
Recent Research in Science and Technology 2012, 4(1): 24-32
ISSN: 2076-5061
Available Online: http://recent-science.com/

Design of an optimal multi-layer neural network for eigenfaces based face
recognition

Ravindra Pal Singh1*, Vinay Rawat1, Mayank Pawar2 and Raj K. Mishra1

1Dev Bhoomi Group of Institutions (DBGI), Dehradun (U.K), India.
2Teerthankar Mahaveer University (TMU), Moradabad (U.P), India.

Abstract
Face recognition is one of the most popular problems in the field of image analysis. In this paper, we discuss the design of an
optimal multi-layer neural network for the task of face recognition. There are many issues while designing the neural network
like number of nodes in input layer, output layer and hidden layer(s), setting the values of learning rate and momentum,
updating of weights. Lastly, the criteria for evaluating the performance of the neural network and stopping the learning are to
be decided. We discuss all these design issues in the light of the eigenfaces based face recognition. We report the effects of
variations of these parameters on number of training cycles required to get optimal results. We also list the optimized values
for these parameters. In our experiments, we use two face databases namely ORL and UMIST. These databases are used to
construct the eigenfaces. The original faces are reconstructed using the top eigenfaces. The factors used in the
reconstruction of the faces are used as the inputs to the neural network.

Keywords: Neural network, eigenfaces, face recognition, hidden layer, back propagation.

INTRODUCTION

 Face recognition is one of the well-known problems in the
field of image processing. In face recognition problem, a given face
is compared with the faces stored in a face database in order to
identify the person, who have the given face. The purpose is to find a
face in the database, which has the highest similarity with the given
face. One of the important algorithms for face recognition is the
eigenface algorithm [1]. Since, face recognition is a high-dimensional
pattern recognition problem, eigenface algorithm, which reduces the
dimensionality of the input face space, is found to be one of the most
successful methodologies. Eigenface algorithm uses the Principal
Component Analysis (PCA) for dimensionality reduction to find the
vectors which best account for the distribution of face images within
the entire image space. These vectors define the subspace of face
images and the subspace is called face space. All faces in the
training set are projected onto the face space to find a set of weights
that describes the contribution of each vector in the face space. To
identify a test image, it requires the projection of the test image onto
the face space to obtain the corresponding set of weights. By
comparing the weights of the test image with the set of weights of the
faces in the training set, the face in the test image can be identified.
A multi-layer perceptron (MLP), a multi-layer neural network that was
first proposed by Frank Rosenblatt [2], has also been widely used for
the task of face recognition [3, 4].
 In this paper, the design of an optimal multi-layer perceptron

for eigenfaces based face recognition. There are many issues while
designing the multi-layer neural network like number of nodes in
input layer, output layer and hidden layer(s), setting the values of
learning rate and momentum, updating of weights. Lastly, the criteria
for evaluating the performance of the neural network and stopping
the learning are to be decided. We discuss all these design issues in
the light of the eigenfaces based face recognition. We try to get
optimal value for all these parameters.
 The paper is organized as follows. In Section 2, we discuss
the suitability of multi-layer perceptron for task of face recognition. In
Section 3, we discuss all the design parameters in detail. We briefly
look at the related work in Section 4. We present our results in
Section 5. Finally, we conclude in Section 6.

THEORY
Multilayer Perceptron

 The single layer perceptrons have two layers consisting of
neurons, an input layer and an output layer. The output of a discrete
neuron can only have the values zero (non firing) and one (firing).
Each neuron has a real-valued threshold and fires if and only if its
accumulated input exceeds that threshold. Each connection from an
input node j to an output neuron i has a real-valued weight wij. For
some problems, like the famous XOR problem, the single layer
perceptrons fail to perform. This paves the way for the more
advanced multi-layer perceptrons. MLPs are feed forward neural
networks trained with the standard back propagation algorithm and
have one input layer, one output layer and one or more hidden layers.
 By training a MLP, the output space is separated into regions.
The ability of a MLP to correctly classify input data patterns, which
has not been used for training the MLP, is termed as generalization
[5]. The multi-layer perceptrons are highly suitable for any
classification task e.g. pattern recognition, character recognition and
face recognition. This is due to the reason that the MLPs build hyper

Received: Nov 13, 2011; Revised: Dec 20, 2011; Accepted: Jan 13, 2012.

