REAFEEBUKNSFY

Tohoku University Repository

Efficient Algorithms for Rankings of Graphs([
Joo0dooooooooooooooonon)

00 MD.ABUL KASHEM MIA

[79

000 1997

URL http://hdl._handle.net/10097/12766

ENTE 7T hizh 7

K s (& #) MD. ABUL KASHEM MIA NVT374v2)
F oL oo # M H o (EmBFE)
¥ M oL F 5 B & = 19 %5
¥ RS EHH Bk 10 £ 3 A 26 H

FAEE D H: SEAIERRIZE 4 558 1 THX S
[/ = n RILRFRFHEIFRBFIAN (B3R v 27 AFWBFER
¥ {7 W M H Efficient Algorithms for Rankings of Graphs
(75735 v+ 7 %2RDBHRAT VT Y X4)
wm X ® & £ B (F #)

Wik R==#HE HE BX WitXR¥#Z 25 A

Wit R¥8KE Mg 958 RiEREW#E 8 EH-—
(IR (THFWERD

WX A B % OE

1 Introduction

An ordinary vertex-ranking of a graph G is a labeling (ranking) of the vertices of G with positive integers such that
every path between any two vertices with the same label [contains a vertex with label j > i. Clearly a vertex-
labeling is a vertex-ranking if and only if, for any label ¢, deletion of all vertices with labels > i leaves connected
components, each having at most one vertex with label i. A natural generalization of an ordinary vertex-ranking
is the c-vertex-ranking [4]. For a positive integer ¢, a c-vertex-ranking of a graph G is a labeling of the vertices G
with integers such that, for any label i, deletion of all vertices with labels > i leaves connected components, each
having at most ¢ vertices with label {. Clearly an ordinary vertex-ranking is a 1-vertex-ranking. A c-vertex-ranking
of (7 using the minimum number of ranks is called an optimal c-vertex-ranking of G . The c-vertex-ranking problem
1s to find an optimal c-vertex-ranking of a given graph. The problem is NP-hard in general. Bodlaender et al. pre-
sented a polynomial-time sequential algorithm to solve the ordinary vertex-ranking problem for partial k-trees [2].
Zhou et al. have obtained a linear-time sequential algorithm to solve the c-vertex-ranking problem for trees [4].
Figure 1(a) depicts an optimal 2-vertex-ranking of a graph G using three ranks, where ranks are drawn next to the
circles. The c-vertex-ranking problem has an application to the parallel Cholesky factorization of matrices. The ¢
-vertex-ranking problem of a graph G is equivalent to finding a c-vertex-separator tree of G having the minimum
height.

(a))
Figure 1:(a) An optimal 2-vertex-ranking of a graph G, and (b) an optimal 2-edge-ranking of a tree 7.

The c-edge-ranking problem is defined analogously as for the c-vertex-ranking problem. For a positive integer c,
a c-edge-ranking of a graph G is a labeling of the edges of G with integers such that, for any label i, deletion of all
edges with labels > i leaves connected components, each having at most ¢ edges with label i. A c-edge-ranking of G
using the minimum number of ranks is called an optimal c-edge-ranking of G. The c-edge-ranking problem is to find
an optimal c-edge-ranking of a given graph G. Figure 1(b) depicts an optimal 2-edge-ranking of a tree T using four
ranks, where the ranks are drawn next to the edges. The problem of finding an optimal c-edge-ranking of a graph
G has applications in scheduling the parallel assembly of a complex multi-part product from its components, where
the vertices of G correspond to the basic components and the edges correspond to assembly operations to be per-
formed between the components. The c-edge-ranking problem of a graph G is also equivalent to finding a c-edge-
separator tree of G having the minimum height. A c-edge-separator tree corresponds to a parallel computation

scheme having the minimum computation time.

2 Preliminaries
In this chapter we define some terms. Let G = (V,E) denote a graph with vertex set V and edge set £. We denote
by n the number of vertices in G,

A natural generalization of ordinary trees is the so-called k-trees. The class of k-trees is delined recursively as fol-
lows:

(a) A complete graph with k vertices is a k-tree.

(b) If G = (V,E) is a k-tree and % vertices v;,s,**,0s induce a complete subgraph of G, then G =(VU {w} ,EU

{Cu,w) 1 1<i<k}) is a k-tree, where w is a new vertex not contained in G.

(c¢) All k-trees can be formed with rules (a) and (b).

A graph is called a partial k-iree if it is a subgraph of a k-tree. In this thesis we assume that & is a fixed integer.
The graph in Fig. 1(a) is a partial 3-tree.

