Free A^{*}-algebras

T. Srinivasa Rao ${ }^{1}$ and P. Koteswara Rao ${ }^{2}$

${ }^{1}$ Department of Mathematics, Bapatla Engineering College, Bapatla-522101, A.P, India.
${ }^{2}$ Department of Commerce and Business Management, Acharya Nagarjuna University, Nagarjuna Nagar-522510, A.P, India.

Abstract

In this paper we studied the free A^{*}-algebras, the sub A^{*}-algebra generated by a subset and its characterization, an A^{*} algebra freely generated by a subset and introduced the concept of A^{*}-field of sets. Also we established some theorems on making A^{*}-field of sets into A^{*}-algebras.

Keywords: A^{*}-algebra, Free A^{*}-algebra, A^{*} field of sets

INTRODUCTION

In 1994, P. Koteswara Rao introduced the concept of A^{*} algebras and studied their equivalence with Adas, C - algebras, Stone type representation and introduced the concept of A^{*} - clones and the if-then-else structure over A^{*} - algebras and ideals of A^{*} algebras. In this paper we introduced the concept of free A^{*} algebras analogous to the free Boolean algebras.

PRELIMINARIES

Definition: For any non-empty set X, a class M of subsets of X which is closed under finite union of sets, finite intersection of sets, complementation of sets is called a field of sets.

Definition: A Boolean algebra is an algebra ($\mathrm{B}, \vee, \wedge,(-)^{\prime}, 0,1$) with two binary operations, one unary operation(called complementation), and two nullary operations which satisfies:
(1) (B, \vee, \wedge) is a distributive lattice.
(2) $x \wedge 0=0, \quad x \vee 1=1$
(3) $x \wedge x^{\prime}=0, x \vee x^{\prime}=1$

Definition: An indexed set $\left\{B_{t}\right\}_{t \in T}$ of subalgebras of a Boolean algebra B is said to be independent if $a_{1} \wedge a_{2} \wedge \ldots \wedge a_{n} \neq 0$ for every finite sequence of non zero elements a_{i} choosen from subalgebras B_{t} with different indices.

Definition: Let $\left\{B_{t}\right\}_{t \in T}$ be an indexed set of Boolean algebras. By a Boolean product of $\left\{B_{t}\right\}_{\in T} T$ we mean any pair $\left\{\left\{i_{t}\right\}_{\in} T, B\right\}$ such that
a) B is a Boolean algebra.
b) For every $t \in T, i_{t}: B_{t} \rightarrow B$ is an isomorphism.
c) The indexed set $\left\{i_{t}\left(B_{t}\right)\right\}_{t \in T}$ of subalgebras of B is independent.

[^0]Tel: +91-1234567898; Fax: +91-1234567898
Email: tsnivas@gmail.com
d) The union of all subalgebras $\left\{\mathrm{i}_{\mathrm{t}}\left(\mathrm{B}_{\mathrm{t}}\right)\right\}_{\in \mathrm{T}} \mathrm{T}$ generates B .

Definition: Suppose $\left\{X_{t}\right\}_{\in \in} T$ is an indexed set of non-empty sets. Let X be the Cartesian product of $X_{t}^{\prime s}$. Let M_{t} be the field of subsets of X_{t}. For every set $A \subseteq X_{t}$, let A^{*} be the set of all points $x \in X$ whose $t^{\text {th }}$ coordinate $X_{t} \in A$ and let M_{t}^{*} be the field composed of all sets A^{*} where $A \in M_{t}$. The field M of subsets of X generated by all the classes $\left\{M_{t}^{*}\right\}_{t \in T}$ is called the field product of $\left\{M_{t}\right\}_{t \in T}$.

