Journal of Experimental Sciences 2012, 3(4): 10-12 ISSN: 2218-1768 Available Online: http://jexpsciences.com/

Free A*-algebras

T. Srinivasa Rao¹ and P. Koteswara Rao²

¹Department of Mathematics, Bapatla Engineering College, Bapatla-522101, A.P, India. ²Department of Commerce and Business Management, Acharya Nagarjuna University, Nagarjuna Nagar-522510, A.P, India.

Abstract

In this paper we studied the free A*-algebras, the sub A*-algebra generated by a subset and its characterization, an A*algebra freely generated by a subset and introduced the concept of A*-field of sets. Also we established some theorems on making A*-field of sets into A*-algebras.

Keywords: A*-algebra, Free A*-algebra, A* field of sets

INTRODUCTION

In 1994, P. Koteswara Rao introduced the concept of A*algebras and studied their equivalence with Adas, C – algebras, Stone type representation and introduced the concept of A*- clones and the if-then-else structure over A*- algebras and ideals of A*algebras. In this paper we introduced the concept of free A*algebras analogous to the free Boolean algebras.

PRELIMINARIES

Definition: For any non-empty set X, a class M of subsets of X which is closed under finite union of sets, finite intersection of sets, complementation of sets is called a field of sets.

Definition: A Boolean algebra is an algebra $(B, \lor, \land, (-)', 0, 1)$ with two binary operations, one unary operation(called complementation), and two nullary operations which satisfies:

- (1) (B, \lor, \land) is a distributive lattice.
- (2) $x \wedge 0 = 0$, $x \vee 1 = 1$
- (3) $x \wedge x' = 0, x \vee x' = 1$

Definition: An indexed set $\{B_t\}_{t\in T}$ of subalgebras of a Boolean algebra B is said to be independent if $a_1 \land a_2 \land \dots \land a_n \neq 0$ for every finite sequence of non zero elements a_i choosen from subalgebras B_t with different indices.

Definition: Let $\{B_t\}_{t \in T}$ be an indexed set of Boolean algebras. By a Boolean product of $\{B_t\}_{t \in T}$ we mean any pair $\{\{i_t\}_{t \in T}, B\}$ such that

- a) B is a Boolean algebra.
- b) For every $t \in T$, $i_t : B_t \rightarrow B$ is an isomorphism.
- c) The indexed set {it(Bt)}te^T of subalgebras of B is independent.

Received: Feb 10, 2012; Revised: March 15, 2012; Accepted: April 25, 2012.

*Corresponding Author

d) The union of all subalgebras $\{i_t(B_t)\}_{t \in T}$ generates B.

Definition: Suppose {X_t}_{t∈T} is an indexed set of non-empty sets. Let X be the Cartesian product of X_t's. Let M_t be the field of subsets of X_t. For every set A_C X_t, let A^{*} be the set of all points x∈ X whose tth coordinate x_t∈ A and let M_t^* be the field composed of all sets A^{*} where A∈ M_t . The field M of subsets of X generated by all the classes { M_t^* } t_{∈T} is called the field product of { M_t } t_{∈T}.

Definition: An algebra (A, \land , * ,(-)⁻, (-)_{π}, 1) is an A* - algebra if it satisfies :

For a, b, c∈ A

i. $a_{\pi} \lor (a_{\pi})^{\sim} = 1$, $(a_{\pi})_{\pi} = a_{\pi}$, where $a \lor b = (a^{\sim} \land b^{\sim})^{\sim}$.

- ii. $a_{\pi} \lor b_{\pi} = b_{\pi} \lor a_{\pi}$
- iii. $(a_{\pi} \lor b_{\pi}) \lor c_{\pi} = a_{\pi} \lor (b_{\pi} \lor c_{\pi})$
- iv. $(a_{\pi} \wedge b_{\pi}) \vee (a_{\pi} \wedge (b_{\pi})^{\sim}) = a_{\pi}$
- v. $(a \land b)_{\pi} = a_{\pi} \land b_{\pi}$, $(a \land b)^{\#} = a^{\#} \lor b^{\#}$, where $a^{\#} = (a_{\pi} \lor a^{\sim}_{\pi})^{\sim}$
- vi. $a_{\pi}^{-} = (a_{\pi} \lor a^{\#})^{-}$, $a^{-\#} = a^{\#}$
- vii. $(a*b)_{\pi} = a_{\pi}, (a*b)^{\#} = (a_{\pi})^{\sim} \wedge (b^{\sim}_{\pi})^{\sim}$
- viii. a = b if and only if $a_{\pi} = b_{\pi}$, $a^{\#} = b^{\#}$. We write 0 for 1[~], 2 for 0⁺1.

