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Analytical Model For a Multiprocessor With Private Caches And Shared
Memory

Angel Vassilev Nikolov

Abstract: We develop an analytical model of multiprocessor with private caches
and shared memory and obtain the following results: the instantaneous state proba-
bilities and the steady-state probabilities of the system. Both transient behaviour and
equilibrium can be studied and analyzed. We showed that results can be applied to
determine the output parameters for both blocking and non-blocking caches.
Keywords: Invalidate cache-coherence protocol, queuing system, discrete transform

1 Introduction

Shared memory multiprocessors are widely used as platforms for technical and commercial comput-
ing [2]. Performance evaluation is a key technology for design in computer architecture. The continuous
growth in complexity of systems is making this task increasingly complex [7]. In general, the problem
of developing effective performance evaluation techniques can be stated as finding the best trade-off
between accuracy and speed.

The most common approach to estimate the performance of a superscalar multiprocessor is through
building a software model and simulating the execution of a set of benchmarks. Since processors are
synchronous machines, however, simulators usually work at cycle-level and this leads to enormous slow-
down [9]. It might take hours even days to simulate.

For memory structures relatively accurate analytical models were developed [3, 7, 9, 10] through
extensive use of various queuing systems. Open queue system with Poisson arrivals and exponential
service times is considered quite good for description of memory hierarchies [7]. Our focus is on the
impact of the cache-coherence protocols on the overall system performance. The most commonly used
technique for this purpose is the Mean Value Analysis (MVA) [3, 5, 7, 8, 9]. It allows the total number
of the customers to be fixed (closed queue system), and this seems to be more adequate representation
of the processes of self-blocking requestors [5]. Calculations of output parameters such as residency
times, waiting times and utilization are shown in [3, 8, 9]. MVA is based on the forced flow that means
in equilibrium output rate equals input rate. However, instantaneously, we can have input rate different
from output rate, so that the instantaneous probabilities could be different from equilibrium [7]. MVA
offers no possibility to study transient effects. Moreover, the assumption of exponential service times is
not realistic, in fact all bus access times and memory access times are constants. It will be seen later in
this paper that state probabilities depend on the server’s time density function.

We use the technique of Markov processes to describe the behaviour of the multiprocessor imple-
menting cache-coherence protocols.

2 Definition and Analysis of the Model

A multiprocessor consists of several processors connected together to a shared main memory by
a common complete transaction bus. Each processor has a private cache. When a processor issues a
request to its cache, the cache controller examines the state of the cache and takes suitable action, which
may include generating bus transaction to access main memory. Coherence is maintained by having all
cache controllers "snoop" on the bus and monitor the transaction. Snoopy cache-coherence protocols
fall in two major categories: Invalidate and Update [2, 3, 10]. Invalidating protocols are studied here
but the concepts can be applied with some modifications to updating protocols too. Transactions may
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or may not include the memory block and the shared bus. Typical transaction that does not include
memory block is Invalidate Cache Copy which occurs when a processor requests writing in the cache.
All other processors simply change the status bit(s) of their on copies to Invalid. If the memory block
is uncached or not clean it can be uploaded from the main memory, but in today’s multiprocessors it
is rather uploaded from another cache designated as Owner (O) (cache-to cache transfer). Memory-to-
cache transfer occurs when the only clean copy is in the main memory. A cache block is written back
(WB) in the main memory (bus is used) when a dirty copy is evicted [6]. The bus and the main memory
are also used when synchronization procedures are executed [2]. Apparently the bus can be considered
as the bottleneck of the system.

In terms of the queuing theory processors can be viewed as customers (clients) and the bus can be
viewed as a server.

Inter-arrival times are exponentially distributed with parameter λ . This assumption is adequate for
most applications [7]. Requests are served on First Come First Served (FCFS) basis. Immediately after
issuing a request for cache-to-cache transfer or synchronization procedure the customer blocks itself. The
service time for blocking request has a density function f1(x). When service is completed the processor
(customer) resumes processing with probability p or resumes processing and generates a new request
with probability q (p+q=1). Details on how to obtain the input parameters are given in [2, 3, 8, 9]. This
new request has a different density function f2(x) and corresponds to WB transaction. It does not block
the customer but the server is held until completion of WB transaction therefore adding to the queue.
The system can be in one of the following states: 1) N: all N customers are doing internal processing; 2)
j, 1: j customers are doing internal processing (N-j are blocked respectively) and all requests are of type
1(0≤j≤N-1), 3) j ,2: j customers are doing internal processing , the server is serving request of type 2,
and N-j customers are waiting in the queue for service of type 1 (0≤j≤N). The transitions between these
states are illustrated in Fig. 1.