*Corresponding Author

Ravindra Pal Singh

Dev Bhoomi Group of Institutions (DBGI), Dehradun (U.K), India.

Tel: +91-9456667003;
Email: ravindra_rajeev@yahoo.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Update Publishing (E-Journals)

https://core.ac.uk/display/236010141?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Recent Research in Science and Technology 2012, 4(1): 24-32

25

surfaces that divide the output space into different classes that have
dissimilar properties. In the face recognition process it is desired to
have all the faces of the same person to belong to the same class
and the faces of different persons to be classified as different classes.
A remarkable thing about MLP is that it has good extrapolative and

interpolative properties and is thus able to correctly classify faces
that it has not been trained with as belonging to the correct class.
The MLPs are trained with the back-propagation algorithm which is
an error-minimizing and optimization approach.

Fig1. A Multi-layer Perceptron

Fig 2. Division of Output Space into Different Classes

Designing an Optimal Multi-layer Neural Network

 While designing an optimal multi-layer Neural Network, we
have to decide upon a number of parameters. In this section, we
discuss the different parameters and the way in which, we determine
the optimal values for these parameters.

Number of Nodes in the Input Layer

 The number of input nodes can generally be easily determined
because the number of nodes in the input layer is equal to the number
of inputs that we want to feed into the network. In the typical neural
networks for the recognition of the faces, the number of input nodes is
equal to the number of pixels in the face image. It leads to the huge
complexity of the neural network architecture. But in the Principal
Component Analysis, rather than applying the pixel values as the input,
only the multipliers of the eigenfaces are used as the input. This
approach greatly reduces the complexity of the neural network
architecture. The original faces are represented as the sum of products
of the eigenfaces and these multipliers. So these multipliers can be
used to differentiate between the faces of different persons. The main
hurdle is the determination of the number of eigenfaces that are

sufficient to correctly represent the variation in the faces. The number of
input nodes is then equal to the number of eigenfaces and the input
values are the multipliers with which these eigenfaces should be
multiplied to correctly reconstruct the original faces.

Number of Nodes in the Output Layer

 The number of nodes in the output layer is equal to the number
of persons that are to be recognized. The value of the output node
corresponding to the correct face will be highest while the other output
nodes will have very less values. The output nodes have competition
among themselves for the highest output value and the node having the
highest value is the winner that decides the identity of the person. It is
also possible to have one extra output node for the faces of persons
that are outside the training set of faces.

Number of Hidden Layers

 Generally one hidden layer with sufficient number of nodes is
enough for most of the problems that use neural networks. It is
advisable to use as few hidden layers as possible because the addition
of each hidden layer significantly increases the network complexity,

Ravindrea Pal Singh et al.,

26

increases the number of weighted connections between the nodes and
unnecessary addition of the hidden layers will lead to slower learning.
However, having more than one hidden layer has few advantages when
they are used in the networks where their use is essential, like better
learning of relationship between inputs and outputs, faster learning and
at times having more than one hidden layer can help in avoiding the
pitfalls of the local minimums. For the design of an optimal multi-layer
perceptron, we may vary the number of hidden layers and study the
effect of these variations. We may also vary the number of nodes in the
first hidden layer and see the effects of these variations. Then, we may
add the second hidden layer and vary the number of nodes in both the
hidden layers and note the effects of these variations. We may repeat
the process until we decide upon an optimal value for the number of
hidden layers.

