REAFEEBUKNSFY

Tohoku University Repository

Algorithms for Partitioning and Coloring

Graphs

00 OO0 OO0

[11

Ooooono 354

URL http://hdl_handle.net/10097/37821

LR TS

KA () e
Ao EE B+ (BEREE
¥hEHEE B OE OB 3B B
FOLREGEAR FELSEE 3 A24H
G OBEME FAHBIE 4 458 1 HigY
roept. Ex FOLRFAFEERBEMER (EL3ERE) VA7 LABRFER
FAL X E B Algorithms for Partitioning and Coloring Graphs (757 D&l & EEICBET 5
)

mLEEER (A WIbR¥#HX B Bk

RALRFHIE il & BEIERFEER BR F

V3 KEHIE Andrzej Proskurowski

(7 A7)
wALRFHEE M 3

of

WX AE OEE

1 Introduction

In this thesis we deal with four topics of graph partitionings and colorings, and hence our results can be
divided into the following four parts: Chapter 3 deals with partitioning graphs of supply and demand; Chapter
4 focuses on uniform partitions of vertex-weighted graphs; Chapter 5 deals with distance-edge-colorings; and
Chapter 6 focuses on multicolorings.

A partial k-tree is a graph with tree-width bounded by a fixed constant k (2, 3]. Graph partitioning problems
in Chapters 3 and 4 are NP-hard even for partial k-trees, although a number of combinatorial problems
including many NP-hard problems on general graphs can be solved very efficiently for partial k-trees. Telle and
Proskurowski present a theory of algorithm design for a large class of vertex partitioning problems restricted
to partial k-trees [3], but our problems do not belong to their class. Similarly, coloring problems in Chapters 5
and 6 do not belong to any known class of problems which are solvable in polynomial time for partial k-trees.

We give several efficient algorithms for the four topics on partial k-trees. Our algorithms are based on a
clever and detailed formation of dynamic programming.

2 Preliminaries

We assume that k is a bounded positive integer. A k-tree is defined recursively as follows [2]:
(1) A complete graph with k + 1 vertices is a k-tree.
(2) If G is a k-tree and k vertices induce a complete subgraph of G, then a graph obtained from G by adding
a new vertex and joining it with each of the k vertices is a k-tree.
Every subgraph of a k-tree is called a partial k-tree.

— 119 —

Figure 1: A process of generating 3-trees.

Figure 1 illustrates a process of generating 3-trees. The graphs in Figs. 4 and 5 are indeed partial 3-trees
since they are subgraphs of the last 3-tree in Fig. 1.

A partial k-tree can be represented by a binary tree, called a tree-decomposition [2]. Since a tree-decomposition
of a partial k-tree can be found in linear time [2], we may assume that a partial k-tree and its tree-decomposition
are given. We solve many problems in this thesis by a dynamic programming approach based on a tree-

decomposition.

3 Partitioning graphs of supply and demand

Let G = (V, E) be a graph with vertex set V and edge set E. The set V is partitioned into two sets V, and
Va. Let [V] = n, |Vs| = ns and V3] = ng, then n = ng +ng. Each vertex u € V; is called a supply verter and is
assigned a positive real number sup(u), called a supply of u, while each vertex v € Vy is called a demand vertez
and is assigned a positive real number dem(v), called a demand of v. Each demand vertex can receive “power”
from at most one supply vertex through edges in G. One thus wishes to partition G into exactly ny connected
components by deleting edges from G so that each component C has exactly one supply vertex whose supply
is no less than the sum of demands of all demand vertices in C. For example, the graph in Fig. 2(a) has such
a partition, where each supply vertex is drawn as a rectangle and each demand vertex as a circle, the supply
or demand is written inside, the deleted edges are drawn by thick dotted lines, and each connected component
is indicated by a thin dotted line. However, such a partition does not always exist. The partition problem is a
decision problem to ask whether GG has such a partition. If G has no such partition, then we wish to partition
G into connected components so that each component C either has no supply vertex or has exactly one supply
vertex whose supply is no less than the sum of demands of all demand vertices in C, and wish to maximize the
“fulfillment,” that is, the sum of demands of the demand vertices in all components with supply vertices. We
call the problem the mazimum partition problem. Clearly, the maximum partition problem is a generalization

of the partition problem. Figure 2(b) illustrates a solution of the maximum partition problem for a tree, whose

Figure 2: (a) Partition of a graph, and (b) partition of a tree with maximum fulfillment.