A tree-decomposition of a graph G = (V,E) is a pair (T,S), where T = (V5,Er) is a tree and S={X, | xEV2} is a
collection of subsets of V satisflyng the following three conditions:

® Uy, X.=V;

® for every edge e = (v,w) € E, there exists a node x € Vrwith v,w € X,, and

® for all x,y,2 € Vr, if node y lies on the path from node x to node z in T, then X,N X.©X,.

The width of a tree-decomposition(T,S) is max | Xl — 1. The treewidth of a graph G is the minimum width of a tree-
decomposition of G, taken over all possible tree-decompositions of G. It is known that every graph G with
treewidth < k is a partial k-tree, and conversely, that every partial k-tree G has a tree-decomposition (7,S) with
width < k [1].

For any fixed integer k, determining whether the treewidth of a graph G is at most k and finding a binary tree-
decomposition can be done in O(n) sequential time [1]. On the other hand, for any fixed integer k, one can compute
a binary tree-decomposition of G with height O(log, n) and width at most 3%+ 2 in O(logi n) parallel time using
O(n) operations on the EREW PRAM[3].

3 Vertex-Rankings of Partial k-Trees
This chapter deals with the generalized vertex-ranking problem on partial k-trees. One of the main results of this

chapter is the following theorem.

Theorem 3.1 For any positive integer ¢ and any bounded integer k, an optimal c-vertex-ranking of a partial k-tree

. . . 2 .
G with n vertices can be found in 79k time.

We first give an outline of a sequential algorithm for finding an optimal c-vertex-ranking of a partial k-tree G.
Let (7,S) be a binary tree-decomposition of G with width < k. To each node x of T we associate a subgraph G,=
(V,ED of G, where V, =U{X, | y = x or vy is a descendant of x in T}, and E.= {(v,w) €E | v,wE V,}. Thus G is as-
sociated with the root of 7. The minimum number of ranks for c-vertex-ranking of a partial k-tree is O(k
log..). For a given positive integer I, we decide whether G has a c-vertex-ranking ¢ ¢ using [ranks. We use dy-
namic programming and bottom-up tree computation on the binary tree T for each node x of 7 from leaves to the
root, we construct all(equivalence classes of) c-vertex-ranking of G. from those of two subgraphs G, and G. associ-
ated with the children y and z of x. We then determine the minimum value of / such that G has a c-vertex-ranking
¢ using [ranks, and find an optimal c-vertex-ranking of G.

The time-complexity of a dynamic programming algorithm mainly depends on the size of the table, where each
entry in the table represents an equivalence class. Therefore, we find a suitable equivalence class for which the table
has a polynomial size. Before defining the equivalence class, we need to define some terms.

Let © be a vertex-labeling of G=(V,E) with positive integers. The label (rank) of a vertex vE€ V is denoted by
¢ (v). A vertex uE€ V is said to be visible from a vertex v&€ V under ¢ in G if G has a path P from u to v every ver-
tex of which has a rank < ¢ (¢). The rank ¢ (u) of © is also said to be visible from v under ¢ in G if the vertex y
is so. In Fig. 1(a) the vertices 0,g,m,c and d are visible from o, but the vertex a is not visible from o.

Let R={1,2,...,]} be the set of ranks. Let x be a node in 7, and let ¢ :V.—R be a vertex-labeling of the subgraph
G.=(V.,E.). For an integer i ER, we denote by count (¢ ,v,i) the number of vertices ranked by i and visible from
v& X, under ¢ in G.. If ¢ is a ¢-vertex-ranking of G., then count(¢,v,0)< c for any vertex v € X, and any integer
IER. We next define a count-list L{p,v) and a list-set L{¢) as follows:

LGy ,v) = {(i,count(p,v,1)) | rank i ER is visible from v under ¢ in G} : and
L) ={L{¢,») L vEX].
For a vertex-labeling ¢ of G., define a function A, :X, X X,—~>RU {0,%} as follows:
Ao(v,w) = min{A | G.has a path P from vEX. to w €X,such
that @ (w)< A for each internal vertex u of P}.

Let A.(v,w) = 0if (w)EE, or v =w, and let 1 ,(v,w) = oo if G, has no path from v to w. We finally define a
pair R(¢) as follows:

R(¢) = (L(p), A,).
We call such pair R(¢) the vector of ¢ on node x. R(¢) is called a feasible vector if the vertex-labeling ¢ isac
-vertex-ranking of G;.