Definition: An algebra $\left(\mathrm{A}, \wedge, *,(-)^{\sim},(-)_{\pi}, 1\right)$ is an A^{*} - algebra if it satisfies:
For $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{A}$
i. $\quad a_{\pi} \vee\left(a_{\pi}\right)^{\sim}=1,\left(a_{\pi}\right)_{\pi}=a_{\pi}$, where $a \vee b=\left(a^{\sim} \wedge b^{\sim}\right)^{\sim}$.
ii. $\quad a_{\pi} \vee b_{\pi}=b_{\pi} \vee a_{\pi}$
iii. $\quad\left(a_{\pi} \vee b_{\pi}\right) \vee c_{\pi}=a_{\pi} \vee\left(b_{\pi} \vee c_{\pi}\right)$
iv. $\quad\left(a_{\pi} \wedge b_{\pi}\right) \vee\left(a_{\pi} \wedge\left(b_{\pi}\right)^{\sim}\right)=a_{\pi}$
v. $\quad(a \wedge b)_{\pi}=a_{\pi} \wedge b_{\pi}, \quad(a \wedge b)^{\#}=a^{\#} \vee b^{\#}$, where $a^{\#}=\left(a_{\pi} \vee\right.$ $\left.\mathrm{a}_{\pi}\right)^{\sim}$
vi. $\quad a^{\sim}{ }_{\pi}=\left(a_{\pi} \vee a^{\#}\right)^{\sim}, a^{\sim}=a^{\#}$
vii. $\quad(a * b)_{\pi}=a_{\pi},(a * b)^{\#}=\left(a_{\pi}\right)^{\sim} \wedge\left(b_{\pi}^{\sim}\right)^{\sim}$
viii. $\quad a=b$ if and only if $a_{\pi}=b_{\pi}, a^{\#}=b^{\#}$. We write 0 for $1 \sim, 2$ for $0 * 1$.

Example: $3=\{0,1,2\}$ with the operations defined below is an A^{*} algebra

\wedge	0	1	2	v	0	1	2	*	0	1	2	x	0	1	2
0	0	0	2	0	0	1	2	0	0	2	2	x^{-}	1	0	2
1	0	1	2	1	1	1	2	1	1	1	1	$x_{\text {I }}$	0	1	0
2	2	2	2	2	2	2	2	2	0	2	2	x $=$	0	0	1

Definition : Let $\left(\mathrm{A}_{1}, \wedge,,^{*},(-)^{\sim},(-)_{\pi}, 1\right)$ and $\left(\mathrm{A}_{2}, \wedge,(-)^{\sim},(-)_{\pi}, *, 1\right)$ be two A^{*}-algebras. A Mapping $\mathrm{f}: \mathrm{A}_{1} \rightarrow \mathrm{~A}_{2}$ is called an A^{*} - homomorphism if for all
$a, b \in A_{1}$
I. $f(a \wedge b)=f(a) \wedge f(b)$
II. $\quad f(a \vee b)=f(a) \vee f(b)$
III. $f(a * b)=f(a) * f(b)$
IV. $f\left(a_{\pi}\right)=(f(a))_{\pi}$
V. $\quad f\left(a^{\sim}\right)=(f(a))^{\sim}$

$$
\begin{array}{lr}
\text { VI. } & f(1)=1 \\
\text { VII. } & f(0)=0
\end{array}
$$

Definition: Let C be a non-empty set. By a free A^{*}-algebra on C we shall mean an A^{*}-algebra F together with a mapping $f: C \rightarrow F$ such that for every A^{*}-algebra A and every mapping $g: C \rightarrow A$ there is a unique A^{*}-homomorphism $h: F \rightarrow A$ such that hog $=f$. Now we state some routine theorems without proof.

Theorem: If (F, f) is a free A^{*}-algebra on a non-empty set C then f is injective and Im f generates F.

Theorem:Let (F, f) be a free A^{*}-algebra on a nom empty set C. Then (F^{\prime}, f) is also a free A^{*}-algebra on C iff there is a unique A^{*} isomorphism j: $\mathrm{F} \rightarrow \mathrm{F}^{\mathrm{l}}$ such that jof $=\mathrm{fl}$.

