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Abstract

A better understanding of the specific molecular interactions between plants and microbes is crucial
to develop newer strategies for sustainable agriculture. The productivity of wide range of agricultural
crops under decreasing land resources and shrinking biological potential of the soil need to be
improved. Search for useful microorganisms associated with the plants has been highly productive
for sustainable agriculture. We take a close look at the current level of molecular interactions that
mostly involve specific molecular patterns of microbes and their cognate receptors in plants and
development of efficient biofertilizers for improving crop yields. This article covers the broader aspects
of plant-microbe interactions with more focus on plant growth promoting rhizobacteria (PGPR).
Further upcoming strategies to understand the plant-PGPR interactions are discussed.

Keywords: biofertilizers, growth promotion, induced resistance, plant-microbe interaction,
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Introduction

Plants interact with a variety of microorganisms
that influence the annual crop production, and
at times threaten global food security. We also
have several beneficial effects of such interactions
that are widely known like symbiotic nitrogen
fixers and arbuscular mycorrhiza.  The question
here is how do plants differentiate beneficial and
harmful microbes. To reduce the severity of crop
losses due to the damaging effects of pathogenic
microbes, antifungal and antibacterial substances
are routinely used in agriculture. The prohibitive
costs and the rapidity with which the microbial

pathogens develop resistance increased consumer
awareness on the detrimental effects of synthetic
chemicals and their continued use (Neeraja et al.
2010).

The plants are able to sense evolutionarily
conserved molecular pattern from microbes called
microbe-associated molecular patterns (MAMPs,
referred as PAMP when it originates from a
pathogenic microbe) and activate responses
inside the cell. These molecules are recognized
by either receptor-like proteins or receptor
kinases called pattern recognition receptors
(PRRs) mostly localized to the plasma-membrane.
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The never-ending molecular arms race of plants
against microbial pathogens, involving a
multitude of PAMPs, PRRs, effectors, R proteins,
via the immunity pathways are referred to as
pathogen-triggered immunity (PTI) and effector
triggered immunity (ETI). These pathways may
hold a key to develop alternative strategies to
induce disease resistance in plants. A promising
and versatile PAMP, for which detailed structure/
function relationships and the molecular mode
of action are currently being revealed, are chitin
and chitosan oligo- and polymers
(Moerschbacher 2005; Yin et al. 2010).

Chitin is the second most abundant natural
polysaccharide consisting of β (1, 4)-linked N-
acetyl-D-glucosamine (GlcNAc) units in a linear
form. Chitin is a major constituent of fungal cell
walls as well as of insect exoskeletons and as such,
chitin is a prominent PAMP indicating the
presence of potentially detrimental organisms to
plants. Chitin is insoluble in water and mainly
exists in two crystalline (α- and β-) forms
(Purushotham & Podile 2012). Chitinases (EC
3.2.1.14) hydrolyze chitin to NAG, chitobiose,
or smaller chitooligosaccharides (CHOS).
Chitinases are found in a wide range of
organisms, including bacteria, fungi, plants,
animals and are closely associated with the
physiological roles of their substrates. The CHOS
are gaining interest in the food, agriculture, and
medicine-related industries in light of the diverse
applications of these molecules. Most biological
activities require CHOS with degree of
polymerization (DP)>4, but the synthesis of
oligomers with >6 DP has been a daunting task.
The use of CHOS as a broad-spectrum vaccine
against plant diseases highlights the need to
produce specific CHOS for crop protection and
production (Yin et al. 2010).

