add(n, k), so we only describe the differences.
The auxiliary neuron σai only acts on the natural number m, which is the first input to the

system, where i = 0, 1, . . . , k − 1. When each of the corresponding binary bits of m is input to
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Figure 3: The SN P system
∏
Multiple(k) with rules and weights on synapses for multiplication

σin, the auxiliary neurons σa0 , σa1 , . . . , σak−1
send 2, 4 ,. . . , 2k spikes to σin, respectively.

2. Input and store the binary bits of the first natural number m. At t = 1, the
digit which is associated with the power 20 in the binary representation of m has been provided
to σin, while the auxiliary neuron σa0 sends 2 spikes to σin. So the number of spikes that neuron
σin contains may be 2 or 3. If there are 2 spikes, then the rule a2 → λ on synapse (in, b0) can
be applied, so that the 2 spikes are consumed and no spike is sent out. At t = 2, the neuron σb0
receives only one spike from synapse (c, b0) (after one step delay), and this spike will be forgotten
by rule a→ λ on synapse (b0, d0) at the next step. If there are 3 spikes, where two of them come
from σa0 and the other one from the environment, then the rule a3 → a on synapse (in, b0) is
triggered; as a consequence, one spike is sent out. Then at t = 2, there are two spikes placed
in neuron σb0 , where one of them comes from synapse (in, b0) and the other one from synapse
(c, b0). These two spikes remain in σb0 for the next steps.

Thus, k binary bits of m can be stored in the neurons σb0 , σb1 , . . . , σbk−1
by repeating the

above operations. If there are 2 spikes, the i − th binary bit of m is 1; if there is no spike, the
i− th binary bit of m is 0, where i = 0, 1, . . . , k − 1.

3. Each binary number of the natural number m multiplies all binary numbers
of n, which can produce all possible products of binary numbers of m and n. At
t = k + 1, the digit which is associated with the power 20 in the binary representation of n
has been provided to the input neuron σin. If the digit is 1, then each rule a → a on synapses
(in, b0), (in, b1), . . . , (in, bk−1) is triggered at the same time, and each of neurons σb0 , σb1 , . . . ,
σbk−1

will receive one spike at next step. Otherwise, no spike will be sent to neurons σb0 , σb1 ,
. . . , σbk−1

.
Now let us focus on the neuron σbi , where i = 0, 1, . . . , k − 1. At t = k + 2, the number of

spikes in σbi may be 0,1,2,3, and we can thus consider the following four cases.

• If σbi contains 0 spikes, then no rule can be applied, thus no spike is sent out. This encodes
the operation n0mi = 0× 0 = 0.
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• If σbi contains 1 spike, then it comes from σin. The rule a → λ on synapse (bi, di) is
triggered, so that one spike is consumed and no spike is sent out. This encodes the operation
n0mi = 1× 0 = 0.

• If σbi contains 2 spikes, then they are all remained from the previous step. No rule can be
applied. This encodes the operation n0mi = 0× 1 = 0.

• If σbi contains 3 spikes, then two of them are remained from the previous step and the
other one comes from σin at this step. The rule a3/a→ a; i on synapse (bi, di) is triggered;
as a consequence, one spike reaches the neuron σdi after i steps of delay and one spike is
consumed, thus two spikes in σbi are left for the next step. This encodes the operation
n0mi = 1× 1 = 1.

When n1 reaches neuron σbi , σbi also receives four spikes from neuron σg2 (after k + 2 steps
delay). Therefore, the number of spikes contained in neuron σbi at this time may be 4, 5, 6,
and 7, respectively, corresponding to the four cases 0, 1, 2, and 3 mentioned above, and the
rules on synapses (bi, di+1) can be applied and send the result n1mi to neuron σdi+1

, where
i = 0, 1, . . . , k − 1.

Similarly, we can get n2mi, . . . , nk−1mi in the same way, and njmi is sent to neuron σdi+j ,
where 0 ≤ i ≤ k − 1, 0 ≤ j ≤ k − 1.