Throughout this paper we use the following notations
PN(t) Probability[all N customers are doing internal processing at time t]
P j,i(t,x) Probability[j customers are doing internal processing, N-j are in the queue and/or in the

server, and the server is busy doing service of type i at time t and the elapsed service time lies between x
and x+dx ]

P j,i(x) Probability[in the equilibrium state j customers are doing internal processing, N-j are in the
queue and/or in the server, the server is busy doing service of type i and the elapsed service time lies
between x and x+dx ]

P j,i(t) Probability[j customers are doing internal processing, N-j are in the queue or in the server, the
server is busy doing service of type i at time t]

PN , P j,i steady-state probabilities. PN = limt→∞ PN(t), Pj,i =
∫ ∞

0 Pj,i(x)dx
βi = jλ
Fi(x) cumulative distribution function (c.d.f.) of the service time of type i ; i=1,2
fi(x) probability density function (p.d.f.) of the service time of type i ; i=1,2
δ m,n Kronecker delta
1
µi

=
∫ ∞

0 xfi(x)dx i=1,2

hi(x) = fi(x)
1−Fi(x)

service rate for type i; i=1,2
fi(s), fi(s+βn), fi(βn) Laplace Transforms (LT) of fi(x)
t.u. time unit
Viewing the nature of the system, we obtain the following set of integro-differential equations

[
d
dt

+βn

]
PN = p

∫ t

0
PN−1(t,x)h1(x)dx+

∫ t

0
PN,2(t,x)h2(x)dx (1)
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Figure 1: State-transition diagram of the model. 1≤ j ≤ N

[
d
dt

+
∂
∂ t

+βN−1 +h1(x)
]

PN−1,1(t,x) = 0 (2)

[
d
dt

+
∂
∂ t

+βN +h2(x)
]

PN,2(t,x) = 0 (3)

[
d
dt

+
∂
∂ t

+β j +hi(x)
]

Pj,i(t,x) = β j+1Pj+1,i(t,x) (4)

for i = 1,1≤ j ≤ N−1; i = 2,1≤ j ≤ N
[

d
dt

+
∂
∂ t

+hi(x)
]

P0,i(t,x) = β1P1,i(t,x) (5)

for i=1,2
having the following boundary and initial conditions

Pj,1(t,0) = (1−δ j,0)p
∫ ∞

0
Pj−1,1(t,x)h1(x)dx+

∫ ∞

0
Pj,2(t,x)h2(x)dx+δ j,N−1βNPN(t) (6)

for 0≤ j ≤ N−1

Pj,2(t,0) = q
∫ ∞

0
Pj−1,1(t,x)h1(x)dx (7)

for 1≤ j ≤ N

PN(0) = 1,P0,2(t,0) = 0,Pj,i(0,0) = 0 (8)

for i = 1,1≤ j ≤ N−1; i = 2,1≤ j ≤ N
By using Laplace transform and discrete transform [4, 8] the above equations are transformed as

follows

(s+βn)PN = 1+ p
∫ ∞

0
PN−1(s,x)h1(x)dx+

∫ ∞

0
PN,2(s,x)h2(x)dx (9)
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[
s+

d
dx

+β j +hi(x)
]

u j,i(s,x) = 0 (10)

for i = 1,1≤ j ≤ N−1; i = 2,1≤ j ≤ N
[

s+
d
dx

++hi(x)
]

P0,i(s,x) = β1P1,i(s,x) (11)

for i=1,2

where u j,1(s,x) = ∑N−1
n= j

(
n
j
)

Pn,1(s,x), Pj,1(s,x) = ∑N−1
n= j (−1)n− j

(
n
j
)

un,1(s,x) for 1 ≤ j ≤ N− 1,

and

u j,2(s,x) = ∑N
n= j

(
n
j
)

Pn,2(s,x), Pj,2(s,x) = ∑N
n= j(−1)n− j

(
n
j
)

un,2(s,x) for 1≤ j ≤ N.