Different types of plant-microbe interactions

The interactions between plant and microbes can
be either beneficial, neutral or harmful. The
outcome is dependent on the delicate balance
among soil and plant type. Beneficial microbes
include nitrogen fixers (NF), phosphate
solubilizing bacteria (PSB), vesicular-arbuscular
mycorrhiza (VAM), and plant growth promoting
rhizobacteria (PGPR). Mostly, these microbes are
in a mutual relationship with plants for carbon
source and simultaneously improve plant

growth by various mechanisms. Few microbes
in soil have no relation to the plant processes.
Neither they get to benefit from the plant nor
they provide benefit to the plant; such organisms
could be classified under the neutral category of
microbes. The harmful microbes referred as
phytopathogens invade plants for their own
benefit to get nutrients or to propagate, resulting
in decrease in crop yield. Phytopathogens cause
severe damage to plant developmental processes
that sometimes lead to the death of plants. The
estimated global crop loss was about 12.5% due
to pathogenic microbes attack on plants (Oerke,
2006). Examples of different pathogenic microbes
are Ralstonia solanacearum (bacteria) causing wilt
in tomato, Aspergillus niger (fungi) causing crown
rot in groundnut, soybean mosaic virus (virus)
causing necrosis in soyabean etc.

Nitrogen fixers

Nitrogen-fixing bacteria are either in symbiotic
or non-symbiotic association with the host
plants. Rhizobia are well-known symbiotic NF
of legumes and they fix approximately 50-300 kg
N/ha (Mahdi et al. 2010). Rhizobia successfully
form root nodules involving a classical example
of exchange of chemical signals between plants
and bacteria. Flavonoids like genistein,
naringenin, and hesperetin from plant root
exudates (REs) are reported as the signalling
molecules to activate the nod genes in rhizobia,
responsible for production of nod factors.
Further, the nod factors take the form of lipo chito
oligosaccharides (LCOs) and act as the prime
molecules for plant-rhizobia specificity. A Ca+2

dependent receptor kinase system of plasma
membrane gets activated in the development of
the nodule to maintain a symbiotic relationship
(Coskun et al. 2017). Free-living Azotobacter and
Azospirillum also fix nitrogen by an associative
symbiotic relationship in the soil. They can fix
up to 20-40 kg N ha-1 (Mahdi et al. 2010) and a
specific host plant is not required for their
association. Maize, sorghum, sugarcane, wheat,
and pearl millet are mostly recommended by this
type of NF (Rajaee et al. 2007; Gholami et al. 2009).
The NF increase soil fertility, seed germination,
plant growth, and produce antibiotics against
pathogens. Another group of NF is blue-green
algae/cyanobacteria which can fix up to 20-30 kg
N ha-1 in rice fields. They are typically found in
the rice fields, hence named as paddy organisms
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(Nayak et al. 2004). Azolla, a free-floating
nitrogen-fixing fern is in symbiotic association
with Anabaena, alleviates P, S, K, Zn, Mb, and Fe
(nutrients) deficiency to the host plant (Yatazawa
et al. 1980). This Azolla- Anabaena complex is also
used as a nitrogen fertilizer along with
cyanobacteria to increase rice yield (Watanabe et
al. 1977).

Phosphate solubilizing bacteria

Mostly phosphate in soils is available in bound
form (di/tricalcium phosphate, hydroxyapatite,
and rock phosphate) which cannot be absorbed
by the plants. PSB can solubilize the bound
phosphate and make it available to plants
without using phosphate fertilizers. As a first
step, PSB secrete organic acids by utilizing sugars
from the plant REs and decrease the soil pH
(Goswami et al. 2016). Later, the acid
phosphatases, released by PSB, mineralize the
bound phosphate for plants’ uptake (Mahdi et
al. 2010; Sharma et al. 2011). Aerobacter,
Achromobacter, Agrobacterium, Bacillus, Burkholderia,
Erwinia, Flavobacterium, Micrococcus, Pseudomonas,
and Rhizobium are the few PSB. For example,
Pseudomonas fluorescens and Bacillus megaterium
with phosphate-solubilizing ability increased the
plant growth and P, N levels in Cicer arietinum
and Phaseolus vulgaris (Sharma 2007; Collavino
et al. 2010). PSB like Pantoea sp., Enterobacter sp.,
Burkholderia sp., and Sphingomonas sp. can also
phytostabilize heavy metals (like lead and
aluminum) along with phosphate solubilization
in rice seedlings (Park et al. 2011; Panhwar et al.
2014). This indicates the advantage of using PSB
in different situations like plant growth and
phytostabilization.

