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Abstract  
The present paper deals with an analytical investigation on two species commensal-host ecological model with the host has 
Mortality rate and is being harvested (immigrated) at a constant rate. Further, both the species are with limited resources. 
This model is characterized by a couple of first order non-linear ordinary differential equation. All possible, two equilibrium 
points are identified and a stability criterion for it is discussed. Solutions for the linearized perturbed equations are found and 
results are presented. 
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INTRODUCTION 
 
     An ecosystem is a complex set of relationships among living 
resources, habitats and residents of a region and ecology is the 
scientific study of the processes influencing the distribution and 
abundance of organisms, the interactions among organisms, and the 
interactions between organisms and the transformation and flux of 
energy and matter. The ecological interactions can be broadly 
classified as Prey-Predation, Competition, Commensalism, 
Ammensalism and Neutralism and so on. Research in theoretical 
ecology was initiated by Lotka [11] and by Volterra [17].Since then 
many Mathematicians and Ecologists contributed to the growth of 
this area of knowledge as reported in the treatises of Mayer [12], 
Paul Colinvaux [13], Kapur [6, 7], Svirezhev and Logofet [16], 
Freedman [5], Kushing [8]. N.C.Srinivas [15] studied the competitive 
ecosystems of two species and three species with limited and 
unlimited resources. Later Lakshminarayan and Pattabhi 
Ramacharyulu [9, 10] investigated prey-predator ecological models 
with a partial cover for the prey and alternative food for the predator 
and prey-predator model with cover for prey and alternate food for 
the predator and time delay. Stability analysis of competitive species 
was carried out by Archana Reddy, Pattabhi Ramacharyulu and 
Gandhi [1, 2], by Bhaskara Rama Sarma and Pattabhi 
Ramacharyulu [3, 4], while the mutualism between two species was 
examined by Ravindra Reddy [14]. 
     The present investigation is on a two species commensalism 
model with mortality rate for the host species and is being 
immigrated at a constant rate. The mathematical model is 
characterized by a couple of first order non-linear ordinary differential 
equations. The two existing equilibrium points are identified and a 
stability criterion for it is discussed. Solutions for the linearized 
perturbed equations are found and results are illustrated.  

BASIC EQUATIONS 
Notation Adopted  
 

( )tN1  :The population of the commensal species (S1). 
( )tN 2  :The population of the host species (S2). 

1a  :The rate of natural growth of the commensal(S1). 

2d  :The rate of natural death of the host (S2). 

11a  :The rate of decrease of commensal (S1). due to the  
 limitations of its natural resources. 

22a  :The rate of decrease of the host (S2) due to the  
 limitations of its natural resources. 

12a  :The rate of increase of the comminsal (S1). due to  
 the Support given by the host (S2). 

k1(=a1/a2) :The carrying capacity of S1. 

c(= a12/a11) :The Mortal coefficient of S2. 

e2 (=d2/a22) :The Mortal coefficient of S2. 

2H  :The renewal or replenishment of S2 per unit time. 

 
     Further both the variables N1(t) and N2(t) are non-negative for 
all ‘t’ and all the model parameters a1,d2,a11, a12,a22, and H2 are 
assumed to be non-negative constants. 
     Employing the above terminology, the model equations for 
Commensal-Mortal Host ecosystem where the host species is being 
harvested (immigration) at a constant rate is given by the following 
system of non-linear first order ordinary differential equations. 
 
(i). Equation for the growth rate of the Commensal Species S1:  
                                

[ ]211111

1
cNNkNa

dt

dN
+−=                      (2.1) 

 
(ii). Equation for the growth rate of the Host Species S2:                
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EQUILIBRIUM POINTS 
 
     The system under investigation has the following two-
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equilibrium point given by 2,1,0 == i
dt

dN
i

. 
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THE STABILITY OF THE EQUILIBRIUM STATES 
 
Let 

                        (4.1) 

where ),( 21 uuu = .The perturbations u1,u2 over the equilibrium state 
),( 21 NNN =  are so small that their second and higher powers and 

products are negligible. The basic equations (2.1) and (2.2) are 
linearized to obtain the equations for the perturbed state. 
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The characteristic equation for the system is det 
 
[ ] 0=− IA λ                                     (4.4) 
 
      The equilibrium state is stable, only when both the 
eigenvalues are (i). negative in case they are real or (ii). have 
negative real parts in case they are complex. 
 