Let v j,i(s,x) = u j,i(s,x)
1−Fi(x)

and P
′
0,1(s,x) = P0,1(s,x)

1−Fi(x)
. Then from (10 and 11) we have after some transfor-

mations [
s+

d
dx

+βi

]
v j,i(s,x) = 0

for i = 1,1≤ j ≤ N−1; i = 2,1≤ j ≤ N and
[

s+
d
dx

]
P
′
0,i(s,x) = β1P1,i(s,x)

for i = 1,2.
Hence the solutions of (9-11) are

u j,i(s,x) = [1−Fi(x)]u j,i(s,0)e−(s+βi)x (12)

PN(s) =
1+ p f1(s+βN−1)uN−1,1(s,0)+ f2(s+βN)uN,2(s,0)

s+βN
(13)

P0,1(s,x) = [1−F1(x)]β1e−sx

[
P0,1(s,0)+

N−1

∑
n=1

(−1)n−1n
1− e−βnx

βn
un,1(s,0)

]
(14)

P0,2(s,x) = [1−F2(x)]β1e−sx

[
N

∑
n=1

(−1)n−1n
1− e−βnx

βn
un,2(s,0)

]
. (15)

By integrating (12, 14, and 15) we obtain the LT of the instantaneous probabilities

Pj,1(s) =
N−1

∑
n= j

(−1)n− j
(

n
j
)[

1− f1(s+βn)
s+βn

]
un,1(s,0) (16)

for 1≤ j ≤ N−1

Pj,2(s) =
N

∑
n= j

(−1)n− j
(

n
j
)[

1− f2(s+βn)
s+βn

]
un,2(s,0) (17)

for 1≤ j ≤ N

P0,1(s) = P0,1(s,0)
[

1− f1(s)
s

]
+β1

N−1

∑
n=1

(−1)n−1n
[

1− f1(s)
s

− 1− f1(s+βn)
s+βn

]
un,1(s,0)

βn
(18)
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P0,2(s) = β1

N

∑
n=1

(−1)n−1n
[

1− f2(s)
s

− 1− f2(s+βn)
s+βn

]
un,2(s,0)

βn
. (19)

Taking LT of (6-7) and using (8 and 12-15) we get after some transformations the following system of
linear equations

N−1

∑
n= j

(−1)n− j
(

n
j
)

un,1(s,0) = p
N−1

∑
n= j

(−1)n− j+1
(

n
j−1

)
f1(s+βn)un,1(s,0) (20)

+
N

∑
n= j

(−1)n− j
(

n
j
)

f2(s+βn)un,2(s,0)+δ j,N−1βNPN

for 2≤ j ≤ N−1

N

∑
n= j

(−1)n− j
(

n
j
)

un,2(s,0) = q
N−1

∑
n= j−1

(−1)n− j+1
(

n
j−1

)
f1(s+βn)un,1(s,0) (21)

for 2≤ j ≤ N

N−1

∑
n=1

(−1)n−1
(

n
j
)

un,1(s,0) = pP0,1(s,0) f1(s)+ pβ1

[
N−1

∑
n=1

(−1)n−1n
f1(s)− f1(s+βn)

βn
un,1(s,0)

]
(22)

N

∑
n=1

(−1)n−1
(

n
j
)

un,2(s,0) = qP0,1(s,0) f1(s)+qβ1

[
N−1

∑
n=1

(−1)n−1n
f1(s)− f1(s+βn)

βn
un,1(s,0)

]
(23)

Coefficients u j,i(s,0) can now be determined from the above equations. We can apply the final-value
theorem to (16-19) to obtain the steady-state probabilities but it will require use of the L’Hopital rule and
seems difficult and impractical [11]. Instead we set the following differential equations

βnPN = p
∫ ∞

0
PN−1(x)h1(x)dx+

∫ ∞

0
PN,2(x)h2(x)dx (24)

[
d
dx

+βN−1 +h1(x)
]

PN−1,1(x) = 0 (25)

[
d
dx

+βN +h2(x)
]

PN,2(x) = 0 (26)

[
d
dx

+β j +hi(x)
]

Pj,i(x) = β j+1Pj+1,i(x) (27)

for i = 1,1≤ j ≤ N−1; i = 2,1≤ j ≤ N
[

d
dx

+hi(x)
]