Vesicular-arbuscular mycorrhiza

The Glomeromycotaphylum fungi penetrate into
the vascular plant roots involving chemotaxis
mediated by molecules like strigolactones and
cutin of plant REs (Venturi & Keel 2016). Such
chemoattractants in the REs induce AMF to
produce Myc-LCOs factors which develop
vesicles and arbuscules in plant roots through a
process similar to the plant-rhizobial symbiosis.
The AMF capture nutrients (P, N, and S) from
the soil and provide to plants for their growth.
This symbiotic relationship between fungi and
plant root system was earlier referred as

mycorrhizae. The arbuscular mycorrhizal fungi
(AMF) form a sheath like protective cover around
roots to protect plants from different
environmental conditions like drought, salinity,
other pathogenic fungal attacks. They increase
the root elongation rate and improve the
capturing ability of less available or inaccessible
mineral nutrients (Zn, Co, Ca, and Mo) from the
soil. Artemisia annua inoculated with AMF
significantly increased plant growth, essential oil,
and artemisinin content (Kumar et al. 2017).

A consortium of beneficial microbes was applied
to test its effect on crop yield (Zaidi et al. 2017).
The consortium may exhibit positive or negative
effects on plants, depending on the nature of
interaction between the members of the
consortium. Mostly combined use of beneficial
microbes resulted in increased plant growth,
yield and enhanced biocontrol potential towards
pathogens than their individual application (Jain
et al. 2015a; Jain et al. 2015b; Sarma et al. 2015).
Alagawadi & Gaur (1994) first used the dual
inoculum of Azospirillum brasilense (NF) and
Pseudomonas striata or Bacillus polymyxa (PSB) on
sorghum. This application increased grain yield
by improving N and P absorption by the plants.
In Rhizobium and PSB dual application, yield
increased by 20% in comparison to their
individual use in wheat (Afzal & Bano 2008).
Dual inoculation of PSB and Glomus fasciculatum
also increased alfalfa plants growth (Piccini &
Azcon 1987). Rhizobium leguminosarum and
AMF dual inoculation on faba bean, provided
tolerance to alkaline conditions along with
improved plant growth (Abd-Alla et al. 2004).
This consortium of beneficial microbes is
presently used in the restoration of the degraded
landscape. For example, the mass multiplication
of beneficial AMF, NF, and rhizobacteria in 30
legume species restored the soil fertility (Ghosh
& Dutta 2016). Out of all the tested legumes,
Arachis hypogaea, showed the highest
colonization by this tri-partite symbiotic
relationship along with increased yield in
elevated drought stress. These NF or PSB or AMF
associations provide benefit to plants by
increasing the nutrient availability and alleviate
some environmental stress conditions.

Plant growth promoting rhizobacteria (PGPR)

Bacteria that provide benefit to plant can be
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symbiotic or free-living in the soil. They are
abundant near the roots. The fraction of soil
influenced by roots is called as rhizosphere
(Parray et al. 2016). The term rhizosphere was
first coined by a German plant physiologist and
agronomist Lorenz Hiltner in 1904. In Greek the
word ‘rhizo’ means root. The rhizosphere is
divided into three zones: ectorhizosphere- soil
near the root, rhizoplane- surface of the root and
endorhizosphere- inside the root tissue,
including cortical layers and endodermis (Badri
& Vivanco 2009; Oburger & Schmidt 2016). The
rhizosphere is colonized by a diverse group of
microorganisms than the surrounding bulk soil.
Approximately 1010-1012 microflora will be present
in a gram of rhizosphere soil, which is 1000-2000
times higher than the bulk soil microbial
population. Some of the rhizobacteria in the soil
promote plant growth, yield, and control
diseases. Such free-living beneficial bacteria are
termed as plant growth promoting rhizobacteria
(PGPR) (Podile & Kishore 2006). About 2-5% of
the total rhizosphere bacteria constitutes PGPR
(Antoun 2006). Strains of the genera
characterized as PGPR are Acetobacter, Acinetobacter,
Aeromonas, Alcaligenes, Azoarcus, Azospirillum,
Azotobacter, Arthobacter, Bacillus, Beijerinckia,
Burkholderia, Clostridium, Derxia, Enterobacter,
Exiguobacterium, Gluconacetobacter, Herbaspirillum,
Klebsiella, Methylobacterium, Ochrobactrum, Pantoea,
Paenibacillus, Pseudomonas, Rhodococcus, Serratia,
Stenotrophomonas, and Zoogloea (Podile & Kishore
2006; Chauhan et al. 2015; Jha & Saraf 2015).