4. The sum of terms. At t = k + 3, n0m0 arrives at neuron σd0 through synapse (b0, d0).
. . . At t = 3k + 1, nk−1mk−1 arrive at σd2k−2

. The number of spikes contained in neuron σdi
above corresponds to the binary bit of m× n, where i = 0, 1, . . . , 2k − 2.

5. Output the result. The spikes in neurons σd0 , σd1 , . . . , σd2k−2
above are sent to the

output neuron σout. According to the number of spikes in the output neuron σout, we consider
the following two cases.

• If the number of spikes is odd, the rule a2j+1/aj+1 → a on synapse (out, e) is applied,
so that j + 1 spikes are consumed and one spike is sent to the environment, and j spikes
remain in σout for the next step.

• If the number of spikes is even, the rule a2j/aj → λ on synapse (out, e) is applied, so that
j spikes are consumed and no spike is sent to the environment, and j spikes remain in σout
for the next step.

From time t = k+ 5, the system begins to have output. Therefore, the system shown in Fig.
3 can perform the general binary multiplication, and output the result to the environment.

As an example, let us consider the multiplication 112 × 112 = 10012, that is k = 2. Fig.
4 depicts the SN P system

∏
Multiple(2) with rules and weights on synapses. Table 2 reports

the spikes contained in each neuron of
∏
Multiple(2), as well as the number of spikes sent to the

environment, at each step during the computation. Note that the time for the first instance that
the output is valid is t = 7.

When k = 2, the number of neurons required in the multiplication SN P system is 17 in [32];
as shown in Fig. 4, the number of neurons required in SN P system with rules and weights on
synapses is 11, which effectively reduces 6 neurons.

3.3 The greatest common divisor

In this subsection, the greatest common divisor of two natural numbers is performed on SN
P systems with rules and weights on synapses. We divide the solution for the greatest common
divisor into several individual modules, and then call the different modules according to the
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Figure 4: The SN P system
∏
Multiple(2) with rules and weights on synapses for multiplication

method steps. The method for solving the greatest common divisor that we use is the binary
method. Please refer to [34] to learn more details on the binary method.

Each of the modules required for the above method is given below. These modules are
achieved by SN P systems with rules and weights on synapses.
Module 1: To determine whether the natural number is even

If a number is even, then the digit which is associated with the power 20 in the binary
representation is 0; otherwise, this digit is 1. So we can only use the digit which is associated
with the power 20 in the binary representation of the number to judge whether it is even or odd.

For a natural number, we construct the SN P system
∏
Even with rules and weights on

synapses as shown in Fig. 5 to determine whether it is even or not. If the input is even, the
number of spikes that output to the environment is 0, otherwise, the output of this system is not
0. The time that the output is valid for the first instance is t = 3.

Figure 5: The SN P system
∏
Even with rules and weights on synapses

Module 2: To divide the number by 2 (to shift one bit to the right)
The binary even number is divided by 2, which means that the last bit 0 of this binary

number is removed. So if the length of binary bits of the input is k, then the length of binary
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Table 2: The configurations and outputs of
∏
Multiple(2) at each time step during the computation

of the multiplication 112 × 112 = 10012

t in a0 a1 c g2 b0 b1 d0 d1 d2 out output

0 0 2 0 2 2 0 0 0 0 0 0 0

1 1+2 0 1 O(1)O(2) O(4) 0 0 0 0 0 0 0

2 1+4 0 0 O(1) O(3) 2 0 0 0 0 0 0

3 1 0 0 0 O(2) 2 2 0 0 0 0 0

4 1 0 0 0 O(1) 3 3 0 0 0 0 0

5 0 0 0 0 0 7 7 1 0 0 0 0

6 0 0 0 0 0 2 2 0 2 0 1 0

7 0 0 0 0 0 2 2 0 0 1 2 1

8 0 0 0 0 0 2 2 0 0 0 2 0

9 0 0 0 0 0 2 2 0 0 0 1 0

10 0 0 0 0 0 2 2 0 0 0 0 1

bits of the output is k − 1.
For an even number, we construct the SN P system

∏
Divide2 with rules and weights on

synapses as shown in Fig. 6 to divide it by 2. The time that the output is valid for the first
instance is t = 4.