Number of Hidden Nodes

 Determining the number of hidden nodes is a tricky problem
and there are no absolutely correct guidelines for the number of
nodes. The number of hidden nodes determines the mapping ability
of the network. In other words, larger the number of hidden nodes,
more powerful is the network. However, if this number is too large,
the generalization may get worse. This is due to over-fitting the
training set, which can be solved by using cross-validation. If there
are too many hidden nodes in the network, many problems may
occur e.g. too much training time, the network may fail to generalize
the input data and it may instead memorize the correct response to
each input pattern. On the other hand, if there are too few hidden layer
units, the network may fail to train correctly because this may result in
insufficient and incorrect mapping between the inputs and the outputs. If
we examine the weight values on the hidden nodes periodically as the
network trains, we can see that weights on certain nodes change very
little from their starting values. These nodes may not be participating in
the learning process, and fewer hidden nodes may suffice. Some rules
that may be used for determining the number of hidden nodes are
given as

 outinphid NNN ≈
, inphid NN ≤

 and outhid NN ≤

where, hidN
 is number of hidden nodes, inpN

 is number of

input nodes and outN
 is the number of output nodes.

Number of Training Examples

 From the available training data, a subset of data is needed to
train the network successfully. The remaining data can be used to test
the network to verify that the network can perform the desired mapping
on input vectors it has never encountered during training. In contrast to
generalization, the back-propagation network does not extrapolate well.
If it is inadequately or insufficiently trained on a particular class of input
examples, subsequent identification of members of that class may be
unreliable. The faces of the same person can have a large number of
variations like presence or absence of glasses; facial expressions like
smile, frown, etc; changes in pose in horizontal and vertical plane. This
necessitates a large number of faces per person that capture almost all
of the variations that a person’s face can have. We work with two face
databases namely ORL [6] and UMIST [7]. The ORL face database
consists of 10 faces for each person, out of which, we use 8 faces per
person in training the neural network and the rest 2 for testing the neural
network. For the UMIST face database, 14 faces of a person are used

in training the neural network and 5 faces are used in testing the neural
network. This may be noted that the number of training examples
should neither be so less that the MLP is not able to correctly generalize
the classes, nor it should so large that the network memorizes the faces.

Dealing with the Local Minima

 Sometimes during training it is observed, that after long
training, the algorithms seem to stall. In other words, error remains
high and the continuous training does not lead to its reduction. One
of the explanations is that the optimization algorithm has found a
local minimum, but not the global minimum. Once the network settles
on a minimum, whether local or global, learning ceases. Since back-
propagation uses a gradient-descent procedure, a back-propagation
network follows the contour of an error surface with weight updates
moving it in the direction of steepest descent.
 As a general rule of thumb, the more hidden nodes we have
in a network the less likely we are to encounter a local minimum
during training. Although additional hidden nodes increase the
complexity of the error surface, the extra dimensionality increases
the number of possible escape routes.
 In case the back-propagation seems to stall, some help is
needed. The various suggestions to deal with the local minima and
get out of it, may be listed as

1. We may make use of the adaptive learning rate.

2. Weights can be re-randomized and the process be repeated.

3. The number of hidden nodes can be changed.

4. Addition of the momentum term may help in taking large steps
in the correct direction thus over-stepping some of the local
minimums.

Fig 3. Variation of learning error with weight adjustment

Momentum

 The original back-propagation algorithm is quite slow. By
adding a term to the weight adjustment that is proportional to the
amount of the previous weight change, the performance of the back-
propagation algorithm can be improved. Such term is called
momentum. The purpose of the momentum method is to accelerate
the convergence of the back-propagation algorithm. The concept of
momentum is that previous changes in the weights should influence
the current direction of movement in weight space.
 The benefits of using momentum in terms of optimization for
the neural network learning are: it speeds up the back-propagation of
errors, keeps the error minimization process going in the same

Recent Research in Science and Technology 2012, 4(1): 24-32

27

direction and also helps in jumping out of a local minimum and
guides in finding the global minima.
 The benefits of using momentum in terms of optimization for
the neural network learning are listed as follows.
1. It speeds up the back-propagation of errors.
2. It keeps the error minimization process going in the same

direction.
3. It helps in preventing the oscillations, which are very common in

the traditional back-propagation approach.
4. The momentum term helps in jumping out of a local minimum

and guides in finding the global minima.

