Photoluminescence properties of ZnWO₄: Dy ³⁺ phosphor

K. V. Dabre^a and S. J. Dhoble *#

^aDeptartment of Physics, ACS College, Koradi, Nagpur, India. * Department of Physics, RTM Nagpur University, Nagpur -440033, India.

Abstract

Zinc tungstate (ZnWO₄) exhibits interesting photoluminescent properties and ZnWO₄ single crystal was first introduced for microwave devices, fiber optical communications, scintillating materials etc. In this paper reported the photoluminescence property of Dy³⁺ activated ZnWO₄ synthesized by solid state rout at temperature 850° C. Formation of compound was tested by X-ray diffraction pattern. The photoluminescence characteristic of Dy³⁺ doped ZnWO₄ was studied by excitation and emission spectrum. PL excitation spectrum of ZnWO₄:Dy³⁺ phosphor shows the broad excitation peaks ranging from 220 nm to 320 nm because of [WO₆]⁶⁻ group. The emission spectrum shows the peaks at 488 nm (blue) due to transition ⁴F_{9/2} \rightarrow ⁶H_{15/2} with broad background due to self emission of ZnWO₄ and 575 nm (yellow) due to transition ⁴F_{9/2}.

Keywords: ZnWO4, Photoluminescence, XRD, SEM

INTRODUCTION

Zinc tungstate (ZnWO₄) exhibits interesting photoluminescent properties and ZnWO₄ single crystal was first introduced for microwave devices, fiber optical communications, scintillating materials etc. in the middle of the 20th century [1,2]. Tungstate materials are considered to be, technically important because they posses various properties such as high chemical stability, high refractive index, high X-ray absorption coefficient and also their displaying efficiency in outputs [3, 4]. ZnWO₄ has been synthesized by various methods such as ZnWO₄ has been prepared by different routes such as the Czochralski method [5], precipitation [6], sol-gel reaction [2], etc.

It is well established that Dy^{3+} used as activator to obtain yellow and red laser emission correlative with ${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$, ${}^{4}F_{9/2} \rightarrow {}^{6}H_{11/2}$ transition of Dy^{3+} ion.

Keeping these advantages of ZnWO₄ with Dy³⁺ as activator in view, we have made an attempt here to prepare ZnWO₄ and Dy³⁺ activated ZnWO₄ phosphor ceramic powder by a solid-state reaction method to characterize its photoluminescence properties.

RESULTS AND DISCUSSION

Fig 1. X-ray diffraction pattern of ZnWO₄ phosphor.

X-ray diffraction pattern of ZnWO₄ phosphor has been shown in Fig. 1 revealing that it is in monoclinic nature most of the observed peaks have been indexed to the pure phase of monoclinic wolframite using the JCPDS Card No: 15-0774.

The SEM micrograph of the ZnWO₄ phosphor has been

shown in Fig. 2, displaying that the particles are noticed to be agglomerated and the average size of the grain is about 2-3 µm.

Fig 2. SEM Micrographs of as synthesized ZnWO₄ phosphor.

Fig. 3 represents PL excitation spectrum of ZnWO₄: Dy^{3+} phosphor monitored at 575 nm shows the broad excitation ranging from 220 nm to 320 nm corresponds intrinsic transition of wolframite structured [WO₆]⁶⁻ group of ZnWO4 [7].

Fig 4 a). PL Excitation spectra monitored at 575 nm b) PL emission spectra of excited at 292 nm of Dy³⁺ activated ZnWO₄

The emission spectrum has shown in fig. 4 which shows broad emission corresponds to C-T transition of $[WO_6]^{6-}$ with sharp

characteristic line emission at 488 nm (blue) and 575 nm (yellow) due to transition ${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$ and ${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$ corresponds to Dy³⁺ ion [5].

CONCLUSION

In conclusion, ZnWO₄ and Dy³⁺ doped ZnWO₄ phosphor were successfully synthesized by solid state rout at 850°C. Crystallinity and formation of compound was tested by X-ray diffraction pattern. The SEM micrographs show the agglomerated morphology of the ZnWO₄. The PL properties of ZnWO₄ and Dy³⁺ doped ZnWO₄ phosphor shows the broad excitation curve of ZnWO₄ and emission shows characteristic line emission of Dy³⁺ ion at 488 nm (blue) and 575 nm (yellow) due to transition ${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$ and ${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$ of Dy³⁺ ion along with broad emission of host lattice.

REFERENCES

- [1] F.A. Kroger, Some Aspects of the Luminescence of Solids, Elsevier, Amsterdam, 1948.
- [2] Bonanni et al. Chem. Mater., 10(1998)304.
- [3] H. Grassmann, H.G. Moser, J. Lumin. 33 (1985) 109.
- [4] G.B. Kumar et al., Ceramics International 36 (2010) 199.
- [5] F. Yang et al., Optical Materials 29 (2007) 1861.
- [6] L. Honeycutt and A. Kuzmin, J. Purans, Radiat. *Measurement*, 33 (2001) 583.
- [7] Nguyen Van Minh, Nguyen Manh Hung, *Materials Sciences and Application*, 2 (2011) 988.