Figure 6: The SN P system
∏
Divide2 with rules and weights on synapses

Module 3: To add 1 to the number
For a natural number, we construct the SN P system

∏
Add1 with rules and weights on

synapses as shown in Fig. 7 to add 1 to it. The first time step that the output starts to be
emitted by the system is t = 3.
Module 4: To compare the value of two natural numbers

We construct the SN P system
∏
Comp with rules and weights on synapses as shown in Fig.

8 to compare two natural numbers. The inputs of this system are two appropriate sequences of
spikes of two natural numbers in binary form, but what is different from the other modules is
that the input here starts from the highest bit to the lower.

For two natural numbers in binary form with the same length of binary bits, we compare
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Figure 7: The SN P system
∏
Add1 with rules and weights on synapses

them from the highest bit of each number to the lower order, until the system outputs 2 or 1.
The result is the last bit of the output. If the result is 0, then in1 = in2; if the result is 1, then
in1 < in2; if the result is 2, then in1 > in2.

Figure 8: The SN P system
∏
Comp with rules and weights on synapses

Module 5: Subtraction
The design principle of the subtraction module is referred to [8]. For two natural numbers,

we construct the SN P system
∏
Sub with rules and weights on synapses as shown in Fig. 9 to

perform subtraction. The time that the output is valid for the first instance is t = 4.

Figure 9: The SN P system
∏
Sub with rules and weights on synapses

Module 6: To calculate the result (to multiply by 2 with given times)
By calling the above five modules, the numbers d and g are obtained. This module uses d

and g to calculate the greatest common divisor g × 2d. That is, move g to the left by d bits,
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Table 3: The configurations and outputs of
∏
Even at each time step during the process of judging

whether a = 011002 and b = 100102 is even

t in(a) in(b) aux out output

0 0 0 1 0 0

1 0+2 0+2 0 0 0

2 0 1 0 0 0

3 1 0 0 0 0

4 1 0 0 0 0

5 0 1 0 0 0

6 0 0 0 0 0

7 0 0 0 0 0

where d represents the number of times that all the two numbers are even.
We construct the SN P system

∏
Multiply2 with rules and weights on synapses as shown in

Fig. 10 to calculate the result. The input is the number g in binary form. The first time step
that the output starts to be emitted by the system is t = 3.

Figure 10: The SN P system
∏
Multiply2 with rules and weights on synapses

By calling above modules, we can get the greatest common divisor of two natural numbers.
In what follows, an example is provided to detail the process.

As an example, let us consider the greatest common divisor of the numbers a = 011002 and
b = 100102. The calling process of modules to calculate gcd(011002, 100102) is as follows. In the
initial time, we assume that g = 0 and d = 0.
Step 1. Call the module 1 to determine whether a and b are even

When the input of system
∏
Even is a = 011002 or b = 100102, the spikes contained in each

neuron of
∏
Even, as well as the number of spikes sent to the environment at each step during

the process that judge whether a or b is even, are reported in Table 3.
From Table 3, we can know that the output of

∏
Even is 0, so a = 011002 is an even number,

and b=100102 is an even number, too.
Step 2. Call the module 2 to divide a and b by 2

When the input of system
∏
Divide2 is a = 011002, the output is 0110. When the input of

system
∏
Divide2 is b = 100102, the output is 1001. So, after dividing a and b by 2, we can get

a = 01102 and b = 10012.
Step 3. Call the module 3 to add 1 to d

In the initial time, d = 0, so the input of system
∏
Add1 is 0. After adding 1 to d, we can get

d = 1.
Step 4. Call the module 1 to determine whether a and b are even
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Table 4: The configurations and outputs of
∏
Comp at each time step during the process of

comparing the value of a = 00112 and b = 10012

t in1 in2 out output

0 0 0 0 0

1 0 1 0 0

2 0 0 1 0

3 1 0 0 0

4 1 1 2 1

When the input of system
∏
Even is a = 01102, the output is 0, so a = 01102 is an even

number. When the input of system
∏
Even is b = 10012, the output is 1, so b = 10012 is odd.

