

Impact of ecological factors on development of Botryodiplodia rot of guava fruit

Vasant P. Pawar

Arts and Science College, Bhalod, Tg. Yawal, Dist. Jalgaon (M.S.), India

Abstract

Effect of temperature and relative humidity on severity of Botryodiplodia rot of guava fruit was studied. Low temperature and low relative humidity inhibited severity of disease.

Keywords: Relative humidity, temperature, Botryodiplodia rot, guava fruit.

INTRODUCTION

Botryodiplodia rot of guava fruits is important post-harvest disease. Ecological factors like temperature and Relative Humidity (R.H.) play important role in the development and spread of postharvest fungal diseases of fruits [1,2 and 3]. Hence Severity of postharvest fungal diseases depends upon temperature and relative humidity [4]. Considering the fact attempts were made to determine the influence of ecological factors on Botryodiplodia rot of guava fruits.

MATERIALS AND METHODS

Semi-ripe fruits of guava were sterilized with 0.1 % HgCl2, pricked with to 2 mm and dipped in spore suspension (106 spores/ ml) of Botryodiplodia theobromae for 2 minutes. It was incubated to different level of temperature and R.H. percentages adjusted level were maintained [5]. Severity of rot was recorded on 8th day of inoculation on the basis of per cent fruit area infected [6].

RESULTS AND DISCUSSION

Severity of Botryodiplodia rot of guava fruit was maximum at 30°C and 100% R.H. Severity was absent at 10°C and at 30% R.H. showed very less rotting of guava fruit. Patel and Pathak, (1995) [6] reported similar results.

Table 1. Effect of temperature and Relative humidity on disease severity of Botryodiplodia rot of guava fruit

Temp. (°C)	Disease severity %	R.H (%)	Disease severity %
10	0.0	30	0.0
20	3.4	50	1.3
30	4.5	80	3.2
40	2.9	100	3.9
S.D.	1.9	S.D.	1.4
S.E.	0.9	S.E.	0.7
C.D.(p=0.05)	2.4	C.D.(p=0.05)	1.9

Received: June 01, 2012; Revised: July 18, 2012; Accepted: Aug 25, 2012.

*Corresponding Author

Vasant P. Pawar

Arts and Science College, Bhalod, Tg. Yawal, Dist. Jalgaon (M.S.), India

Email: vppawar@gmail.com

CONCLUSION

It can be concluded that environmental factors affects the fungal diseases severity of fruits and at high temperature and low humidity Botryodiplodia rot of guava fruit is not developed.

ACKNOWLEDGEMENT

Author is very thankful to Principal, Arts and Science College, Bhalod, Tq. Yawal, Dist. Jalgaon (M.S.), India for giving research facilities.

REFERENCES

- [1] Bagwan, N.B. and Yeole, R.D. 2003.Effect of temperature and relative humidity on incidence of post- harvest rot of mango. J.Mycol.Pl.Pathol.33:136-137.
- [2] Cherian, T.T. and Mani Varghese, K.I. 2007. Effect of tempreture, relative humidity and injury on development and spread of post-harvest rot of banana. Indian Phytopath. 60(1):112-114.
- [3] Gadgile, D.P. and Ashok M. Chavan. 2010. Impact of temperature and relative humidity on development of Aspergillus flavus rot of mango fruit. Recent Research in Science and Technology. 2(3): 48-49.
- [4] Rathod Gulab, M. 2010. Effect of physical factors on development of anthracnose of mango fruits. Curr. Bot. 2(1):15-16.
- [5] Buxton, P.A. and Mellanby, K.1934. The measurement and control of humidity. Bull.Ent.Res.25:171-175.
- [6] Patel, K.D. and Pathak, V.N.1995. Development of Botrydiplodia rot of Guava fruits in relation to temperature and humidity. Indian Phytopath.48: 86-89.