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Abstract  
The most used molecular graph descriptors in establishing Quantitative structure-property relationships (QSPRS) and 
Quantitative structure-activity relationships (QSARS) are topological indices. Molecular descriptors are normally chosen 
based on their ability to give good results in statistical models. In this paper we introduce a set of five new indices (Kekule 
indices) K, K1, K2, K3, K4 and we establish that the Kekule index (K) has excellent correlation (r = 0.99999997250969) with log 
p values in case of polyacenes. 
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INTRODUCTION 
 
     A topological index of a chemical compound is an integer, 
derived following a certain rule, which can be used to characterize 
the chemical compound. The first topological index is Wiener index 
introduced by Harold Wiener in 1947 to demonstrate its relation with 
physicochemical properties of alkanes, alcohols and amines. Ever 
since it is known that topological indices can be used to establish 
Quantitative structure - property relationships (QSPRS) and 
Quantitative structure - activity relationships (QSARS) in 
pharmacology, researchers are pursuing several investigations to 
find topological indices having correlation one or nearer to one with 
physicochemical properties of organic compounds. In this paper we 
introduce a new index K (Kekule index) having correlation (r = 
0.99999997250969) with log p values of polyacenes. 
                                                     

DEFINITIONS  
 
In this section we define five new topological indices and explain the 
procedure of computation. 
 
Kekule index: The Kekule index of a graph G = (V, E) is defined as  

K (G) =
( )

( )
e uv E G

W e
= ∈

∑
 
where W (e) = |i - j|, i, j are the degrees of the 

vertices u and v in G.
  

K1 index: The K1 index of a graph G = (V, E) is defined as K1 (G) 

=

( )

( )
e uv E G

W e
= ∈

∑   where W (e) = |i - j|2, i, j are the degrees of the 

vertices u and v in G. 
 

K2 index: The K2 index of a graph G = (V, E) is defined as K2 (G)  

=
( )

( )
e uv E G

W e
= ∈

∑
 
where W (v) = sum of the degrees of the neighboring 

vertices in G. 

 

K3 index: The K3 index of a graph G = (V, E) is defined as K3 (G)   

=
( )

( )
e uv E G

W e
= ∈

∑
 
where W(v)=product of the degrees of the neighboring 

vertices in G. 

 

K4 index: The K4 index of a graph G = (V, E) is defined as K4 (G)   

=
( )

( )
e uv E G

W e
= ∈

∑ where W (v) = max { }( , ) / ( )i id v v v V G∈ . Where    

d (v, vi) is the maximum distance between v and vi. 
 
     We compute these indices considering the chemical graph of 
the compound Naphthalene given below. 

 
Fig 1. Graph of Naphthalene 

 

Calculation of K index: 
W(e1)=|2-2|=0, W(e2)=|2-3|=1, W(e3)=|3-2|=1, W(e4)=|2-2|=0, 
W(e5)=|2-2|=0, W(e6)=|2-2|=0,   
W(e7)=|3-2|=1, W(e8)=|3-2|=1, W(e9)=|2-2|=0, W(e10)=|2-2|=0,  W 
(e11)=|3-3|=0 
Therefore K(G)=1+1+1+1=4. 
Calculation of K1 index: 
W(e1)=|2-2|2=0, W(e2)=|2-3|2=1, W(e3)=|3-2|2=1, W(e4)=|2-2|2=0, 
W(e5)=|2-2|2=0,  
W(e6)=|2-2|2=0, W(e7)=|3-2|2=1, W(e8)=|3-2|2=1, W(e9)=|2-2|2=0, 
W(e10)=|2-2|2=0,   
W (e11) = |3-3|2=0 

Therefore K1 (G) = 1 1 1 1+ + + =2. 
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Calculation of K2 index: 
W(v1)= 2+2=4, W(v2)= 2+3=5, W(v3)= 2+3+2=7, W(v4)= 3+2=5, 
W(v5)= 2+2=4, 
W(v6)= 2+2=4, W(v7)= 2+3=5, W(v8)= 2+2+3=7, W(v9)= 3+2=5, 
W(v10)= 2+2=4,   
Therefore K2 (G) = 4+5+7+5+4+4+5+7+5+4=50. 
Calculation of K3 index: 
W(v1)= 2 × 2=4, W(v2)= 2 × 3=6, W(v3)= 2 × 3 × 2=12, W(v4)= 
3× 2=6, W(v5)= 2× 2=4, 
W(v6)= 2 × 2=4, W(v7)= 2 × 3=6, W(v8)= 2 × 2 × 3=12, W(v9)= 
3× 2=6, W(v10)= 2× 2=4,   
Therefore K3 (G) = 4+6+12+6+4+4+6+12+6+4=64. 
Calculation of K4 index: 
W (v1) = 5, W (v2) = 4, W (v3) = 3, W (v4) = 4, W (v5) = 5, W (v6) = 5, 
W (v7) = 4,  
W (v8) = 3, W (v9) = 4, W (v10) = 5,   
Therefore K4(G)=5+4+3+4+5+5+4+3+4+5=42. 
 