Classification of plant growth promoting
rhizobacteria

PGPR are classified on the basis of functional and
physiological aspects. Based on function, Somers
et al. (2004) classified PGPR as  biofertilizers,
phytostimulators, rhizoremediators, and
biopesticides. This was less accepted as the
functions of PGPR are overlapping with each
other. Whereas, Gray & Smith (2005) classified
PGPR into two simple groups based on their
colonization ability. The intracellular PGPR
(iPGPR): for bacteria colonizing inside the root
(also known as endophytes) and extracellular
PGPR (ePGPR): for bacteria colonizing in the
rhizosphere, rhizoplane or intercellular spaces
of the root. Rhizobial interaction with legumes
is a simple example of iPGPR. They form nodules

in the root and fix the atmospheric N and
promote plant growth. The gram-negative, rod-
shaped bacterial population is dominant in
iPGPR than gram-positive, cocci, rods or
pleomorphic bacteria. The ePGPR are not able
to form nodules, but they colonize roots and
influence plant nutrient uptake, growth, and
yield by an array of direct and indirect
mechanisms (Fig. 1). Some PGPR directly
regulate the plant processes by impersonating
synthesis of plant hormones, increasing soil
minerals availability, as a way to enhance growth
directly (Persello-Cartieaux et al. 2003; Taurian
et al. 2010). Whereas, other groups of PGPR
contribute indirectly by providing biocontrol
against pathogens. They compete with
pathogenic microorganisms for nutrients and
niche (Dutta & Podile 2010), produce lytic
enzymes and antimicrobials (Kavino et al. 2010;
George et al. 2015) and induce systemic resistance
(Tjamos et al. 2005) to kill the pathogens.

Direct plant growth promoting mechanisms

Facilitating nutrient acquisition

PGPR facilitate the uptake of mineral nutrients like
nitrogen, phosphate, iron, and zinc from the soil
by converting the nutrients to soluble form.
Nitrogen is a vital mineral for many living
organisms including plants. It is required for the
synthesis of building blocks like nucleotides, DNA,
RNA, amino acids, and proteins etc. In the
atmosphere, nitrogen is available in diatomic form
(Na≡N) with a strong triple bond. This form of
nitrogen is inert and won’t be able to react with
any other chemicals as well as non-absorbable by
plants or animals. Nitrogen-fixing PGPR convert
atmospheric nitrogen into ammonia and contribute
to the N requirement of the plants. All nitrogen-
fixing PGPR possess metalloenzymes known as
nitrogenase, coded by nif genes. They include
structural genes, iron protein activating genes,
iron-molybdenum cofactor biosynthesis genes and
regulatory genes necessary for the nitrogen fixation.
Nitrogen-fixing Pseudomonas strain K1 increased
grain yield and shoot biomass of two basmati rice
varieties in comparison to non-nitrogen fixing
Zoogloea, Azospirillum brasilense, and Azospirillum
lipoferum (Mirza et al. 2006). A similar result was
observed by Kuan et al. (2016) in maize with
nitrogen-fixing Klebsiella sp., Bacillus pumilus, and
Acinetobacter sp. inoculation.
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After nitrogen, phosphorus is the second most
essential macronutrient required for the growth
of plants. Mostly phosphate exists in insoluble
form, even in phosphate-rich soils. PGPR or PSB
secrete organic acids (gluconic, glycolic, malonic,
oxalic, and succinic acid) and phosphatases to
disturb soil phosphate dynamics. They convert
insoluble phosphates into soluble mono or di
basic (H2PO4