Theorem: Let $\left(B, \wedge,(-)^{\prime}, 0,1\right)$ be a Boolean algebra. The $A(B)=\{(a$, b) $/ a, b \in B, a \wedge b=0\}$ becomes an A^{*} - algebra with the following A^{*} - algebraic operations:
For $\mathrm{a}=\left(\mathrm{x}_{\pi}, \mathrm{x}^{\#}\right), \mathrm{b}=\left(\mathrm{y}_{\pi}, \mathrm{y}^{\#}\right) \in A(\mathrm{~B})$
I. $\quad a \wedge b=\left(x_{\pi} y_{\pi}, x_{\pi} y^{\#}+x^{\#} y_{\pi}^{+} x^{\#} y^{\#}\right)$
II. $\quad a \vee b=\left(x_{\pi} y_{\pi}+x_{\pi} y^{\#}+x^{\#} y_{\pi}, \quad x^{\#} y^{\#}\right)$
III. $a * b=\left(x_{\pi},\left(\left(x_{\pi}\right)^{\prime} y^{\#}\right)\right.$
IV. $\quad a^{\sim}=\left(x^{\#}, x_{\pi}\right)$
V. $a_{\pi}=\left(x_{\pi},\left(x_{\pi}\right)^{\prime}\right)$
VI. $\quad 1=(1,0), 0=(0,1), 2=(0,0)$.

Theorem : If A is an A^{*} - algebra then

I. $\quad B(A(B)) \cong B$.
II. $A(B(\mathrm{~A})) \cong \mathrm{A}$.

Theorem: Let A_{1}, A_{2} be A^{*} - algebras and B_{1}, B_{2} be Boolean algebras then
I. $\quad \mathrm{A}_{1} \cong \mathrm{~A}_{2}$ iff $B\left(\mathrm{~A}_{1}\right) \cong B\left(\mathrm{~A}_{2}\right)$.
II. $\quad \mathrm{B}_{1} \cong \mathrm{~B}_{2}$ iff $A\left(\mathrm{~B}_{1}\right) \cong A\left(\mathrm{~B}_{2}\right)$.

MAIN RESULTS

Theorem: For every non-empty set C, there exists a free A^{*}-algebra on C .

Proof: Let $F=\{\theta / \theta: C \rightarrow 3=\{0,1,2\}, \theta(c)=0$ for all most all $c \in C\}$
Define $\vee, \wedge,(-))^{\sim},(-)_{\pi},{ }^{*}, 0,1,2$ as follows:
Let $\theta, \xi \in F$. For all $c \in C$, define
$(\theta \vee \xi)(c)=(\theta)(c) \vee(\xi)(c)$
$(\theta \wedge \xi)(c)=(\theta)(c) \wedge(\xi)(c)$
$(\theta * \xi)(c)=(\theta)(c) *(\xi)(c)$
$\theta^{\sim}(c)=(\theta(c))^{\sim}$
$0(c)=0$
1(c) $=1$
2(c) $=2$
Then F is an A^{*}-algebra.
Now define $f: C \rightarrow F$ as follows:
For any $c \in C, f(c): C \rightarrow 3$ by $f(c)(d)=1$ if $d=c$
$=0$ if $d \neq c$
Claim: (F, f) is a free A^{*}-algebra on C.
Let A be any A^{*}-algebra and $g: C \rightarrow A$ be a mapping.
Define $\mathrm{h}: \boldsymbol{F} \rightarrow \mathrm{A}$ as follows:
Let $\theta \in F$

$$
h(\theta)=\vee_{c \in C} \theta(c) g(c)
$$

Where $\theta(\mathrm{c}) \cdot \mathrm{g}(\mathrm{c})=(\theta(\mathrm{c}) \cdot \mathrm{g}(\mathrm{c}))_{\pi}^{*}(\theta(\mathrm{c}) \cdot \mathrm{g}(\mathrm{c}))^{\#}$
$(\theta(\mathrm{c}) . \mathrm{g}(\mathrm{c}))_{\pi}=(\theta(\mathrm{c}) \wedge \mathrm{g}(\mathrm{c}))_{\pi} \vee\left(\theta(\mathrm{c})^{\#} \wedge \mathrm{~g}(\mathrm{c})^{\#}\right)$
$(\theta(\mathrm{c}) \cdot \mathrm{g}(\mathrm{c}))^{\#}=\left(\theta(\mathrm{c})_{\pi} \wedge \mathrm{g}(\mathrm{c})^{\#}\right) \vee\left(\theta(\mathrm{c})^{\#} \wedge \mathrm{~g}(\mathrm{c})_{\pi}\right)$
Clearly h is an A^{*} - homomorphism