P0,i(x) = β1P1,i(x) (28)

for i=1,2. Equations (24-28) are to be solved under the following boundary conditions and normalizing
condition

Pj,1(0) = (1−δ j,0)p
∫ ∞

0
Pj−1,1(x)h1(x)dx+

∫ ∞

0
Pj,2(x)h2(x)dx+δ j,N−1βNPN (29)
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for 0≤ j ≤ N−1

Pj,2(0) = q
∫ ∞

0
Pj−1,1(x)h1(x)dx (30)

for 1≤ j ≤ N−1

P0,2(0) = 0 (31)

PN +
N−1

∑
j=0

Pj,1 +
N

∑
j=0

Pj,2 = 1. (32)

The solutions of (2.29-2.32) are

PN =
1+ p f1(βN−1)uN−1,1(0)+ f2(βN)uN,2(0)

βN
(33)

Pj,1 =
N−1

∑
n= j

(−1)n− j
(

n
j
)[

1− f1(βn)
βn

]
un,1(0) (34)

for 1≤ j ≤ N−1

Pj,2 =
N

∑
n= j

(−1)n− j
(

n
j
)[

1− f2(βn)
βn

]
un,2(0) (35)

for 1≤ j ≤ N−1

P0,1 =
P0,1(0)

µ1
+

N−1

∑
n= j

(−1)n− jn
[

1
µ1
− 1− f1(βn)

βn

]
un,1(0) (36)

P0,2 =
N

∑
n= j

(−1)n− jn
[

1
µ2
− 1− f2(βn)

βn

]
un,2(0) (37)

For u j,i(0) and P0,1(0) we have

N−1

∑
n= j

(−1)n− j
(

n
j
)

un,1(0) = p
N−1

∑
n= j

(−1)n− j+1
(

n
j−1

)
f1(βn)un,1(0)+δ j,N−1βNPN (38)

for 2≤ j ≤ N−1

N−1

∑
n= j

(−1)n− j
(

n
j
)

un,2(0) = q
N−1

∑
n= j

(−1)n− j+1
(

n
j−1

)
f2(βn)un,2(0) (39)

for 2≤ j ≤ N−1

P0,1(0) = β1

N

∑
n=1

(−1)n−1n
[

1− f2(βn

βn

]
un,2(0) (40)

N−1

∑
n=1

(−1)n−1nun,1(0) = pP0,1(0)+ pβ1

N

∑
n=1

(−1)n−1n
[

1− f1(βn

βn

]
un,1(0)+

N

∑
n=1

n f2βnun,2(0) (41)

N

∑
n=1

(−1)n−1nun,2(0) = qP0,1(0)+qβ1

N

∑
n=1

(−1)n−1n
[

1− f1(βn

βn

]
un,1(0) (42)

The coefficients u j,i(0) can be determined from (32) and (38-42).
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3 Examples

In order to obtain the transient state probabilities first we have to determine PN(s) and Pj,i(s) from (16-
19) and (20-24) and then to apply the Inverse Laplace Transform to them. We used the packages of Maple
8 on a standard PC platform under Windows XP for these computations [12]. Results were produced and
printed in less than a second. For N=4 the instantaneous probabilities are listed in Appendix A.

Various performance characteristics can be computed using the steady-state probabilities. For ex-
ample, the average number of blocked customers (ANBC) in the case of blocking caches will be given
by

ANBC =
2

∑
i=1

N

∑
j=0

(N− j)Pj,i. (43)

In the case of non-blocking caches ANBC will be

ANBC =
N

∑
j=0

(N− j−1+ k)Pj,1 +
N−1

∑
j=0

(N− j)Pj,2. (44)

where k is the ratio of average memory stall time [2] . k depends strongly on the application. (1-k)
actually refers to the fraction time the processor is consuming data while cache-to-cache or memory-to-
cache transfer is in progress.

In Appendix B we list the ANBC for two popular service time distributions: exponential and erlangian
[1], for blocking and fully non-blocking caches (k=0). The time to solve (33-42) and calculate ANBC
was meaninglessly short.

4 Concluding Remarks

This work presented a model for a shared bus, shared memory multiprocessor with private caches
and captures the whole spectrum of Invalidate type cache coherence protocols. Although we started with
fairly sophisticated set of integro-differential equations, the output of the model is a set of few linear
equations from which the state probabilities can be determined.