— 120 —

fulfillment is (24+4+3)+(5+6)+3+(4+647) =40

The partition problem is NP-complete for series-parallel graphs, and the maximum partition problem is NP-
hard even for trees. Hence it is very unlikely that these problems can be solved in polynomial time in general.
Moreover, the partition problem is strongly NP-complete and the maximum partition problem is strongly
NP-hard for general graphs. Therefore, there is no pseudo-polynomial-time algorithm for the two partition
problems on general graphs unless P = NP. However, in this chapter, we give several efficient algorithms to
solve the two partition problems for trees, series-parallel graphs and partial k-trees.

We first obtain the following theorems for trees.

Theorem 1 The partition problemn can be solved in linear time for trees.

Theorem 2 The mazimum partition problem can be solved in time O(F?n) for a tree T = (V, E) if the demands

and supplies are integers and F' = min{)_ o, dem(v), >, cy, sup(v)}.

The algorithm in Theorem 2 can be extended to an algorithm which finds a partition P of a tree T" with
f(P) > (1 — ¢)F(T) in time polynomial in n and 1/e for any real number ¢, 0 < € < 1, where f(P) is the

fulfillment of P and f(7T) is the maximum fulfillment of T". Thus we have the following theorem.

Theorem 3 There is a fully polynomial-time approzimation scheme for the mazimum partition problem on

trees.

We then obtain pseudo-polynomial-time algorithms to solve the partition problem and the maximum partition

problem for series-parallel graphs and partial k-trees, as follows.

Theorem 4 The partition problem can be solved in time O(m2n) and O(mn) for series-parallel graphs and
partial k-trees, respectively, and the mazimum partition problem can be solved in time O(min) and O(mz(kﬂ)n)

for series-parallel graphs and partial k-trees, respectively, where ms is the mazimum supply.

4 Uniform partitions

Let G = (V,E) be a graph with vertex set V and edge set E, and let |V| = n: Assume that each vertex
v € V is assigned a nonnegative integer w(v), called the weight of v. Let [and u be nonnegative integers,
called the lower bound and upper bound on component size, respectively. We wish to partition G into connected
components by deleting edges from G so that the total weights of all components are almost uniform, that is,
the sum of weights of all vertices in each component is at least [and at most u for some bounds [and u. We
call such an almost uniform partition an ([, u)-partition of G. In this chapter we deal with the following three
partition problems to find an (I, u)-partition of a given graph G: the minimum (I, u)-partition problem is to
find an (I, u)-partition of G with the minimum number of components; the mazimum (I, u)-partition problem
is defined similarly; and the (p,l, u)-partition problem is to find an (I, u)-partition of G with a fixed number p
of components.

Figures 3(a) and (b) illustrate two (10,20)-partitions of the same graph, where each vertex is drawn as a
circle, the weight of each vertex is written inside the circle, and the deleted edges are drawn by dotted lines. The
(10, 20)-partition with four components in Fig. 3(a) is a solution for the minimum (10, 20)-partition problem,
and the (10, 20)-partition with six components in Fig. 3(b) is a solution for the maximum (10,20)-partition
problem.

The (p. [, u)-partition problem for general p is NP-complete and the minimum and maximum (I, u)-partition

problems for general | and u are NP-hard even for series-parallel graphs. Moreover, the (p,[,u)-partition

— 121

(a) (b)

Figure 3: (a) Solution for the minimum (10, 20)-partition problem, and (b) solution for the maximum (10, 20)-

sartition problem.

oroblem is strongly NP-complete and the minimum and maximum (/, u)-partition problems are strongly NP-
aard for general graphs. One can observe that, for any ¢ > 0, there is no polynomial-time c-approximation
algorithm for the minimum (/,u)-partition problem or the maximum (I, u)-partition problem on series-parallel
sraphs unless P = NP.

In this chapter we obtain pseudo-polynomial-time algorithms to solve the three partition problems for series-

parallel graphs and partial k-trees, as follows.

Theorem 5 Both the minimum and mazimum (I, u)-partition problems can be solved in time O(u*n) and the

(p, l, w)-partition problem can be solved in time O(pu*n) for any series-parallel graph.