-and HPO4
2-) ions, referred as mineral

phosphate solubilization (Mallick 2016). This
leads to an increase in phosphate availability in
rhizosphere and plants phosphate utilization.
Bacillus, Enterobacter, Erwinia and Pseudomonas spp.
are the most potent PSBs (Gyaneshwar et al.
2002). As an example, a gluconic acid producing
endophytic Pseudomonas sp. improved growth
and yield of Pisum sativum L. in phosphate-
limiting conditions (Oteino et al. 2015).

Like phosphate, zinc also exists as insoluble
complexes in soil and cannot be utilized by the
plants. PGPR fulfil the plant’s zinc requirement
by solubilizing zinc complexes and releasing zinc
into the rhizosphere. Zinc solubilization is
achieved by production of organic acids,
inorganic acids (sulphuric acid, nitric acid, and
carbonic acid), chelating ligands, proton
extrusion, and/or with the oxidoreductive
systems present on the cell membranes of PGPR
(Wakatsuki 1995; Saravanan et al. 2004; Goteti et
al. 2013).

Phytohormones production

Phytohormones are plant growth regulators that
influence plant development; produced by plants,
algae, and few prokaryotic microorganisms.
There are five important phytohormones, i.e.
auxins, gibberellic acids, cytokinins, abscisic acid,
and ethylene. PGPR secreted phytohormones
influence the root zone and the plant
developmental process. For instance, indole-3-
acetic acid (IAA) is an auxin that controls many
important plant physiological processes, that
include cell elongation, cell division, tissue
differentiation, lateral root formation, and
response to light and gravity (Parray et al. 2016).
PGPR with IAA producing capability will have
a capability to regulate these developmental
processes by adding IAA to the plant’s auxin pool
(Vessey 2003). Plant’s potential to absorb
nutrients and water depends on the root surface

area. The increase in root surface by IAA
improves absorption capacity from large volume
of soil and their utilization for plant growth
(Volkmar & Bremer 1998).

Gibberellic acids (GA) are tetracyclic diterpene
compounds that promote seed germination, sex
expression, stem elongation, flowering, and
senescence in plants. They are produced by
higher plants, bacteria, and fungi. All the GAs
available in the rhizosphere are not biologically
active. PGPR with potential to deconjugate
gibberellin-glucosyl bonds can generate active
dihydroxylated GAs (like GA1, GA3, and GA4)
in the root zone. This active form of GAs
promotes plant growth. For example, Bacillus
cereus, B. macrolides, and B. pumilus significantly
increased red pepper growth by producing
biologically active GAs (Joo et al. 2004). A new
PGPR, Leifsoniasoli SE134 also influenced the
growth and yield of cucumber, rice, tomato, and
radish by producing active GAs (Kang et al.
2014). The third group of phytohormones,
cytokinins are involved in cell division of root
and shoot formation. Arabidopsis thaliana mutants
lacking cytokinin signalling genes (Cre1,
Ahk2 and Ahk3, and Rpn12) showed impaired
plant growth in presence of plant growth
promoting Bacillus megaterium. This shows the
complementary role of cytokinin and PGPR in
plant growth promotion (Ortíz-castro et al.
2008). Other two phytohormones abscisic acid
(ABA) and ethylene are stress-tolerant hormones.
ABA influences seed dormancy and bud growth,
whereas ethylene affects the cell shape and
growth. A. thaliana elevated salt stress in presence
of Azospirillum brasilense and showed a two-fold
increase of plant ABA content (Cohen et al. 2008).
This explains the importance of ABA in stress
tolerance along with growth promotion. Plant
internal ethylene levels are triggered by many
biotic and abiotic factors. The increased ethylene
levels inhibit plant growth by hindering DNA
synthesis and cell division processes. PGPR are
able to synthesize 1-aminocyclopropane-1-
carboxylate (ACC) deaminase can counteract the
negative effects of ethylene via decreasing its levels.
The ACC deaminase cleaves ACC, the precursor
of ethylene into ammonia and α-ketobutyrate.
Pseudomonas putida inoculated Papaver somniferum
plants resisted against the negative effects of
downy mildew (caused by Peronospora sp.) by
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decreasing ACC levels, increasing IAA and
significantly improved the plant growth. Rkh1-
Rkh4 PGPR, isolated from weed rhizosphere
showed significant growth promotion of soybean
by secreting IAA, GA, and ABA to elevated salt
stress (Naz et al. 2009), indicating the interlink
of phytohormones secreted by PGPR in
regulating growth and stress alleviation in
plants.