The approach eliminates the main drawbacks of the most commonly used MVA analysis: inability
to deal with transients and constraint on the service time distribution. The model gives insights into the
transient behaviour of the system. Moreover, the assumption of exponentially distributed service times
can be dropped; any continuous distribution can be used.

The ease of obtaining performance measures in a meaningless time makes very feasible the incorpo-
ration of the model in a multiprocessor design tool.
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APPENDIX A

For N=4, λ=0.001[1/t.u.], f1(x)=0.1exp(-0.1x), and f2(x)=0.01exp(-0.01x) the instantaneous proba-
bilities are

P4(t) =0 .9211361286+0.8058476879e-2*exp(-0.1248619627*t)
+0.8535072295e-2*exp(-0.1089825679*t)+0.9049529656e-2*exp(-0.9494144284e-1*t)
+0.9696074769e-2*exp(-0.8072343638e-1*t)+0.1774027054e-3
exp(-0.1510201407e-1*t) +0.1728181365e-2*exp(-0.1398702636e-1*t)
+0.5618533851e-2*exp(-0.1256085210e-1*t) +0.1211910345e-1
exp(-0.1067946234e-1*t)+0.2388149701e-1*exp(-0.8161235321e-2*t),

P31(t) =0.3792913471e-1-0.1093143496e-1*exp(-0.1248619627*t)
-0.1007354818e-1 *exp(-0.1089825679*t)-0.9271731350e-2*exp(-0.9494144284e-1*t)
-0.8405607569e-2*exp(-0.8072343638e-1*t)+0.2658572506e-2
*exp(-0.1510201407e-1*t)-0.2212663963e-5*exp(-0.1398702636e-1*t)
-0.3015750621e-3*exp(-0.1256085210e-1*t)-0.6739486112e-3
*exp(-0.1067946234e-1*t)-0.9276492013e-3*exp(-0.8161235321e-2*t),

P21(t) = 0.1420742616e-2+0.2324288902e-2*exp(-0.1248619627*t)
+0.2986557798e-3* exp(-0.1089825679*t)-0.1243034332e-2
*exp(-0.9494144284e-1*t)-0.2544948528e-2*exp(-0.8072343638e-1*t)
-0.5329230583e-2*exp(-0.1510201407e-1*t)+0.6737760872e-2
*exp(-0.1398702636e-1*t)+0.4442015626e-3*exp(-0.1256085210e-1*t)
-0.5688666731e-3*exp(-0.1067946234e-1*t)-0.1539483112e-2
*exp(-0.8161235321e-2*t),

P11(t) =0 .7684028624e-4-0.2290986748e-3*exp(-0.1248619627*t)
+0.3160128043e-3*exp(-0.1089825679*t)+0.2148505581e-3
*exp(-0.9494144284e-1*t)-0.3252577041e-3
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*exp(-0.8072343638e-1*t)+0.3775725072e-2*exp(-0.1510201407e-1*t)
-0.8400171763e-2*exp(-0.1398702636e-1*t)+0.4974831098e-2
*exp(-0.1256085210e-1*t)+0.5143708805e-3*exp(-0.1067946234e-1*t)
-0.9181578239e-3*exp(-0.8161235321e-2*t),

P01(t) = 0.9242283829e-5*exp(0-.1248619627*t)-0.3513395647e-4
*exp(-0.1089825679*t)+0.4257071327e-4*exp(-0.9494144284e-1*t)
-0.1688587212e-4*exp(-0.8072343638e-1*t)-0.9200675435e-3
*exp(-0.1510201407e-1*t)+0.2810623081e-2*exp(-0.1398702636e-1*t)
-0.3183584754e-2*exp(-0.1256085210e-1*t)+0.1611954912e-2
*exp(-0.1067946234e-1*t)-0.3239077071e-3*exp(-0.8161235321e-2*t)
+0.5218152790e-5,

P42(t) = 0.2709223908e-1+0.9859983387e-3*exp(-.1248619627*t)
+0.1060558367e-2*exp(-0.1089825679*t)+0.1145474465e-2
*exp(-0.9494144284e-1*t)+0.1259769099e-2*exp(-0.8072343638e-1*t)
-0.2412466943e-1*exp(-0.1510201407e-1*t)-0.1705507775e-2
*exp(-0.1398702636e-1*t)-0.2095511260e-2*exp(-0.1256085210e-1*t)
-0.2029637013e-2*exp(-0.1067946234e-1*t)-0.1588776483e-2
*exp(-0.8161235321e-2*t),