Theorem 8 Both the minimum and mazimum (I, 1)-partition problems can be solved in time O (w***+Vn) and

the (p, 1, u)-partition problem can be solved in time O (pz'u,z(""“)n) for any partial k-tree, where k 1s a constant.

5 Distance-edge-colorings

Let G = (V, F) be a graph with vertex set V and edge set £, and let [V| = n. For two vertices u and v, we
denote by dist(u, v) the distance between w and v in G, that is, the number of edges in a shortest path between

wand v in G. For two edges e = (u,v) and €' = (u/,v’), the distance between e and €' in G is defined as follows:
dist(e,e’) = min{dist(u,v'),dist(u,v"),dist(v, '), dist(v,v')}.

For a given bounded nonnegative integer £, we wish to color all edges of & so that any two edges e and e’ with
dist(e,e’) < ¢ have different colors. Such a coloring is called an (-edge-coloring of G. Thus a 0-edge-coloring
is merely an ordinary edge-coloring, and a 1-edge-coloring is a “strong edge-coloring.” The Z-chromatic inder
X4(G) of G is the minimum number of colors required for an f-edge-coloring of G. The {-edge-coloring problem
is to compute the f-chromatic index x,(G) of a given graph G. For example, the coloring of a graph in Fig. 4 is
a 1-edge-coloring with six colors ¢1,¢o, - . ¢, and is of course a 0-edge-coloring, but is not a 2-edge-coloring.
One can easily observe that x| (G) = 6 for the graph & in Fig. 4.

Since the edge-coloring problem is NP-hard, the f-edge-coloring problem is NP-hard in general. However,
the ordinary edge-coloring problem and the 1-edge-colring problem can be solved in linear time and polynomial
time, respectively, for partial k-trees.

In this chapter we give two polynomial-time algorithms for the f-edge-coloring problem. The first one is the

following exact algorithm.

Figure 4: A 1-edge-coloring of a partial 3-tree G with six colors.

Theorem 7 Let G be a partial k-tree, let £ be a bounded nonnegative integer, and let o be a positive integer.

)22(k+1)(/.'+1)+1)

Then it can be examined in time O <n(a +1 whether G has an £-edge-coloring with o colors.

The number « is not assumed to be a fixed constant, but can be assumed to be smaller than the number m
of edges in G. Therefore, using a binary search technique, one can compute the /-chromatic index x;(G) of G

by applying Theorem 7 for at most log, m values of o, 1 < & < 'm. We thus have the following corollary.
Corollary 1 The £-chromatic indez x;(G) of a partial k-tree G can be computed in polynomial time.

By combining our algorithm for partial k-trees with a general method for obtaining approximation algorithms
for NP-complete problems on planar graphs [1}, one can find an f-edge-coloring of a given planar graph G with

at most 2x,(G) colors in polynomial time. We thus have the following approximation algorithm.

Theorem 8 There is a polynomial-time 2-approzimation algorithm for the £-edge-coloring problem on planar
graphs.

6 Multicolorings

Let each vertex v of a graph G have a positive integer weight w(v). Let C be a set of colors, and let 2 be
the power set of C. Then a multicoloring T’ of G is a mapping from V to 2¢ which assigns each vertex u € V a
set T'(u) of w(u) colors in C in a way that I'(v) NT(w) = @ for any pair of adjacent vertices v,w € V. Thus the
ordinary vertex-coloring is merely a multicoloring for the special case where w(v) = 1 for every vertex v. The
multichromatic number x.,(G) of G is the minimum number of colors required for a multicoloring of G. The
multicoloring problem is to compute the multichromatic number x,,(G) of a given graph G. Consider a graph G
in Fig. 5(a) where w(v) is attached to each vertex v: Since vy, ve and vs are adjacent with each other, we have
Xo (G) = w(vy) +w(ve) +wlvs) = 5. Since G has a multicoloring with five colors ¢1,¢a, - -, ¢5 as illustrated in
Fig. 5(b), we have x,(G) < 5. Thus x.(G) = 5.

Since the vertex-coloring problem is NP-hard, the multicoloring problem is of course NP-hard. However, it
is known that the multicoloring problem can be solved efficiently for some restricted classes of graphs, such as
trees, triangulated graphs, perfect graphs, and series-parallel graphs.

In this chapter, we give an algorithm to solve the multicoloring problem for partial k-trees, as follows.