Learning Rate

 The back-propagation algorithm requires that the weight
changes be proportional to the derivative of the error. The larger the
learning rate the larger the weight changes on each epoch, and the
quicker the network learns. However, the size of the learning rate
can also influence whether the network achieves a stable solution. If
the learning rate gets too large, then the weight changes no longer
approximate a gradient descent procedure (true gradient descent
requires infinitesimal steps). Oscillation of the weights is often the
result. Ideally then, one should like to use the largest learning rate
possible without triggering oscillation. This would offer the most rapid
learning and the least amount of time spent waiting for the network to
train. We may obtain the optimum value the learning rate by hit and
trial. The learning rate may be kept the least in the beginning and
then, it may be slowly increased in steps of 0.1 up to the optimum
value, after which, its increase may lead to errors in correct
recognition.

Updating the Weights

 Back-propagation is essentially a learning algorithm that
modifies the weights as is dictated by the error. The error is
propagated backwards through the network and used to update the
weights. After the weights are updated, the next instance is used to
calculate the output, compute the errors, calculate the weights’
updates, etc. There are two ways in which the weights can be
updated. Updating the weights in a back-propagation network can be
done either after the presentation of each pattern (say, pattern
learning), or after all of the patterns in the training set have been
presented (say, epoch learning). If the learning rate is small, there is
little difference between the two procedures. However, substantial
differences can be observed when the learning rate is large, as the
derivation of the back-propagation algorithm assumes that the error
derivatives are summed over all of the patterns. When the weights
are updated immediately it leads to slow learning but the network
learns in a better manner. On the other hand, when the weights are
updated after each epoch it leads to faster convergence, speeding
up of the learning process but may lead to improper training. In our
case, the weights are updated after all the training examples have
been presented.

Initialization with Free Parameter

 The parameters that need to be set before the learning can
start are: weights, biases and thresholds. A good choice for the initial
values of the synaptic weights, biases and thresholds of the network
can significantly accelerate learning.

 A common practice is to set all the free parameters of the
network to random numbers that are uniformly distributed inside a
small range of values. If the weights are too large the sigmoid
functions will start saturating from the very beginning of training and
the system will become stuck in a kind of saddle point near the
starting point itself. This phenomenon is known as “premature
saturation”. Premature saturation can be avoided by getting the initial
values of the weights and threshold levels of the network, to be
uniformly distributed inside a small range of values. The weights may
be randomly set to some random values, when the process of
training is started.

Pruning

 When a MLP network is created the layers are fully connected
with weights between all the nodes of the input, output and hidden
layers. Some networks can learn with a much lower number of
connections. The process of removing the weights that contain no
useful information but just add to the network complexity is called
pruning. When we examine the weights of the various connections,
we may find many weights that are not changing at all or very leFGss.
Such weights are redundant and do not help the network in learning.
Pruning of the neural network serves two purposes. First, it speeds
up the neural network learning by eliminating redundant weights and
second, it reduces the network complexity. Pruning is performed
when the values of the weights fall below some thresholds.

Stopping Criteria

 Eventually training of the neural network has to terminate so
that it can be queried to get the response for some input. The neural
network will continue to learn until some stopping criteria is satisfied
and the training can be stopped. There are a number of ways to
suggest when the network training should stop. For example, the
network training may be stopped if any of the following three criteria
is satisfied.

1. The average/maximum/minimum training error falls below
some user-defined level

2. The number of training cycles or epochs exceeds a
certain value.

3. All the validation tests have been performed.

Performance Criteria

 The performance criteria are parameters on the basis of
which the performance of the network can be evaluated. Three of the
performance criteria, which are suitable for the face recognition
neural network, are- 1. the accuracy of the recognition results, 2. the
number of cycles and 3, the absolute or relative errors in the training
and testing phases.