Siderophores production

Iron is an important micronutrient and serves
as a cofactor for many redox maintaining
enzymes of cell. Iron is available in insoluble
ferric hydroxide form in soils. This limits the iron
availability even in iron-rich regions for proper
plant growth. Siderophores are low molecular
weight, small, iron chelating compounds released
by the bacteria (including PGPR), fungi and
plants. The siderophores have a high affinity to
Fe3+ and form Fe3+-siderophore complexes that
are absorbed by the plants. Plants have adapted
mechanisms to absorb Fe3+ bound to the bacterial
siderophores (Masalha et al. 2000) by ligand
exchange process. PGPR with siderophore
producing ability can chelate iron in the soil and
make it available to plant, and limit its
availability to pathogens that cannot produce
affinity siderophores. This generates a
competition between PGPR and pathogen for
iron utilization. Further, they suppress
pathogens by inducing defense mechanisms of
the plant. Pyoverdine, a yellow-green pigment
produced by many fluorescent Pseudomonads
functions as siderophore, and suppresses the
pathogens (Becker & Cook 1988). Few
siderophores can even chelate heavy metals and
radionuclides (such as Al, Cu, Cd, In, Ga, Pb, U,
and Np) and alleviate the stress imposed on
plants (Neubauer et al. 2000).

Indirect mechanisms of plant growth promotion

PGPR effectively compete with pathogens for
nutrients or niche by releasing lytic enzymes/
antimicrobial compounds and by inducing
systemic resistance (Podile & Kishore 2006) in
plants (Fig. 1).

Antibiosis against pathogenic microbes

A biological association of two or more
microorganisms, in which one is detrimental to

another by its antagonistic behaviour, is called
as antibiosis. PGPR secrete a wide variety of
antibiotics to suppress phytopathogens. These
antibiotics can be antibacterial or antifungal and
inhibit pathogens even at very low
concentrations. Some reported antibiotics
produced by Pseudomonads are aerugine,
amphisin, azomycin, butyrolactones,
cepaciamide A, ecomycins, hydrogen cyanide, 2,4-
diacetylphloroglucinol, phenazine, oomycin A,
pyoluteorin, tensin, tropolone, pyrrolnitrin,
viscosinamide, cyclic lipopeptides, rhamnolipids,
kanosamine, zwittermycin-A, pseudomonic acid,
antitumor antibiotics, cepafungins, and
karalicin. They  are reported to have
antimicrobial, antioxidant, antitumor, antiviral,
antihelminthic, cytotoxic, phytotoxic activities
and plant growth promotion (Goswami et al.
2016; Parray et al. 2016). Antibiotics produced by
Streptomyces, Bacillus, and Stenotrophomonas include
oligomycin A, kanosamine, zwittermicin A and
xanthobaccin (Parray et al. 2016). The volatile
hydrogen cyanide (HCN), among them, inhibits
cytochrome C oxidase, an important electron
transport chain enzyme and reduces the energy
supply to cell. This eventually leads to death of
pathogen. As the HCN is not a specific inhibitor
of pathogens, it may inhibit PGPR or plant
energy mechanisms as well. The phytotoxic
effects of HCN in reducing plant growth is also
reported in crops (Devi et al. 2007; Kumar et al.
2015).  Rijavec & Lapanje (2016) proposed the
phosphate regulating ability of HCN, over the
biocontrol activity against pathogens, which
needs further evaluation.

