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1. Introduction

Research of the flexible structures has been a subject of great interest in civil engineering. A considerable
research have been carried out in the field of nonlinear dynamic analysis of planar flexible beam, but a limited
studies are available in the field of nonlinear dynamic analysis of spatial flexible beams. Some dynamic analyses
are available in the area of spatial flexible multibody systems.

The main objective of this study is to develop a numerical formulation for the nonlinear dynamic analysis of
spatial flexible structures undergoing finite-displacements which is derived by physics-based consideration
without any computational technique.

Finite element approach is used to model the beam but no energy approach nor variational principle is employed.
A co-rotational method is employed in this study where the nodal coordinates, velocities, accelerations, relative
displacements and rotations are defined in terms of fixed global coordinates, while the total strains in the beam
element are measured in an element coordinate system using the small deflection beam theory. Virtual work
expression is used to obtain mass matrices in the beam element but it is not a variational principle but a weak
form. Both stiffness and mass are represented by conventional matrices in the linear theory in the local
coordinates because of small deformation assumption. They are then transformed into the global coordinate
system using the standard procedure. Since the objective of this research is to develop a physics-based numerical
method, no fancy technique is employed, but the numerical algorithm used here is an incremental iterative

method based on the Rung-Kutta-Merson's integration method.

2. Kinematics and Stiffness of Finite Element
Basic preliminaries required for the development of the motion equations expressed in this chapter. Displace-

ment fields are obtained based on the basic assumptions. Transformation matrix is obtained to transform the
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stiffness and mass matrices of the element coordinate systems to the global coordinate systems. Also the
physically meaningful transformation technique is employed to transform the infinitesimal components of the
Eulerian angles corresponding to the global coordinate systems. This chapter deals also about numerical formu-
lations to solve the motion equations. Relative nodal displacement equations are obtained using the nodal

displacement vectors.

3. Discretized Equations of Motion

Nonlinear equations of motions for the flexible structures due to internal forces, inertia forces and external
forces are presnted in this chapter.

However there are several methods available for solving transient problem by direct integration, well known
Runge-Kutta-Merson's method is chosen in this study primarily because of its stability and accurracy under a

wide range of element size and time step variations.

4, Numerical Check of Accuracy
In this chapter comparison is made with analytical solutions and numerical solutions by other methods in

order to show feasibility of the present method.

Material Properties A. Linear Analytical Sclution. Material Properties A. Linear Analytical Solution.
EA =10000, EI = GJ = 1000 N EA =10000, EI =GJ = 1000 . -
#A=10, =010, Lu10 B. 3D Humerieal Solution. pA=10, pI=0.00, L=10 B. 3D Numerical Solution.
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Fig. 1 Time history of midpoint y-dir. displace- Fig. 2 Time history of midpoint y-dir. dis-
ment at amplitude= 1. placement at amplitude=700.

First of all a comparison is made with linear analytical solution in Fig. 1. Both the numerical and analytical
solutions coincide with each other when the magnitude of responces kept small enough. Fig. 2 shows the check
of the effect of nonlinearity qualitatively at finite displacement. A flexible beam as shown in Fig. 3 is subjected
to a force and torque is solved by present method and compared with the results of the other researchers and
found very close results. The displacements of gravity center of this beam are calculated by present method and

analytic method as shown in Fig. 4 and found almost same results.
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Material Properties:
EA = 10000, EI = 100
. A,=1,1,10
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Total mass m = 10
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Fig. 3 Free flight of spaghetti. Fig. 4 Displacements at gravity center of free

flight beams.
5. Cable Structures
Recently most challenging tasks under severe conditions have to be accomplished by civil engineers. Par-
ticularly in the case of the bridge construction over the deep sea, it is so difficult to obtain rigid foundation
bases and the strucutre becomes costly. Huge types of structures also affects on the aesthetic sense of the
environment. Considering such circumstances, introduction of submerged but stiff floating foundations may

also remove such difficulties and extend the valuable contribution in the civil engineering fields.
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Fig. 5 Cable system : Deformation with time,

Floating bodies are generally moored by cables, they are sensitive to the dynamic effects of wave and tidal
current and show nonlinear mechanical behavior, The applicability of the present formulation in the simple cable

system of the mooring structure is presented in this chapter is shown in Fig. 5.

6. Conclusions

This study describes a numerical method for the nonlinear dynamic analysié of the spatial flexible structures
undergoing finite-displacement which is derived by physics-based consideration without any computational
technique, It has been demonstrated by few examples that the present formulation and procedure are applicable
to nonlinear dynamic analysis of spatial flexible structures undergoing finite displacements and rotations. This
finite element formulation is very useful and highly accurate solutions can be obtained. It is also hoped that

this numerical method can be a valuable engineering tool for the dynamic alaysis of spatial flexible structures.
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