Example: 3 ={0,1,2} with the operations defined below is an A* - algebra

\wedge	0	1	2		V	0	1	2	*	0	1	2	X	0	1	2
0	0	0	2		0	0	1	2	0	0	2	2	X~	1	0	2
1	0	1	2		1	1	1	2	1	1	1	1	X ₇	0	1	0
2	2	2	2	1	2	2	2	2	2	0	2	2	X#	0	0	1

Definition : Let $(A_1, \land, *, (-)^{-}, (-)_{\pi}, 1)$ and $(A_2, \land, (-)^{-}, (-)_{\pi}, *, 1)$ be two A*-algebras. A Mapping f: $A_1 \rightarrow A_2$ is called an A* - homomorphism if for all

a, b∈A1

I. $f(a \land b) = f(a) \land f(b)$ II. $f(a \lor b) = f(a) \lor f(b)$ III. $f(a \cdot b) = f(a) \cdot f(b)$ IV. $f(a_{\pi}) = (f(a))_{\pi}$

V.
$$f(a^{-}) = (f(a))^{-1}$$

experimental sciences

T. Srinivasa Rao

Department of Mathematics, Bapatla Engineering College, Bapatla-522101, A.P, India.

Tel: +91-1234567898; Fax: +91-1234567898 Email: tsnivas@gmail.com

VI.
$$f(1) = 1$$

VII. $f(0) = 0$.

Definition: Let C be a non-empty set. By a free A*-algebra on C we shall mean an A*-algebra F together with a mapping f: $C \rightarrow F$ such that for every A*-algebra A and every mapping g: $C \rightarrow A$ there is a unique A*-homomorphism h: $F \rightarrow A$ such that hog = f. Now we state some routine theorems without proof.

Theorem: If (F,f) is a free A*-algebra on a non-empty set C then f is injective and Im f generates F.

Theorem:Let (F,f) be a free A*-algebra on a nom empty set C. Then (F^i, f^i) is also a free A*-algebra on C iff there is a unique A*-isomorphism j: $F \rightarrow F^i$ such that jof = f.

Theorem: Let $(B, \land, (-)', 0, 1)$ be a Boolean algebra. The $A(B) = \{(a, b) | a, b \in B, a \land b = 0\}$ becomes an A*- algebra with the following A*- algebraic operations: For $a = (x_{\pi}, x^{\#}), b = (y_{\pi}, y^{\#}) \in A(B)$

$$\begin{array}{ll} I. & a \wedge b = (x_{\pi} \, y_{\pi}, \, x_{\pi} \, y^{\#} + x^{\#} \, y_{\pi} + x^{\#} \, y^{\#}) \\ II. & a \vee b = (x_{\pi} \, y_{\pi} + x_{\pi} \, y^{\#} + x^{\#} \, y_{\pi}, \ x^{\#} \, y^{\#}) \\ III. & a * b = (x_{\pi}, \, ((x_{\pi})' \, y^{\#}) \\ IV. & a^{\sim} = (\, x^{\#} \, , \, x_{\pi}) \\ V. & a_{\pi} = (x_{\pi}, \, (x_{\pi})') \\ VI. & 1 = (1, \, 0), \, 0 = (0, \, 1), \, 2 = (0, \, 0). \end{array}$$

Theorem : If A is an A*- algebra then

I.
$$B(A(B)) \cong B$$
.

II. $A(B(A)) \cong A$.

Theorem: Let A_1, A_2 be A^* - algebras and B_1, B_2 be Boolean algebras then

I.
$$A_1 \cong A_2$$
 iff $B(A_1) \cong B(A_2)$.
II. $B_1 \cong B_2$ iff $A(B_1) \cong A(B_2)$.

MAIN RESULTS

Theorem: For every non-empty set C, there exists a free A*-algebra on C.

Proof: Let $F = \{\theta \mid \theta: C \rightarrow 3 = \{0, 1, 2\}, \theta(c) = 0 \text{ for all most all } c \in C \}$ Define $\lor, \land, (-)^{\sim}, (-)_{\pi}, *, 0, 1, 2 \text{ as follows:}$ Let $\theta, \xi \in F$. For all $c \in C$, define $(\theta \lor \xi)(c) = (\theta)(c) \lor (\xi)(c)$ $(\theta \land \xi)(c) = (\theta)(c) \land (\xi)(c)$ $(\theta \cdot \xi)(c) = (\theta)(c) \land (\xi)(c)$ $\theta^{\sim}(c) = (\theta)(c) \land (\xi)(c) \land (\xi)(c)$ $\theta^{\sim}(c) = (\theta)(c) \land (\xi)(c) \land$ = 0 if d ≠ c