Induced systemic resistance

PGPR or antimicrobial compounds released by
them, trigger a mild innate immune response after
colonizing plants, which is referred as priming.
First, microbe-associated molecular patterns of
PGPR are recognized by pattern recognition
receptors of plant cells. Later, the plant develops
an induced systemic resistance (ISR) by
producing phytoalexins, expressing PR proteins,
activating mitogen-activated protein kinase, and
altering cellular calcium (Ca2+) levels. This
prepares the plant to fight against subsequent
pathogens attack. ISR in plants is attained by
activating the signalling pathways regulated by
jasmonic acid or salicylic acid or ethylene. In
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Pseudomonas spp. ‘O’ antigenic side chain of
lipopolysaccharides, 2, 4-diacetylphloroglucinol,
volatiles (like, acetoin and 2, 3-butanediol),
siderophores (like pseudobactin and
pseudomanine), flagella, cyclic lipopeptides, and
homoserine lactones are few determinants of ISR
in plants (Ryu et al. 2004; Gupta et al. 2015;
Goswami et al. 2016). Diseases and damage
caused by fungi, bacteria, viruses, nematodes and
insects can be reduced by the PGPR application
through activation of ISR (Ramamoorthy et al.
2001; Sivakumar et al. 2015; Sreeja et al. 2016; Bhai
et al. 2017; Aswathi & Ushamalini 2017).
Inoculation of Bacillus velezensis, B. mojavensis, B.
safensis, B. subtilis, and B. altitudinis individually
or in mixtures, reduced the Heterodera glycines
(nematode) population and increased yield of
soybean by activating the ISR (Xiang et al. 2017).
B. pumilus SE34, Pseudomonas fluorescens 89B61,

and P. putida inoculation in tomato plants reduced
the late blight (fungal) disease and Spodoptera
litura (insect) infestation by exerting ISR (Yan et
al. 2002; Bano & Muqarab 2017). From this, ISR
can be considered as a crucial defense mechanism
in plants against most of the pathogens like
nematodes, insects, and fungi.

Cell wall degrading enzymes

Several PGPR show hyperparasitic activity on
fungal pathogens by producing fungal cell wall
degrading enzymes. As the fungal cell walls have
a considerable amount of chitin and β-glucans
as structural components, chitinases, and β-
glucanases are considered as major mycolytic
enzymes active against the number of
phytopathogenic fungi (García-Cristobal et al.
2015; Kim et al. 2015). Degrading fungal cell walls

Fig. 1. Overview of plant growth promotion by PGPR: Direct and indirect mechanisms in improving the
plant growth. They increase nitrogen (N), phosphate, zinc, and iron (Fe) availability and release
phytohormones for improving plant growth. Antimicrobial metabolites, lytic enzymes, and
siderophores secreted by PGPR prevent pathogens attack by ISR.
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by these enzymes inhibits the fungal growth and
propagation. Chitinase producing PGPR include
Bacillus spp., Serratia marcescens, Enterobacter
agglomerans, Pseudomonas aeruginosa, and P.
fluorescens. Few glucanase producers are
Paenibacillus, B. Cepacia and Streptomyces
(Goswami et al. 2016). This is the major
mechanism adapted by most of the PGPR to
overcome fungal attacks in plants.