A feasible vector R(¢) of ¢ on x can be seen as an equivalence class of extensible ¢c-vertex-rankings of G.. Since
1= O(kloge n) and 1X,| <k +1, the total number of distinct feasible verctors on node x is at most (c+1)%*
98- (f log .. n)® = n°*’ Computing each equivalence class on each node can be done in O(n log n) time, since the
number of edges of a partial k-tree is O(n) and the number of ranks is O(log n). Since the number of nodes of the
tree-decomposition is O(n) and the number of equivalence classes is nO(k’), deciding whether a partial k-tree has a
c-ranking using / ranks can be done in n°® o(n? logn) = n%time. Then determining the minimum value of / and
finding an optimal c-vertex-ranking of a partial k-tree can be done in n°® time.

Another main result of this chapter is the following theorem on our parallel algorithm for finding an optimal ¢
-vertex-ranking of a partial k-tree.

Theorem 3.2 Let G be a paratial k-tree of n vertices given by its tree-decomposition with height O(log.n) and
width < 3k + 2. Then an optimal c-vertex-ranking of G can be found in O(log, n) parallel time using n°*’ opera-
tions on the common CRCW PRAM for any positive integer ¢ and any bounded integer k.

4 Edge-Rankings of Trees

The main result of this chapter is the following theorem.

Theorem 4.1 For any positive integer ¢ an optimal c-edge-ranking of a tree T can be found in time O(n* log; A),

where n is the number of vertices in T and A is the maximum degree of T.

We give an outline of an algorithm to find an optimal c-edge-ranking of a tree T in time O(n* log A). Since it is
not so simple to find an optimal c-edge-ranking, we focus on specific types of optimal c-edge-rankings. Before for-
mally defining them,we need to define some terms.

Let ¢ be an edge-labeling of a tree T = (V,E) with positive integers. The label (rank) of an edge e € E is repre-
sented by ¢ (e). One may assume without loss of generality that ¢ uses consecutive integers starting from 1 as the
ranks. An edge e € F is said to be visible from a vertex v € V under ¢ in T if every edge in the path from e to v
has a rank < ¢ (e). In Fig. 1(b) all visible edges from the root are drawn in thick lines. An edge-labeling ¢ of a
tree T is a c-edge-ranking if and only if no more than c edges of the same rank are visible from each vertex of T
under ¢ . We define the list L(¢) of a c-edge-ranking ¢ of tree T to be a list containing the ranks of all edges visi-
ble from the root, that is,

L(p) ={p(e) | eEE is visible from the root}.
The ranks in the list L) are sorted in non-increasing order.

We are now ready to define notions of optimality. A critical c-edge-ranking ¢ of tree T is defined to be a c-edge-
ranking with the lexicographically smallest list L{¢). Every critical c-edge-ranking ¢ is optimal, because all edges
of the largest rank are visible and hence the topmost rank in L) is equal to the number of ranks used by ¢ . The
optimal c-edge-ranking ¢ depicted in Fig. 1(b) is indeed critical. The maximal subtree of T rooted at a vertex v is
denoted by T(v). We define a c-edge-ranking ¢ of tree T to be supercritical if the c-edge-ranking is critical for every
subtree T(v) of T. Thus a supercritical c-edge-ranking is critical and hence optimal. The c-edge-ranking ¢ depicted
in Fig. 1(b) is indeed supercritical. Since any supercritical c-edge-ranking is optimal, it suffices to give an algo-
rithm for finding a supercritical c-edge-ranking of 7.

We now give an outline of an algorithm to find a supercritical c-edge-ranking of a tree 7. Qur algorithm uses the
technique of “bottom-up tree computation.” That is, it repeats the following operation for each internal vertex v
of a tree T from leaves to the root: constructs a supercritical c-edge-ranking ¢ of subtree T(v) from those ¥,
@2, @a0f the subtrees TGy, T(wy) ,++, T(w.) rooted at the children wi,w:, -, ws of v. We decide the d ranks of the
edges e;= (v,w), 1< i< d, in non-increasing order so that the c-edge-ranking extended from the supercritical c-edge-
rankings of the subtrees T(w), 1< i< d, is supercritical for T(v). Let L;, 1< i< d, be the list of the supercritical
c-edge-ranking T(w.) which has been obtained. Since the largest rank among the d ranks of the edges e, 1< i< d,
is unique, we first decide the largest rank £. Once B is decided, we label with B the edge ¢; for which the ranks in
L, hidden by B is lexicographlly largest. We then delete the subtree T(w,) and the edge e, and continue the same
operations for the remaining smaller tree and find the d—1 remaining ranks. We can decide the rank of an edge in
time O(nlog A), where A is the maximum degree of 7. Repeating the same operations for n—1 edges, we can find

a supercritical c-edge-ranking of 7 in time O(n’log A).

5 Edge-Rankings of Partial £ -Trees with Bounded Degrees

In this chapter we first give a polynomial-time sequential algorithm to solve the c-edge-ranking problem for any
partial k-tree with bounded degrees and any positive integer c. We next give a parallel algorithm for the c-edge-
ranking problem. Our algorithms are similar to our sequential and parallel algorithms for the c-vertex-ranking of

a partial k-tree. The main results of this chapter are the following theorems.