Claim: (F, f) is a free A*-algebra on C. Let A be any A*-algebra and $g: C \rightarrow A$ be a mapping. Define h : $F \rightarrow A$ as follows: Let $\theta \in \mathbf{F}$ $h(\theta) = \bigvee_{c \in C} \theta(c) g(c)$ Where $\theta(c).g(c) = (\theta(c).g(c))_{\pi} * (\theta(c).g(c))^{\#}$ $(\Theta(c).g(c))_{\pi} = (\Theta(c) \land g(c))_{\pi} \lor (\Theta(c)^{\#} \land g(c)^{\#})$ $(\Theta(c).g(c))^{\#} = (\Theta(c)_{\pi} \land g(c)^{\#}) \lor (\Theta(c)^{\#} \land g(c)_{\pi})$ Clearly h is an A*- homomorphism $h(f(c)) = \bigvee_{t \in C} (f(c))(t) \cdot g(t) = g(c)$ Therefore hog = g. Uniqueness of h: Let $\theta \in F$, $t \in C$ θ (t) = θ (t).1 $= \bigvee_{c \in C} \theta(c).[f(c)](t)$ $= [\bigvee_{c \in C} \theta(c).f(c)](t)$ Therefore $\theta = \bigvee_{c \in C} \theta(c) f(c)$ Suppose $\overline{h}: F \to A$ is another A*- homomorphism such that hof = g $\overline{h}(\theta) = \overline{h}(\underset{c \in C}{\vee} \theta(c) f(c))$ $= \bigvee_{c \in C} \theta(c) \overline{h(f(c))}$ $= \bigvee_{c \in C} \theta(c) g(c)$ $=h(\theta)$

Therefore $\overline{h} = h$

Remerk: The free A^* -algebra F constructed as in the above theorem is called the free A^* -algebra on C.

Definition: Suppose A is an A*-algebra and $C \subseteq A \cdot$ Then A is said to be freely generated by C if

- (i) <C> = A
- (ii) Every mapping $f: C \to A^I$, A^I is another A^* -algebra, can be extending uniquely to a homomorphism $h: A \to A^I$.

Theorem: If A is an A*-algebra and B = B(A), $C \subseteq A$. then A is freely generated by C if and only if B is freely generated by C_{π} , where $C_{\pi} = \{a_{\pi}/a \in C\}$.

Proof: Suppose A is an A*-algebra, B = B(A) and $C \subseteq A$. Assume that A is freely generated by C.

We have to prove that B is freely generated by $C_{\pi} = \{a_{\pi} / a \in C\}$.

Let $g: C \to B'$ is a mapping where B' is another Boolean algebra.

Define $f: C \to A(\boldsymbol{B}^{\uparrow})$ by $f(a) = (g(a)_{\pi}, g(a)_{\pi})$.

Since C generates A, f can be extended to a unique homomorphism

 $h: A \to A(\mathcal{B}').$ $h_{\pi}: B \to B(A(\mathcal{B}'))$ is also a unique homomorphism of Boolean

algebras.

Since $B(A(B')) \cong B'$, let I : B(A(B')) is an isomorphism such that I (a, a^{γ}) = a, \forall (a, a^{γ}) $\in B(A(B'))$.

Then I $h_{\pi}:B\to {\cal B}'$ is a homomorphism and I h_{π} is a unique extension of g.

Therefore C_{π} generates B freely.

Conversely assume that C_{π} generates B freely. We have to prove that A is freely generated by C. Suppose $f: C \to A'$ is another mapping where A' is another A^* -algebra.

Define $f_{\pi}: C_{\pi} \to B(A')$ by $f_{\pi}(a) = (f(b))_{\pi}$ Since C_{π} generates B freely \exists a unique homomorphism $g: B \to B(A')$

Such that
$$f_{\pi}(a) = g(a) \quad \forall a \in C_{\pi}$$

Define $h : A \to A'$ by $h(a) = (g(a_{\pi}) * g(a_{\pi}))$ Then h is a homomorphism. Since g is unique, his also unique. We now show that h = f on C.

Let
$$a \in C \Longrightarrow a_{\pi} \in C_{\pi}$$

 $h(a) = (g(a_{\pi}) * g(a_{\pi})^{\tilde{}}) = f_{\pi}(a_{\pi}) * (f_{\pi}(a_{\pi})^{\tilde{}})$
 $= [f(a)_{\pi} * ((f_{\pi}(a_{\pi})^{\tilde{}}])$
 $= f(a)$

Therefore h is a unique extension of f.