Drawbacks of PGPR biofertilizers

Currently, a number of PGPR, with potential to
enhance crop yield, are being commercialized.
Various PGPR have been formulated
individually or in a consortium for plant growth
and defense against pathogens. Groundnut yield
was significantly increased in combined
application of Rhizobium, Pseudomonas, and
Bacillus (Mathivanan et al. 2014). Defense against
anthracnose, angular leaf spot, and wilt causing
pathogens in cucumber plants was reported by
Raupach & Kloepper (1998) by application of B.
subtilis, B. pumilus, and Curtobacterium
flaccumfaciens.

The main drawback in using PGPR as
biofertilizers is their inconsistency and
irreproducibility in their performance under field
conditions. The variation in PGPR biofertilizers
performance is due to environmental factors that
affect their stability and growth. Eventually, this
hinders their potential growth promotion in
plants. About 90% of the applied biofertilizer is
noted to be lost into the air while applying and
not used by the plants (Vejan et al. 2016). The
remaining population might not be optimum for
colonization. Ultimately this leads to a rapid
decline in the population (Arora et al. 2010). This
might be one of the reasons for negative results
in the field conditions vs. positive outcomes in
the laboratory observations. Other factors
affecting may be the poor expertise of farmers
for inoculum application, handling, storage, and
large field area for inoculation (Bashan et al.
2014).

Upcoming strategies to overcome disadvantages of
biofertilizers

To maximize interactions of nursery seedlings
and PGPR, it is essential to determine, how they
exert their positive effects on plants.

Understanding the interactions at molecular and
physiological levels (Vessey 2003) with the focus
on genes, proteins, and metabolites (Parray et al.
2016) can fill the gaps. New concepts like rhizo-
engineering for pointing the exotic biomolecules
responsible for the plant-microbe interactions
(Gupta et al. 2015) and nanotechnology for the
production of PGPR based nano-fertilizer for an
efficient application (Vejan et al. 2016) can be
potent alternatives. Gregorio et al. (2017)
generated nanofibers immobilized with PGPR;
Pantoea agglomerans and Burkholderia caribensis.
The coating of soybean seeds with these fibers
showed increased plant growth. The processes
involved in the colonization of PGPR to the root
system and chemical signalling involved in plant-
PGPR interactions need special attention, to
increase the usage of PGPR in agriculture.

Chitosan-based PGPR biofertilizer

Chitosan is a biologically active linear polymer.
It is made of D-glucosamine and N-acetyl-D-
glucosamine units linked by β-(1,4)-glycosidic
bond. Chitin, the major cellular component of
fungal cell walls, insects, crustaceans acts as a
precursor for generating chitosan. Chitosan is a
deacetylated form of chitin. It has many
applications in pharmaceuticals, biopesticides,
and plant growth enhancement. Chitosan
induces the synthesis of callose, lignin, defense
response and phytoalexins in plants. Use of
chitosan in biofertilizers to alleviate fungal
diseases in crop plants is in trend.  For example,
crustaceous chitosan and Cunninghamella elegans
chitosan alleviated Fusarium oxysporum infection
in cowpea plants by inducing catalase, reactive
oxygen species, and peroxidases (Berger 2016).
The pinewood nematode, Bursaphelenchus
xylophilus causes severe wood damage in pine
plants. Application of chitosan in soil reduced
the nematode population and damage caused by
them (Silva et al. 2014). A combined application
of diazotrophic bacteria (with N, P, K,
accumulation ability) and crustaceous
chitosan improved cowpea nodules formation,
shoot biomass and yield by increasing nutrients
availability (Berger et al. 2013). Along with
agricultural applications, chitosan also had
many pharmacological uses like drugs, siRNA,
DNA, and proteins delivery in humans. Ippolito
et al. (2017) studied crustacean chitosan role in
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inhibition of potato pathogens Phytophthora
infestans and Fusarium solani. These findings
indicate the role of chitosan as an elicitor and
growth promoter in biofertilizers. Chitosan
amendment can add an additional benefit in
preparing an efficient biofertilizer.
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