Therefore hog $=\mathrm{g}$.
Uniqueness of h:
Let $\theta \in F, t \in C$
$\theta(\mathrm{t})=\theta(\mathrm{t}) .1$

$$
\begin{aligned}
& =\vee \underset{c \in C}{ } \theta(c) \cdot[f(c)](t) \\
& =\left[\vee_{c \in C} \theta(c) \cdot f(c)\right](t)
\end{aligned}
$$

Therefore $\theta=\underset{c \in C}{\vee} \theta(c) f(c)$
Suppose $\bar{h}: F \rightarrow A$ is another A^{*} - homomorphism such that
$\bar{h} o f=g$
$\bar{h}(\theta)=\bar{h}\left(\vee_{c \in C} \theta(c) f(c)\right)$
$=\vee_{c \in C} \theta(c) \overline{h(}(f(c))$
$=\vee_{c \in C} \theta(c) g(c)$
$=h(\theta)$
Therefore $\bar{h}=h$
Remerk: The free A^{*}-algebra F constructed as in the above theorem is called the free A^{*}-algebra on C.

Definition: Suppose A is an A^{*}-algebra and $C \subseteq A$. Then A is said to be freely generated by C if
(i) $\quad<\mathrm{C}>=\mathrm{A}$
(ii) Every mapping $f: C \rightarrow A^{\prime}, A^{\prime}$ is another A^{*}-algebra, can be extending uniquely to a homomorphism $h: A \rightarrow A^{\prime}$.

Theorem: If A is an A^{*}-algebra and $B=B(A), C \subseteq A$. then A is freely generated by C if and only if B is freely generated by C_{π}, where $C_{\pi}=\left\{a_{\pi} / a \in C\right\}$.

Proof: Suppose A is an A^{*}-algebra, $\mathrm{B}=\mathrm{B}(\mathrm{A})$ and $C \subseteq \mathrm{~A}$. Assume that A is freely generated by C.
We have to prove that B is freely generated by $C_{\pi}=\left\{a_{\pi} / a \in C\right\}$.
Let $\mathrm{g}: \mathrm{C} \rightarrow \boldsymbol{B}^{\prime}$ is a mapping where \boldsymbol{B}^{\prime} is another Boolean algebra.
Define $\mathrm{f}: \mathrm{C} \rightarrow A\left(\boldsymbol{B}^{\prime}\right)$ by $\mathrm{f}(\mathrm{a})=\left(\mathrm{g}(\mathrm{a})_{\pi}, \mathrm{g}(\mathrm{a})_{\pi}{ }^{\tau}\right)$.
Since C generates A, f can be extended to a unique homomorphism
$\mathrm{h}: \mathrm{A} \rightarrow A\left(B^{\prime}\right)$.
$\mathrm{h}_{\pi}: \mathrm{B} \rightarrow \mathrm{B}\left(A\left(B^{\prime}\right)\right)$ is also a unique homomorphism of Boolean
algebras.
Since $\mathrm{B}\left(A\left(B^{\prime}\right)\right) \cong B^{\prime}$, let $\mathrm{I}: \mathrm{B}\left(A\left(B^{\prime}\right)\right)$ is an isomorphism such that $\mathrm{I}\left(\mathrm{a}, \mathrm{a}^{\sim}\right)=\mathrm{a}, \forall\left(\mathrm{a}, \mathrm{a}^{\sim}\right) \in \mathrm{B}\left(A\left(B^{\prime}\right)\right)$.