Theorem 5.1 For any positive integer ¢ and any bounded integer k, an optimal c-edge-ranking of a partial k-tree

G with n vertices can be found in time nO<A/€2>, where Ais the maximum degree of G.

Theorem 5.2 Let G be a partial k-tree of n vertices given by its tree-decomposition with height O(log, n) and width
< 3k+2. Then an optimal c-edge-ranking of G can be found in O(log. n) parallel time using nO<A k) operations
on the common CRCW PRAM for any positive integer ¢ and any bounded integer k.

6 Conclusion

This thesis deals with the generalized vertex-ranking problem and the generalized edge-ranking problem. We newly
define generalized edge-ranking problem on graphs and give an efficient algorithm for solving the problem on trees.
We present efficient sequential and parallel algorithms for solving the generalized vertex-ranking problem and the
generalized edge-ranking problem on partial k-trees. We also obtain upper bounds on the c-vertex-ranking number

and the c-edge-ranking number of partial A-trees.

References

[1] H.L. Bodlaender, A linear-time algorithm for finding tree-decompositions of small treewidth, SIAM Journal
on Computing, 25(1996), pp.1305-1317.

{2] H.L. Bodlaender, J.S. Deogun, K. Jansen, T. Kloks, H. Miiller, and Zs. Tuza, Rankings of graphs, Lecture
Notes in Computer Science, Springer-Verlag, 903 (1994), pp.292-304.

[3] H.L.Bodlaender and T. Hagerup, Parallel algorithms with optimal speedup for bounded treewidth, Lecture
Notes in Computer Science, Springer-Verlag, 944 (1995), pp.268-279.

[4] X. Zhou, H. Nagai, and T. Nishizeki, Generalized vertex-rankings of trees, Information Processing Letters, 56

(1995), pp.321-328

— 100 —

#E A MR 0o B B

WHHBEKO T o2 o v ~D 5 27 ORYBER ELL0RAyr Y2 —) v /IR, H280NRELRET LK
77 70[ERMIL T vy EME, LrbHVEI v/ oA TEARUDRT S, WhYw3E T v s RIEE LT
ERLTEE, COLIU T v/ FURIEE NP-ZELTHD, —DOI 5 7 LTI OMEENRIC B 7L T
DALFEFEELZDICBVA, 75707 53RV LRETNEPEROL VT VT Y XLBFEETEETFHINE, L
ML, EQEIUWTI37D7 3 ACRETHE L OLRAMOSN TV D > 1,

FHEEHLV S vy FUEEER T L L b, LOWREERPF-sBEL2EAL, ABXUZ0—H{LTH S
By RARICH LT, ZOMELEBRT VY RABRIOWFH TV T Y XL 2K L, TOMELZERBINICHETL
2o KX B INODOHEEZENTLDLBDTHY, ER6EH» SN 3B,

FBLIEIFRTD 5,

F2ETE, 77 70BERNREEEY S v 7 O~ RIBKEEEZRL TV 3,

FIBETE, B RRKOAS v 7 FUTEABCHROIVERT VT Y XL EHFI 7T XLE2F5 LT3,
AN 705 ErE Licd s, COBRTVIN XLOFMEREIE 2 OBZERNTH 5, LU T VT Y XLD
BRI O(logn) THY, Hwa 7oy Y HE n0ZHENTH S, W rkADOE T v 7 ([FHEN VDY S NC
KBTAILERLAEAT, CORRBREFEMHTE 2,

FABETE, KOOI v 7 (FHEEZH DRI VERT VT) XaE2BZ TS, KORRKEEAE LI E,
COFRRTNTY RADEEEMIZ OO0 log A) THY, ZOTNITY XLEBHBDTEET, EHLELLHEHTH %,

BOETE, B RRKOAS v 7 FTIRIEEBESERT NV TY) XL EWFITALTY) RLEHZ TS, M5y kAD
BREREWERTHELEE, COBRTNVTY XLADHERHIZ A DB TH S, LW T T Y Lo DFHEE
Mid Ologn) THO, MVWB 7oty v n0EHERTH S, ChORBEELEKETH 5,

FEOoETE, HERTDH S,

PEZEST 210, RARXEABLUED kKD Z v 7 [FUMEEZESERT VT) Ra LfF|7ra) Xae5X, &
DOYRAFRINBT L2 bDTHY, FEERY, Ho7r3y XAHBORBILESTEEIANDLLIEY,

£-T, FKamxidigt (FHPE) PR E LTaktiEn b,

— 101 —