Step 5. Call the module 2 to divide a by 2
The input of system

∏
Divide2 is a = 01102. After dividing a by 2, we get a = 0112.

Step 6. Call the module 1 to determine whether a is even
The input of system

∏
Even is a = 0112, and then the output of

∏
Even is 1, so a = 0112 is

an odd number.
Step 7. Call the module 4 to compare the value of a and b

In the system
∏
Comp, in1 = a = 00112 and in2 = b = 10012. Table 4 reports the spikes

contained in each neuron of
∏
Comp, as well as the number of spikes sent to the environment at

each step during the process of comparing the value of a = 00112 and b = 10012. The output of
the system is 1, so a < b.
Step 8. Call the module 5 and module 2 to calculate (b− a)/2

Because a < b, we can get in1 = b = 10012 and in2 = a = 00112 in the system
∏
Sub. After

computing in
∏
Sub, we get b− a = 10012 − 00112 = 01102.

Then the input of system
∏
Divide2 is 01102. After dividing it by 2, we can get b = (b−a)/2 =

01102 ÷ 102 = 0112.
Step 9. Call the module 4 to compare the value of a and b

In the system
∏
Comp, in1 = a = 0112 and in2 = b = 0112. The output of the system is 0, so

a = b.
Step 10. Call the module 6 to calculate the result

From the above steps, we can get g = a = b = 0112 and d = 1. So the input of system∏
Multiply2 is g = 0112, and the spikes contained in each neuron of

∏
Multiply2, as well as the

number of spikes sent to the environment at each step during computation of the multiplication
0112 × 21 = 1102 are reported in Table 5.

So the greatest common divisor of 011002 and 100102 is g × 2d = 0112 × 21 = 1102.
Through the above analysis we can see that the greatest common divisor of two arbitrary

natural numbers is available by calling the corresponding modules of method.

3.4 Discussion

For addition and multiplication, both the systems constructed in [32] and the ones in this
paper have only one input neuron, and the integers encoded in binary form should be input
in order. The system in [32] to perform the addition of n natural numbers with 3 binary bits
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Table 5: The configurations and outputs of
∏
Multiply2 at each time step during the computation

of the multiplication 0112 × 21 = 1102

t in aux1 out output

0 0 0 0 0

1 1 0 0 0

2 1 1 0 0

3 0 1 1 0

4 0 0 1 1

5 0 0 0 1

6 0 0 0 0

requires 14 neurons, while 10 neurons are enough by using SN P systems with rules and weights
on synapses. When the multiplication of two natural numbers with 2 binary bits is performed,
the system designed in [32] requires 17 neurons, while in this paper, we use only 11 neurons.
Thus, we can conclude that the systems with a single input neuron for addition and multiplication
in [32] are improved by using the SN P systems with rules and weights on synapses. It is worth
pointing out that the designed SN P systems in this paper use larger number of synapses and
delays than the systems in [32]. For addition, due to the constraints of input conditions, the
systems need to calculate the sum of each bit until the last number is input, which makes the
addition system relatively complicated. In addition, this study is the first attempt to design an
SN P system to calculate the greatest common divisor of two natural numbers.

4 Conclusions and future work

The use of the SN P systems with rules and weights on synapses to design specific systems
for fulfilling the arithmetic operations is focused in this paper, including addition, multiplication
and the greatest common divisor. Comparing with the results reported in [32], smaller number
of neurons are required to perform the addition and multiplication. Calculating the greatest
common divisor of two natural numbers is not an easy task. This paper achieved a good design
by using several modules. Following this work, we will consider how to use the SN P system
with rules and weights on synapses to perform the division operation.
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