Related Work

 Attempts have been made in past to use the neural network for
the problem of face recognition [3, 4, 8, 9]. For example, in [3], the
first 50 principal components of the images are extracted and
reduced to 5 dimensions using an auto associative neural network.
The resulting representation is classified using a standard multi-layer
perceptron. Good results are reported but the database is quite
simple, the pictures are manually aligned and there is no lighting

Ravindrea Pal Singh et al.,

28

variation, rotation, or tilting. There are 20 people in the database.
Pan Z. et al., in their study [4], used the multilayer perceptron neural
network. There is just one hidden layer with number of hidden units
being in between 60 to 80. The input of neural network is a set of
discrete cosine transform coefficients. They report that the achieved
recognition rate is in between 94% to 97%. In [8], Henry Rowley et.
al. used three types of hidden units, 4 looking at 10x10 pixel sub-
regions, 16 looking at 5x5 pixel sub-regions and 6 looking at 20x5
pixel sub-regions. These sub-regions are chosen to represent facial
features that are important to face detection. Overlapping detections
are merged. To improve the performance of their system, multiple
networks are applied. They are trained under different initial
condition and have different self-selected negative examples. The
outputs of these networks are arbitrated to produce the final decision.
In [9], there is only one hidden layer in the network with 20 to 30
units in it. The number of units in the input layer is equal to the
number of image pixels, 2576 (i.e. 46 × 56). Gray level of every pixel
is linearly scaled from range (0, 255) to (-0.05, +0.05). The number

of output units is equal to the number of classes, which is 40, the
number of persons in the ORL database.

EXPERIMENTS AND RESULTS

 We experimented with the ORL[6] and UMIST[7] face
databases using a neural network simulater called EasyNN-Plus[8].
The UMIST university face database consists of 564 images of 20
people, each covering a range of poses from profile to frontal views.
Subjects cover a range of race/sex/appearance. Each subject exists
in its own directory labeled as 1a, 1b, ... , 1t and the images are
numbered consecutively as they were taken. The files are all in
Portable Gray Map (PGM) format, 220 x 220 pixels in 256 shades of
grey. As an example, the different images of face of a person in the
directory 1a are shown in Fig.4.

Fig 4. Different images of the subject 1a in UMIST face database.

 On the other hand, ORL database contains a set of faces
taken between April 1992 and April 1994 at Olivetti Research
Laboratory (ORL) in Cambridge, U.K. There are 10 different images
of 40 distinct subjects. There are variations in facial expression
(open/closed eyes, smiling/non-smiling), and facial details
(glasses/no glasses). All the images are against a dark

homogeneous background with the subjects in an up-right, frontal
position, with tolerance for some tilting and rotation of up to about 20
degrees. There is some variation in scale of up to about 10%. The
images are grayscale with a resolution of 92 x 112 pixels. As an
example, 10 different images of face of a person are shown in Fig.5.

Fig 5. The set of 10 images for a subject in ORL database.

Recent Research in Science and Technology 2012, 4(1): 24-32

29

 We report here, the recognition accuracies for the different
faces of different persons. We obtain the optimal values of different
design parameters such as number of training examples, number of
hidden layers, number of nodes in hidden layers, learning rate,
momentum, number of input nodes and number of output nodes.

Number of Training Examples

 It is observed that as the number of training examples are
increased the recognition accuracy increases. Fig. 6 shows the
recognition accuracy for the first person in the ORL database as the
number of faces is increased from 1 to 10.

Variation of accuracy with changing number of

training faces

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

Number of faces used in training

R
e

c
o

g
n

it
io

n
 A

c
c
u

ra
c
y

Recognition

Accuracy

 Fig 6. Variation of recognition accuracy as number of training faces is increased.

Number of Hidden Layers

 If only one hidden layer is taken, then, the number of training
cycles that are required, might be very less, but, the accuracy may
not be acceptable. The ORL faces have great variation in terms of
presence of glasses, moustaches, beard, female faces, etc. So, one
hidden layer is not found to be resulting in correct accuracy. So, we
include two hidden layers in the multi-layer perceptron and discover
that the accuracy is increased. In the case of UMIST faces, there is
not much variation in the faces and the faces differ only slightly from

each other in terms of the pose. So only a single hidden layer is
found to be sufficient for these faces and it gives excellent results.

Number of Nodes in Each Hidden Layer

 The number of nodes in the hidden layer(s) should be such
that it is neither too large to result in unnecessary network complexity
nor too small to result in slow and inaccurate learning. The criteria to
judge the optimum number of nodes is number of training cycles and
the recognition accuracy.