Stability of the Equilibrium State E1 
 
In this case the corresponding perturbed equations are given by 
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The corresponding characteristic equation is   
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the roots of which are 
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since one of the two roots is positive. Hence the study state is 
unstable. 
By solving the system of perturbed equations, we get  
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     The solution curves in this case are illustrated and the 
conclusions are given below. 
 
Case (i): When u10>u20  
 
 

 

 

 

 

 

                     Fig 1. 

Case (ii): When u10<u20  

 

 

 

 

 

              

                        Fig 2. 
Case (i) 
 
     The perturbation in the initial population strength of the 
commensal is greater than that of the host. In this case the 
commensal species is observed to move away from the equilibrium 
point as shown in Fig. 1, while the host  species is moving towards 
the equilibrium point.  
 
Case (ii)                                   
 
     In this case perturbations in the host out numbers the 
commensal till the time instant 
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this is the dominance reversal time as shown in Fig.2. 
 
Trajectories of Perturbed Species 
 

 

 

 

 

Fig 3.  
Eliminating‘t’ between the equations (4.6) and (4.7), we obtain     
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the resulting curves of (4.8) are hyperbolic and are shown in Fig.3.        



Journal of Experimental Sciences 2012, 3(4): 13-17 

 

15

Stability of the Equilibrium State E2 
 
The corresponding linearized perturbed equations in this state are       
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The characteristic equation for the system (4.9) is                  
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steady state is stable. 
The solutions of equations (4.8) are given by 
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There arise the following two cases: 
 

Case A :  110 Lu =
 ; Case B :  110 Lu ≠   

 

Case A: When 110 Lu = then equations (4.11) and (4.12) become 
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Here both u1 and u2 exponentially decay with the same 

Characteristic time 2

2

222 4/1 Hea + , the initial values (u10  and u20) 
may however be different. Hence the equilibrium point is stable.  
The solution curves in this case are illustrated as follows 
 
Case A.1: u10>u20  
 
 

 

 

 

                  

Fig 4. 

 

Case A. 2: u10<u20  

 

 

 

 

 

 

 

Fig 5. 

Case A.1: u10 = L1 
 
     In this case the perturbations in the commensal species 
always out numbers the host species in natural growth rate as well 
as in its initial population strength. It is noted that both the 
commensal and the host converge asymptotically to equilibrium point 
as shown in Fig.4. 
 
Case A.2: 
 
     The perturbations in the host species dominate over the 
commensal species in it its initial population strength. Also both the 
species move towards to the equilibrium point as seen in Fig.5.            
 
Trajectories of Perturbed Species: 
 
     Eliminating ‘t’ between  the  equations (4.13) and (4.14),  
we obtain     
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and the corresponding trajectory is a straight line shown in Fig.6.  
 

 

 

 

 

 

 

 

 

Fig 6. 
 
Case B : u10 ≠ L1 
 
     The solutions curves of (4.11) and (4.12) are shown in 
Figures (7) to (10) and the remarks are presented in below. 
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OBSERVATIONS 
 
Case B. (i): In this case the perturbation in the commensal continues 
to out-number the host as shown in Fig.7. However both converge 
asymptotically to the equilibrium point. 
 
Case B. (ii): Initially the perturbations in the commensal out-
numbers the host and this continues up to the time 
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after which, the host out-numbers the commensal. It is illustrated in 
Fig.8. 
 
Case B. (iii): The perturbation in Initially the host out-numbers the 
commensal and this continues up to the time 
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after which, the dominance is reversed is shown in Fig.9. 
 
Case B. (vi): In this case the perturbation in the host continues to 
out-number the commensal as shown in Fig.10. 
 
Trajectories of Perturbed Species:     
 
 
 
 
 
 
                    
 

Fig 11. 

 
 
Eliminating ‘t’ between the equations (4.13) and (4.14), we obtain         
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are parabolic type  and  are  shown  in Fig 11. This figure 
exhibits the stability of the equilibrium state. 
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