NOTATION 
 

     
The molecular graph of polyacenes is a chain of hexagons 

arranged linearly. 
For convenience we adopt the following notation: 
Let L (a) be the graph consisting of a hexagons in one row as shown 
in the figure below. Here a is a positive integer. 

 

Fig 2. Graph of polyacene with a hexagons in 1 row 

MAIN RESULTS  
 
Throughout the paper we take  
 

{ } { }

{ } { } { }

1 2 2 1 1 2 2 1

1 1 2 1 3

, ,..., , , ,..., .

/ 1, 2,..., 2 , / 1, 2,..., 2 , / 1,3,..., 2 1

a a

i i i i i i

A x x x B y y y

E x x i a E y y i a E x y i a

+ +

+ +

= =

= = = = = = +

 

 
Theorem 4.1: If L(a) is the chemical graph (see Figure 2) then the K 
index of the  graph L(a) is K(L(a)) =4(a-1), where a is a positive 
integer. 
 
Proof: Consider 
 

{ } { } { }1 1 1 2 3

( ( )) ( ) ( ) ( )

i i i i i ie x x E e y y E e x y E

K L a W e W e W e
+ += ∈ = ∈ = ∈

= + +∑ ∑ ∑   

Here 
 

{ }1 1

( ) (2 2)1

i ie x x E

W e a
+= ∈

= −∑    

(since there are 2a-2 edges with | i-j|=1 in E1). 

 

{ }1 2

( ) (2 2)1

i ie y y E

W e a
+= ∈

= −∑    

(since there are 2a-2 edges with | i-j|=1 in E2). 

  

{ } 3

( ) 0

i ie x y E

W e
= ∈

=∑  (since for every edge in E3,  | i-j|=0). 

Therefore ( ( )) 2 2 2 2 4 4 4( 1)K L a a a a a= − + − = − = − . 

 
Theorem 4.2: If L(a) is the chemical graph (see Figure 2) then the K1 

index of the graph L(a) is K1(L(a)) =2 ( 1)a − , where a is a positive 

integer. 
 
Proof: Consider 

{ } { } { }1 1 1 2 3

1
( ( )) ( ) ( ) ( )

i i i i i ie x x E e y y E e x y E

K L a W e W e W e
+ += ∈ = ∈ = ∈

= + +∑ ∑ ∑   

here 
 

{ }1 1

( ) (2 2)1

i ie x x E

W e a
+= ∈

= −∑    

(since there are 2a-2 edges with | i-j|2=1 in E1). 
  

{ }1 2

( ) (2 2)1

i ie y y E

W e a
+= ∈

= −∑    

(since there are 2a-2 edges with | i-j|2=1 in E2). 

  

{ } 3

( ) 0

i ie x y E

W e
= ∈

=∑   

(since for every edge in E3,  | i-j|2=0). 
 Therefore 

1
( ( )) 2 2 2 2 4 4 2 ( 1)K L a a a a a= − + − = − = −  

 
Theorem 4.3: If L(a) is the chemical graph (see Figure 2) then the K2 
index of the graph L(a) is K2(L(a)) =26a-2, where a is a positive 
integer. 
 

Proof: In the set A two vertices namely 
1

x  and 
2 1a

x
+
 having 

weight 4, two vertices namely 
2

x  and 
2a

x  having weight 5, (a-2) 

vertices namely 
4 6 8 2 2
, , ,...,

a
x x x x

−
 having weight 6, (a-1) 

vertices namely 
3 5 7 2 1
, , ,...,

a
x x x x

−
 having weight 7. 

     In the set B two vertices namely 
1

y  and 
2 1a

y
+
 having weight 

4, two vertices namely 
2

y  and 
2a

y  having weight 5, (a-2) vertices 

namely 
4 6 8 2 2
, , ,...,

a
y y y y

−
 having weight 6, (a-1) vertices 

namely 
3 5 7 2 1
, , ,...,

a
y y y y

−
 having weight 7. 

Therefore 
K2(L(a)) = 

{ } { }

( ) ( )

i i

i i

x A y B

W x W y
∈ ∈

+∑ ∑  

Here  

 { }

{ }

( ) 2(4) 2(5) ( 2)6 ( 1)7

( ) 2(4) 2(5) ( 2)6 ( 1)7

i

i

i

x A

i

y B

W x a a

W y a a

∈

∈

= + + − + −

= + + − + −

∑

∑
  

    
Therefore  
   

2
( ( )) 2(4) 2(5) ( 2)6 ( 1)7 2(4) 2(5) ( 2)6 ( 1)7 26 2K L a a a a a a= + + − + − + + + − + − = − . 

 
Theorem 4.4: If L(a) is the chemical graph (see Figure 2) then the K3 
index of the graph L(a) is K3(L(a)) = 24 when a = 1= 42a-20, where 
a>1 is a positive integer. 
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Proof: In the set A two vertices namely 
1

x  and 
2 1a

x
+
 having 

weight 4, two vertices  namely 
2

x  and 
2a

x  having weight 6, (a-2) 

vertices namely 
4 6 8 2 2
, , ,...,

a
x x x x

−
 having weight 9, (a-1) 

vertices namely 
3 5 7 2 1
, , ,...,

a
x x x x

−
 having weight 12. 