Variation in number of cycles with changing

number of nodes in first hidden layer

0

50

100

150

200

250

4 5 6 7 8 9 10 11 12 13 14 15

Number of nodes in first hidden layer

N
u

m
b

e
r

o
f

c
y
c
le

s

Cycles

Fig 7. Variation in training cycles as number of nodes in first hidden layer is increased.

 Fig. 7 shows that as the number of nodes is increased, lesser
number of training cycles is required. But, in order to reduce the
network complexity, the optimum number of nodes is taken as 11
and the recognition accuracy for this number of nodes is found to be
around 99%.
 For the ORL faces, it is observed that a MLP having 16 nodes

in the first hidden layer gives good accuracy. As shown in Fig.8,
number of training cycles is least, when the second hidden layer has
8 hidden nodes. So, for ORL faces, the neural network are optimized
if, we include 16 and 8 nodes in first and second hidden layer,
respectively.

Ravindrea Pal Singh et al.,

30

Variation in number of cycles with changing

number of nodes in second hidden layer

0

200

400

600

800

1000

1200

1400

4 5 6 7 8 9 10 11 12 13 14 15

Number of nodes in second hidden layer

N
u

m
b

e
r

o
f

c
y
c
le

s

Cycles

Fig 8. Variation in training cycles as number of nodes in second hidden layer is increased.

Learning Rate and Momentum

 The back-propagation algorithm that is used to train the MLP
has two very important parameters namely, learning rate and
momentum. We vary the learning rate and momentum by carrying
out several simulations and discover that these parameters do not
play a significant role in the accuracy of the recognition system. But,
they have a great bearing on the number of cycles that the system
takes to converge and reach the level, where the error is acceptable.
If the values of the learning rate and momentum are very large then

the neural network shows oscillations and does not converge even
after 4200 cycles for a target error of 1%. If on the other hand, the
values of learning rate and momentum are very less then the neural
network takes a lot of time to converge to the desired error level.
When both the learning rate and momentum are kept at 0.1 then the
learning takes more than 5000 cycles. Fig. 9 shows the variation of
cycles with changing momentum and learning rate. The number of
cycles first decreases with increase in these parameters but after the
values exceed a certain threshold the number of cycles takes an
upward swing.

Variation in number of cycles with changing

momentum and learning rate

0

50

100

150

200

250

300

350

0.2 0.4 0.4 0.5 0.5 0.6 0.6 0.7 0.7 0.7

0.2 0.3 0.4 0.4 0.5 0.5 0.6 0.6 0.7 0.8

Momentum & Learning Rate

N
u

m
b

e
r

o
f

T
ra

in
in

g
 C

y
c

le
s

Cycles

Fig 9. Effect of learning rate and momentum on the number of cycles.

 So, the optimal values of learning rate and momentum are
selected as follows.
1. For the ORL database, learning rate is taken to be 0.4 and
momentum is also taken to be 0.4.
2. For the UMIST database, learning rate is taken to be 0.3 and
momentum is taken to be 0.4.

Number of Training Cycles

 As it is clear from Fig. 9, the number of training cycle’s
decreases as the learning rate and momentum are increased. But

this happens only up to some threshold values of learning rate and
momentum after which, the number of cycles required increases
because of the oscillations in the learning process. Fig. 10 and fig.
11 show the effect of increase in the number of nodes in the first
hidden layer, on the number of training cycles. It is found that
number of training cycles generally decreases with increase in the
number of nodes. It is also clear that when the target error is halved
from 1% to 0.5%, the number of training cycles roughly doubles. We
find that, when the number of hidden layers is increased, the number
of cycles needed to converge also increases.

Recent Research in Science and Technology 2012, 4(1): 24-32

31

Variation in number of cycles with changing

number of nodes in first hidden layer with

error = 1%

0

50

100

150

200

250

300

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Number of nodes in first hidden layer
N

u
m

b
e

r
o

f
c
y
c
le

s

Cycles

Fig 10. Variation in training cycles as number of nodes in first hidden layer is increased, with target error set to 1%.