Therefore C generates A freely.

Definition: Let X be a non-empty set. A class

 $F^* = \{(A_1, A_2) / A_1, A_2 \subseteq X, A_1 \cap A_2 = \phi\}$ is called an A*-field of subsets of X if

- (i) $(X, \phi) \in F^*$
- (ii) $(A_1, A_2) \in F^* \implies (A_2, A_1) \in F^*$

(iii)
$$(A_1, A_2), (B_1, B_2) \in F^* \implies (A_1B_1, A_1B_2 + A_2B_1 + A_2B_2)$$

(iv) $(A_1, A_2), (B_1, B_2) \in F^* \implies (A_1, A_1^{c} B_2) \in F^*$

Juxtaposition and addition stand for intersection and union of sets

From the above definition immediately we have the following theorem.

Theorem: Let X be a non-empty set. A class $F^* = \{(A_1, A_2) / A_1, A_2 \subseteq X, \}$

A1 $\bigcap_{A2} = \phi_{}$. Then F^* is an A*-algebra with the following operations:

- (i) $1 = (X, \phi), 0 = (\phi, X), 2 = (\phi, \phi)$
- (ii) $(A_1, A_2)_{\pi} = (A_2, A_1^C)$
- (iii) $(A_1, A_2)^c = (A_2, A_1)^c$
- (iv) $(A_1, A_2) * (B_1, B_2) = (A_1, A_1^{C} B_2)$
- (v) $(A_1, A_2) \land (B_1, B_2) = (A_1B_1, A_1B_2 + A_2B_1 + A_2B_2)$

(vi)
$$(A_1, A_2) \lor B_1, B_2 = (A_1B_1 + A_1B_2 + A_2B_1, A_2B_2)$$

Proof: It is routine to verify the axioms in 1.6.

Theorem: Let F^* be an A*- field of subsets of a non-empty set X and $F = \{A / (A, A^c) \in F^* \}$ Then *F* is a field of subsets of X and $B(F^*) \cong F$.

Proof: Suppose
$$F^*$$
 is an A*- field of subsets of X.

We have to prove that $F = \{A \mid (A, A^{C}) \in F^{*}\}$ is a field of subsets of X.

Let $A, B \in F$ Consider $(A, A^{C}) \land (B, B^{C}) = (AB, AB^{C} + A^{C}B + A^{C}B^{C}) \in F^{*}$ = $(AB, AB^{C} + A^{C}(B + B^{C})) \in F^{*}$ = $(AB, AB^{C} + A^{C}) \in F^{*}$ $(AB, (A + A^{C}).(B^{C} + A^{C})) \in F^{*}$ = $(AB, A^{C} + B^{C}) \in F^{*}$ = $(AB, (AB)^{C}) \in F^{*}$ = $AB \in F$ Let $A \in F$. Then $(A, A^{C}) \in F^{*} \Longrightarrow (A^{C}, A) \in F^{*}$ $\Rightarrow A^{C} \in F$ Therefore F is a field of subsets of X and clearly $F \cong B(F^{*})$

Theorem: Let *F* is a field of subsets of a non-empty set X. Then $A(F) = \{ (A, B) / A, B \in F, A \cap B = \phi \}$ is an A*- field of subsets of X.

Proof: It is routine to verify the axioms in 2.5. We now prove the following theorem.

Theorem: Every A*- algebra A is isomorphic to an A*- field of subsets F^* of a Stone space.

Proff: Let A be an A*- algebra. Let B = B(A). Then there exists a Stone space H such that B \cong $F_{,}$ where F is the field of clopen subsets of H. By the known result $A(B) \cong A(F)$. But A $\cong A(B)$. Thus A $\cong A(F)$.

ACKNOWLEDGEMENT

Bringing out a special issue in *Journal of Experimental Sciences* is a great honor to the eminent mathematician Prof.N.Ch.Pattabhi RamaCharyulu. We feel that we are very happy because our article is published in this Special issue.

REFERENCES

- Koteswara Rao, P "A*-algebras and If –Then –Else Structures", Ph.D Thesis, Nagarjuna University (1994), Andhra Pradesh, India.
- [2] Sikorski, R "Boolean Algebras", Acaddemic Press, New York, 1968.
- [3] Siosen, F. M " Free algebraic characterizations of primal and independent Algebras, Proc. Amer. Math. Soc, Vol. 41 (1937), pp. 375-481.
- [4] Stone, M. H "Applications of the theory Boolean rings to the General topology", *Trans. Amer. Math. Soc*, Vol.41 (1937), pp. 375-481.