Then $I h_{\pi}: B \rightarrow B^{\prime}$ is a homomorphism and $I h_{\pi}$ is a unique extension of g .
Therefore C_{π} generates B freely.
Conversely assume that C_{π} generates B freely.
We have to prove that A is freely generated by C.
Suppose $\mathrm{f}: \mathrm{C} \rightarrow A^{\prime}$ is another mapping where A^{\prime} is another
A*-algebra.
Define $\mathrm{f}_{\pi}: \mathrm{C}_{\pi} \rightarrow B\left(A^{\prime}\right)$ by $\mathrm{f}_{\pi}(\mathrm{a})=(\mathrm{f}(\mathrm{b}))_{\pi}$
Since C_{π} generates B freely ${ }^{\exists}$ a unique homomorphism
$\mathrm{g}: \mathrm{B} \rightarrow B\left(A^{\prime}\right)$
Such that $\mathrm{f}_{\pi}(\mathrm{a})=\mathrm{g}(\mathrm{a}) \quad \forall a \in C_{\pi}$.
Define $\mathrm{h}: \mathrm{A} \rightarrow A^{\prime}$ by $\quad h(a)=\left(g\left(a_{\pi}\right) * g\left(a_{\pi}\right)\right)$
Then h is a homomorphism. Since g is unique, his also unique.
We now show that $\mathrm{h}=\mathrm{f}$ on C .
Let $\mathrm{a} \in \mathrm{C} \Rightarrow a_{\pi} \in C_{\pi}$

$$
\begin{aligned}
h(a)=\left(g\left(a_{\pi}\right) * g\left(a_{\pi}\right)^{\sim}\right) & =f_{\pi}\left(a_{\pi}\right) *\left(f_{\pi}\left(a_{\pi}\right)^{\sim}\right) \\
& =\left[f (a) _ { \pi } * \left(\left(f_{\pi}\left(a_{\pi}\right)^{\sim}\right]\right.\right. \\
& =f(a)
\end{aligned}
$$

Therefore h is a unique extension of f.
Therefore C generates A freely.
Definition: Let X be a non-empty set. A class
$F^{*}=\left\{\left(A_{1}, A_{2}\right) / A_{1}, A_{2} \subseteq X, \quad A_{1} \cap A_{2}=\phi\right\}$ is called an A^{*}-field of subsets of X if
(i) $\quad(X, \phi) \in F^{*}$
(ii) $\quad\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right) \in F^{*} \Rightarrow\left(\mathrm{~A}_{2}, \mathrm{~A}_{1}\right) \in F^{*}$
(iii) $\quad\left(A_{1}, A_{2}\right),\left(B_{1}, B_{2}\right) \in F^{*} \Rightarrow\left(A_{1} B_{1}, A_{1} B_{2}+A_{2} B_{1}+A_{2} B_{2}\right)$
(iv) $\quad\left(A_{1}, A_{2}\right),\left(B_{1}, B_{2}\right) \in F^{*} \Rightarrow\left(A_{1}, A_{1} C B_{2}\right) \in F^{*}$

Juxtaposition and addition stand for intersection and union of sets

From the above definition immediately we have the following theorem.

Theorem: Let X be a non-empty set. A class $F^{*}=\left\{\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right) / \mathrm{A}_{1}, \mathrm{~A}_{2}\right.$ $\subseteq X$,
${ }_{\mathrm{A} 1} \cap_{\mathrm{A} 2}=\phi_{\}}$. Then F^{*} is an A^{*}-algebra with the following operations:
(i) $\quad 1=(\mathrm{X}, \phi), 0=(\phi, X), 2=(\phi, \phi)$
(ii) $\quad\left(A_{1}, A_{2}\right)_{\pi}=\left(A_{2}, A_{1} C\right)$
(iii) $\quad\left(A_{1}, A_{2}\right)^{C}=\left(A_{2}, A_{1}\right)$
(iv) $\quad\left(A_{1}, A_{2}\right) *\left(B_{1}, B_{2}\right)=\left(A_{1}, A_{1} c B_{2}\right)$
(v) $\quad\left(A_{1}, A_{2}\right) \wedge\left(B_{1}, B_{2}\right)=\left(A_{1} B_{1}, A_{1} B_{2}+A_{2} B_{1}+A_{2} B_{2}\right)$
(vi) $\left.\quad\left(A_{1}, A_{2}\right) \vee B_{1}, B_{2}\right)=\left(A_{1} B_{1}+A_{1} B_{2}+A_{2} B_{1}, A_{2} B_{2}\right)$