     In the set B two vertices namely 
1

y  and 
2 1a

y
+
 having weight 

4, two vertices namely 
2

y  and 
2a

y  having weight 6, (a-2) vertices 

namely 
4 6 8 2 2
, , ,...,

a
y y y y

−
 having weight 9, (a-1) vertices 

namely 
3 5 7 2 1
, , ,...,

a
y y y y

−
 having weight 12. 

Therefore 

K3(L(a)) = 

{ } { }

( ) ( )

i i

i i

x A y B

W x W y
∈ ∈

+∑ ∑  

Here 

{ }

{ }

( ) 2(4) 2(6) ( 2)9 ( 1)12

( ) 2(4) 2(6) ( 2)9 ( 1)12

i

i

i

x A

i

y B

W x a a

W y a a

∈

∈

= + + − + −

= + + − + −

∑

∑
  

Therefore  

3
( ( )) 2(4) 2(6) ( 2)9 ( 1)12 2(4) 2(6) ( 2)9 ( 1)12 42 20K L a a a a a a= + + − + − + + + − + − = − . 

 
Theorem 4.5: If L(a) is the chemical graph (see Figure 2) then the K4 
index of the graph L(a) is K4(L(a)) = 18 when a = 1= 6a2+8a+2, 
where a>1 is a positive integer. 
 
Proof:  We know K4 (G) =

( )

( )
v V G

W v
∈

∑  

K4(L(a)) = 

{ } { }

( ) ( )

i i

i i

x A y B

W x W y
∈ ∈

+∑ ∑ Here 

   

{ }

[ ]

{ }

[ ]

( ) 2 (2 1) (2 ) (2 1) ... (2 ( 2)) (2 ( 1))

( ) 2 (2 1) (2 ) (2 1) ... (2 ( 2)) (2 ( 1))

i

i

i

x A

i

y B

W x a a a a a a a

W y a a a a a a a

∈

∈

= + + + − + + − − + − −

= + + + − + + − − + − −

∑

∑

  

 Therefore   

[ ]

[ ]

4
( ( )) 2 (2 1) (2 ) (2 1) ... (2 ( 2)) (2 ( 1))

2 (2 1) (2 ) (2 1) ... (2 ( 2)) (2 ( 1))

K L a a a a a a a a

a a a a a a a

= + + + − + + − − + − − +

+ + + − + + − − + − −

 

            = [ ]2 2( )(2 ) 2(2 3 ... ( 2)) 2( 1)a a a a− + + + − + +  

            = 2
2 4 ( 2)( 1) 2 (2 2)a a a a − − − + + +   

            = 
2

6 8 2a a+ + .  

 
Remark 4.6: K1, K2, K3 can be represented in terms of K as follows:              

1 2 3

26 42
, 24, 22

4 4
K K K K K K= = + = +  (where 1a ≠  in K3) 

 
COMPARISON OF RESULTS 
 
      In this section we compute the correlation of log p with K, K1, 
K3 and K4 considering the first 20 compounds of polyacenes (L(a), 
a=1 to 20) 
     The values of K, K1, K2, K3, K4 and log p for these compounds 
are tabulated below (Table 1). 
 
 

Table 1. 

 
No K K1 K2 K3 K4 log p 

1 0 0 24 24 18 2.202 
2 4 2 50 64 42 3.396 
3 8 2.828 76 106 80 4.590 
4 12 3.464 102 148 13 5.784 
5 16 4 128 190 192 6.978 
6 20 4.472 154 232 266 8.172 
7 24 4.8989 180 274 352 9.366 
8 28 5.2915 206 316 450 10.560 
9 32 5.657 232 358 560 11.754 
10 36 6 258 400 682 12.948 
11 40 6.3245 284 442 816 14.142 
12 44 6.6332 310 484 962 15.336 
13 48 6.928 336 526 1120 16.530 
14 52 7.211 362 568 1290 17.724 
15 56 7.4833 388 610 1472 18.918 
16 60 7.7459 414 652 1666 20.112 
17 64 8 440 694 1872 21.306 
18 68 8.2642 466 736 2090 22.500 
19 72 8.4852 492 778 2320 23.694 
20 76 8.7178 518 820 2562 24.880 

Following are correlation coefficients of log p with K, K1, K3 and K4 

Table 2. 
 

r log p 

K 0.99999997250969 
K1 0.96545941249478 
K3 0.99999854115530 
K4 0.97445287313308 

 
                                               

CONCLUSIONS 
 

       From the table it is clear that K is highly correlated with log p 
compared to other indices. In [10] we observed that among W, PI, 
Sz, Sh and Fr indices of polyacenes, Sh7 is highly correlated with log 
p with the value of r = 0.9996. However our new index K has better 
correlation 0.99999997250969 (almost one) than Sh index and this is 
more suitable for QSAR/QSPR studies. The regression equation 
between log p and K is   log p = 2.20268571428571 + 
0.29847142857143 K and the graphs of log p and predicted log p are 
given below. 
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Fig 3 (a). Graph of predicted log p 
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Fig 3 (b). Graph of log p 
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