Variation in number of cycles with changing

number of nodes in first hidden layer with

error = 0.5%

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Number of nodes in first hidden layer

N
u

m
b

e
r

o
f

C
y

c
le

s

Cycles

Fig 11. Variation in training cycles as number of nodes in first hidden layer is increased, with target error set to 0.5%.

 We list the values of different design parameters for the
optimal multi-layer perceptron for ORL and UMIST databases in the
table 1 and 2 respectively. From the Table 1 and 2, it is clear that the
different parameters get different values for the two different

databases, for the same target error. While for ORL database, we
require two hidden layers, just one hidden is layer required for face
recognition in UMIST database.

Table 1. The optimized neural network for ORL faces

Name of the variable Value

Number of nodes in input layer 50

Number of nodes in output layer 25

Number of hidden layers 2

Number of nodes in first hidden layer 16

Number of nodes in second hidden layer 8

Learning rate 0.4

Momentum 0.4

Target error 0.5 %

Table 2. The optimized neural network for UMIST faces

Name of the variable Value

Number of nodes in input layer 40

Number of nodes in output layer 15

Number of hidden layers 1

Number of nodes in first hidden layer 11

Learning rate 0.3

Momentum 0.4

Target error 0.5 %

Ravindrea Pal Singh et al.,

32

CONCLUSION

 In this paper, we discussed the design of an optimal multi-
layer perceptron for eigenfaces based face recognition. We
discussed the various design issues and obtained the optimal values
of different design parameters. The design of the neural network was
discussed in the context of the face recognition on two face database
namely ORL and UMIST. Important findings of the study may be
summarized as follows.

1. If the number of faces that are used in training of the neural
network is increased, the accuracy of recognition generally
improves because the system is able to draw better
generalizations with the increase in the number of training faces.

2. Learning rate and momentum have a significant effect on the
number of training cycles that the neural network takes to
converge but does not have much impact on the accuracy of the
face recognition system.

3. The number of eigenfaces that are used to represent the actual
faces have a significant bearing on the accuracy of the face
recognition system. Increasing the number of eigenfaces leads to
more inputs to the system thus leading to better learning and
accuracy.

4. The number of training cycles that the system needs for
convergence also depends on the number of hidden layers and
the number of nodes in the hidden layer(s).

REFERENCES

[1] M. Turk and A. Pentland,1991. “Eigenfaces for recognition,”
Journal of Cognitive Neuroscience, vol. 3, no. 1, pp. 71–86.

[2] F. Rosenblatt, 1958. “The Perceptron: A Probabilistic Model
for Information Storage and Organization in the Brain”,
Psychological Review, vol. 65, issue 6, pp. 386-408.

[3] D. DeMers and G.W. Cottrell, 1993. “Non-linear
dimensionality reduction”, In S.J. Hanson, J.D. Cowan,
and C. Lee Giles, editors, Advances in Neural Information
Processing Systems, vol. 5, Morgan Kaufmann
Publishers, San Mateo, CA, pp. 580-587.

[4] Z. Pan, A. G. Rust and H. Bolouri, 2000. “Image
Redundancy Reduction for Neural Network Classification
using Discrete Cosine Transforms”, Proceedings of the
International Joint Conference on Neural Networks, vol. 3,
pp 149-154.

[5] M. L. Minsky and S. S. Papert,1969. “Perceptrons: An
Introduction to Computational Geometry”, MIT Press,
Cambridge.

[6] ORL face database,
http://www.uk.research.att.com/facedatabase.html

[7] UMIST face database,
http://images.ee.umist.ac.uk/danny/database.html

[8] H. A Rowely, 1987. “A Trainable View-based object for
face detection”, IEEE ASSP Magzine.

[9] D. Bryliuk and V. Starovoitov. 2002. “Access control by face
recognition using neural networks and negative examples”.
Proceedings of the 2nd International Conference on
Artificial Intelligence, Crimea, Ukraine, pp. 428-436, Sep.

[10] EasyNN-Plus, http://www.easynn.com/