Proof: It is routine to verify the axioms in 1.6.
Theorem: Let F^{*} be an A^{*} - field of subsets of a non-empty set X and $F=\left\{\mathrm{A} /\left(\mathrm{A}, \mathrm{A}^{\mathrm{C}}\right) \in \mathrm{F}^{*}\right\}$

Then F is a field of subsets of X and $B\left(F^{*}\right) \cong F$.
Proof: Suppose $F{ }^{*}$ is an A^{*} - field of subsets of X.
We have to prove that $F=\left\{\mathrm{A} /\left(\mathrm{A}, \mathrm{A}^{\mathrm{C}}\right) \in \mathrm{F}^{*}\right\}$ is a field of subsets of X.

Let $A, B \in F$
Consider $\left.\quad\left(A, A^{C}\right) \wedge\left(B, B^{C}\right)=\left(A B, A^{C}+A^{C} B+A^{C} B^{C}\right)\right) \in F^{*}$
$=\left(A B, A B^{C}+A^{C}\left(B^{-}+\underset{*}{B C}\right)\right)^{*} F^{*}$
$=\left(A B, A B^{C}+A^{C}\right) \in F^{*}\left(A B,\left(A+A^{C}\right) \cdot\left(B^{C}+A^{C}\right)\right) \in F^{*}$
$=\left(A B, A^{C}+B^{C}\right) \in F^{*}$
$=\left(A B,(A B)^{C}\right) \in F^{*}$
$=A B \in F$
Let $A \in F$. Then $\left(A, A^{C}\right) \in F^{*} \Rightarrow\left(A^{C}, A\right) \in F^{*}$
$\Rightarrow\left(\mathrm{A}^{\mathrm{C}},\left(\mathrm{A}^{\mathrm{C}}\right)^{\mathrm{C}}\right) \in \mathrm{F}^{*}$
$\Rightarrow \quad \mathrm{A}^{\mathrm{C}} \in F$
Therefore F is a field of subsets of X and clearly $F \cong B\left(F^{*}\right)$
Theorem: Let F is a field of subsets of a non-empty set X. Then $A(F)$ $=\{(A, B) / A, B \in F, A \cap B=\phi\}$ is an A^{*} - field of subsets of X.

Proof: It is routine to verify the axioms in 2.5 .
We now prove the following theorem.
Theorem: Every A^{*} - algebra A is isomorphic to an A^{*} - field of subsets F * of a Stone space.

Proff: Let A be an A^{*} - algebra.
Let $B=B(A)$. Then there exists a Stone space H such that $B \cong F$, where F is the field of clopen subsets of H.
By the known result $A(B) \cong A(F)$.
But $A \cong A(B)$. Thus $A \cong A(F)$.

ACKNOWLEDGEMENT

Bringing out a special issue in Journal of Experimental Sciences is a great honor to the eminent mathematician Prof.N.Ch.Pattabhi RamaCharyulu. We feel that we are very happy because our article is published in this Special issue.

REFERENCES

[1] Koteswara Rao, P "A"-algebras and If -Then -Else Structures", Ph.D Thesis, Nagarjuna University (1994), Andhra Pradesh, India.
[2] Sikorski, R "Boolean Algebras", Acaddemic Press, New York, 1968.
[3] Siosen, F. M " Free algebraic characterizations of primal and independent Algebras, Proc. Amer. Math. Soc, Vol. 41 (1937), pp. 375-481.
[4] Stone, M. H "Applications of the theory Boolean rings to the General topology", Trans. Amer. Math. Soc, Vol. 41 (1937), pp. 375-481.

[^0]: Received: Feb 10, 2012; Revised: March 15, 2012; Accepted: April 25, 2012.
 *Corresponding Author
 T. Srinivasa Rao

 Department of Mathematics, Bapatla Engineering College, Bapatla-522101, A.P, India.

