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For A C N¥, we associate a two-person game G, as follows: player I and player II alternately choose natural

numbers (starting with I) to form an infinite sequence f € N ™ and T (resp. 1) wins iff £ € A (resp. f € A). A



winning strategy is a map ¢ : N*¥ = N such that the player is guaranteed to win every play [ in which he
played fin) = o (f [n]) whenever it was his turn to play. We say that A is determinate if one of the players has a
winning strategy for A. For a class C of subsets of N, we use C -determinacy to denote the axiom stating that any
set in C is determinate. In [4] and [5], the determinacy has been investigated up to 33 or alternatively F,. It is

known that 3-determinacy can not be proved in the full system of the second arithmetic.

In this thesis, we treat the the games whose complexity lies between S5 (F,) and A3 (F,, N G,,). We compare
the determinacy of such games with various iterations of inductive definition. Qur investigations fit in a broader
program of research known as reverse mathematics, initiated by Friedman in 70's, whose ultimate goal is to
answer the following question: What kinds of axioms are needed to prove ordinary mathematical theorems. See [4]

for more information about this program.

We briefly describe the content of this thesis. In Chapter 2 we give some preliminaries. In Chapter 3, we first
show that Si-determinacy deduces (non-monotone) >i-inductive definition, and combining this with the main result
of Tanaka [5], we deduce that monotone and non-monotone Ii-operators have the same power. Then, we also
introduce the inductive definition of a combination of finitely many 3:-operators and show its equivalence to the
determinacy of Boolean combinations of S-sets. Chapter 4 focusses on infinite games over the Cantor space and
compare the determinacy of such games with the determinacy of their counterparts over the Baire space. In chapter
5, we treat the infinite level of the difference hierarchy over G,-sets. We also prove an effective version of the
Hausdorff-Kuratowski theorem on Al-sets, which provides us with a characterization of Aj-determinacy. In the last
chapter, we use some model-theoretic techniques to show that the determinacy is independent from various axioms

of second order arithmetic.
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