Theorem 9 The multichromatic number x {(G) of a partial k-tree G = (V,E) can be computed in time
O (nVVQzH3 log, W), where n is the number of vertices of G and W = max,cv w(v).

It is easy to modify the algorithm so that it actually finds a multicoloring of G with x,(G) colors. It should
be noted that an ordinary representation of a multicoloring of G requires space of size at least), oy w(v) =
O(nW).

123

C1,C2 C3, 04, Cs

(a) (b)

Figure 5: (a) A partial 3-tree G, and (b) a multicoloring I" of G with five colors.

7 Conclusions

In this thesis, we presented efficient algorithms for several graph partitioning problems and two graph coloring
problems. We showed that all these problems can be solved for partial k-trees G by a dynamic programming
approach based on a tree-decomposition of G.

References

1] B. S. Baker, Approximation algorithms for NP-complete problems on planar graphs, J. ACM, Vol. 41,
pp. 153-180, 1994.

2] H. L. Bodlaender, A linear-time algorithm for finding tree-decompositions of small treewidth, SIAM
J. Computing, Vol. 25, pp. 1305-1317, 1996.

3] J. A. Telle and A. Proskurowski, Algorithms for vertex partitioning problems on partial k-trees, SIAM
J. Discrete Math., Vol. 10, pp. 529-550, 1997.

— 124 —

WX EERRDOEE

AV a— 4 xRy NI ERIIBNDIEL BB, 77 705ER0EAE LTERILT S Z LN
TEBHHN, FNoOEIE—HROT T 71 UTHEBELLBITE SRV, £ TEEX, H49RK
EREINAEFICEWT Z 707 Z AR L, BEREBRANRH H2BEOEIBES, RICBELKE
RPN TV BIEE O —HEIRE, EEIMERERLIUSELAREZ DRI EBLTFAIII X
LEEZF. BHTIIINOOREEZEVE LD LOTHY, 2FETENLRD.

BIEIFHRTHS.

F2ETHEEE LT, /7 70ERNBESOEREE2DL LI, 777703) XA
L7 XAO—EEREEEFH LI L TS,

EIETH, BHELRER2EELALHBADHE 777 TETMEL, 2 COEERICEN &
THZENFRENE SNHET IHEREL, I TWAEEROEEEDEFBERICAZD L
SREIDOHR LT ERODHEREBBEEZ T > TWD, BEHIL, Kiox L CHEREZ S BREE T
NAY X bHEZDHEELHI, ENMUBBLZEZEARFE THES T AT XAB L UEEREA F—
LEEZTWS, S5, BIEFT T 7084y k-ARCs L CRREEEZESERRTHEL T2
YRLEEZTWD, ZROOBBIIEANRKEOEEMEMER LISHARH Y, REOT LAY X
LIIBOTCEERBETHS.

BAETI, /77 708—RERE bE2bhr 7 7005 BREL CEBRSICSEIL, &
EERSICE TN EOELDOEHBE 22 X 50T RN, K, BEXY 77 78 LU0 k-
A L TESZERER CTRITAZLE2RLTVS. H—S8 MBI REMER SIOSAND
v, FRZERTH 5.

BLETIH, BAOBKFRAVWEZEBDYE, NLEEIN-EEUANOEED 2 BICERE%E
DY THEED, B0 ERICHLTEZERBEEATREDZEEZRLTWD. &b, ¥EI T 7I1I2x
LT, BPeaHo 2 FLURN0etz AW EENE a2 Z2EFR TRO U7 LT Y X L% 52
TW5. REOFRRE, HEOIEEBLIVBIIREAODERZEAETILOTHY, BFHETE S

BOETIE, RAVBETAHVWEZERR, AILEIES 2 A0BIXE LR L ICHERATEEENE
BEEOEBEE VY TEHIRED, B0 bACH L TESERBETREIZZLE2FLTNVS. SERE
RIS F R Ay P a—Y Y IRBRICEATE, MO TEERERTHSD.

BITEIIERTHD.

UEET I, ABRXIL, B 2fERESEalES, O EREWVIERBILILNT T 707 T
ZWH L THIREKELTLNITY XL E2E5 27200 THY, SHEEBRE, BT) XLABHROZKE
BIZESTBEZANDR R0,

Lo, FesUIEL (BEAEE) OFMBLELTERERDD.

— 125 —