P32(t) = -0.2421204825e-3*exp(-0.1248619627*t)-0.7509940526e-4
*exp(-0.1089825679*t)+0.9576676158e-4
*exp(-0.9494144284e-1*t)+0.3013803504e-3
*exp(-0.8072343638e-1*t)+0.7126069503e-1*exp(-0.1510201407e-1*t)
-0.6135152996e-1*exp(-0.1398702636e-1*t)-0.8971987351e-2
*exp(-0.1256085210e-1*t)-0.5950006752e-2*exp(-0.1067946234e-1*t)
-0.4494935895e-2*exp(-0.8161235321e-2*t)+0.9428952497e-2,

P22(t) =0 .2421271696e-2+0.2626333487e-4*exp(-0.1248619627*t)
-.3154175021e-4*exp(-0.1089825679*t)-0.2945613244e-4
*exp(-0.9494144284e-1*t)+0.3412946115e-4*exp(-0.8072343638e-1*t)
-0.8108903801e-1*exp(-0.1510201407e-1*t)+0.1349032466
*exp(-0.1398702636e-1*t)-0.4071010637e-1*exp(-0.1256085210e-1*t)
-0.9622074403e-2*exp(-0.1067946234e-1*t)-0.5904604182e-2
*exp(-0.8161235321e-2*t),

P12(t) = -0.1765308077e-5*exp(-0.1248619627*t)+0.4800731626e-5
*exp(-0.1089825679*t)-0.4448905932e-5*exp(-0.9494144284e-1*t)
+0.1599282603e-5*exp(-0.8072343638e-1*t)+0.4177917201e-1
*exp(-0.1510201407e-1*t)-0.9973555226e-1*exp(-0.139870263e-1*t
+0.7256040480e-1*exp(-0.1256085210e-1*t)-0.9747995399e-2
*exp(-0.1067946234e-1*t)-0.5300997812e-2*exp(-0.8161235321e-2*t)
+0.4449749927e-3,

P02(t) = -0.4618227199e-6*exp(-0.1248619627*t)-0.2203030325e-6
*exp(-0.1089825679*t)+0.4881890483e-7*exp(0-.9494144284e-1*t)
-0.1699392257e-7*exp(-0.8072343638e-1*t)-0.8188760719e-2
*exp(-0.1510201407e-1*t)+0.2501502200e-1*exp(-0.1398702636e-1*t)
-0.2833447693e-1*exp(-0.1256085210e-1*t)+0.1434663085e-1
*exp(-0.1067946234e-1*t)-0.2882912592e-2*exp(-0.8161235321e-2*t)
+0.4449749927e-4.

In the above expressions e-i means 10-i for i=1,7.
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APPENDIX B

Table 1: N=8, f1(x)=0.1exp(-0.1x), f2(x)=0.01exp(-0.01x)
λ [1/t.u.] p ANBC for blocking ANBC for fully

caches nonblocking caches

0.001 0.9 0.154099881194466 0.075640880006411
0.002 0.9 0.441552853804251 0.290383910880334
0.003 0.9 0.822750601431095 0.607433119474025
0.004 0.9 1.253944990222998 0.984102789831906
0.001 0.8 0.230012889507952 0.152313018403034
0.002 0.8 0.729883782777377 0.584481458432927
0.003 0.8 1.382033782478873 1.183494795953230
0.004 0.8 2.063720956300253 1.826269794552253

Table 2: N=8, f1(x)=0.13x2exp(−0.1x)/2!, f2(x)=0.013x2exp(−0.01x)/2!
λ [1/t.u] p ANBC for blocking ANBC for fully

caches nonblocking caches

0.001 0.9 0.384839057891723 0.211437492029451
0.002 0.9 1.313451009452606 0.582993712839022
0.003 0.9 2.390481400874492 1.782339618354729
0.004 0.9 3.691834116720534 2.882438452093385
0.001 0.8 0.614956120345239 0.400820549913285
0.002 0.8 2.611487230549326 1.722034656332087
0.003 0.8 4.062557145097248 3.429652938504840
0.004 0.8 5.899361833023557 5.394204692051840
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