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Abstract  
Face recognition is one of the most popular problems in the field of image analysis. In this paper, we discuss the design of an 
optimal multi-layer neural network for the task of face recognition. There are many issues while designing the neural network 
like number of nodes in input layer, output layer and hidden layer(s), setting the values of learning rate and momentum, 
updating of weights. Lastly, the criteria for evaluating the performance of the neural network and stopping the learning are to 
be decided. We discuss all these design issues in the light of the eigenfaces based face recognition. We report the effects of 
variations of these parameters on number of training cycles required to get optimal results. We also list the optimized values 
for these parameters. In our experiments, we use two face databases namely ORL and UMIST. These databases are used to 
construct the eigenfaces. The original faces are reconstructed using the top eigenfaces. The factors used in the 
reconstruction of the faces are used as the inputs to the neural network.  
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INTRODUCTION 
 
     Face recognition is one of the well-known problems in the 
field of image processing. In face recognition problem, a given face 
is compared with the faces stored in a face database in order to 
identify the person, who have the given face. The purpose is to find a 
face in the database, which has the highest similarity with the given 
face. One of the important algorithms for face recognition is the 
eigenface algorithm [1]. Since, face recognition is a high-dimensional 
pattern recognition problem, eigenface algorithm, which reduces the 
dimensionality of the input face space, is found to be one of the most 
successful methodologies. Eigenface algorithm uses the Principal 
Component Analysis (PCA) for dimensionality reduction to find the 
vectors which best account for the distribution of face images within 
the entire image space. These vectors define the subspace of face 
images and the subspace is called face space. All faces in the 
training set are projected onto the face space to find a set of weights 
that describes the contribution of each vector in the face space. To 
identify a test image, it requires the projection of the test image onto 
the face space to obtain the corresponding set of weights. By 
comparing the weights of the test image with the set of weights of the 
faces in the training set, the face in the test image can be identified. 
A multi-layer perceptron (MLP), a multi-layer neural network that was 
first proposed by Frank Rosenblatt [2], has also been widely used for 
the task of face recognition [3, 4]. 
     In this paper, the design of an optimal multi-layer perceptron 

for eigenfaces based face recognition. There are many issues while 
designing the multi-layer neural network like number of nodes in 
input layer, output layer and hidden layer(s), setting the values of 
learning rate and momentum, updating of weights. Lastly, the criteria 
for evaluating the performance of the neural network and stopping 
the learning are to be decided. We discuss all these design issues in 
the light of the eigenfaces based face recognition. We try to get 
optimal value for all these parameters. 
     The paper is organized as follows. In Section 2, we discuss 
the suitability of multi-layer perceptron for task of face recognition. In 
Section 3, we discuss all the design parameters in detail. We briefly 
look at the related work in Section 4. We present our results in 
Section 5. Finally, we conclude in Section 6. 
 
THEORY 
Multilayer Perceptron  
 
     The single layer perceptrons have two layers consisting of 
neurons, an input layer and an output layer. The output of a discrete 
neuron can only have the values zero (non firing) and one (firing). 
Each neuron has a real-valued threshold and fires if and only if its 
accumulated input exceeds that threshold. Each connection from an 
input node j to an output neuron i has a real-valued weight wij. For 
some problems, like the famous XOR problem, the single layer 
perceptrons fail to perform. This paves the way for the more 
advanced multi-layer perceptrons. MLPs are feed forward neural 
networks trained with the standard back propagation algorithm and 
have one input layer, one output layer and one or more hidden layers. 
     By training a MLP, the output space is separated into regions. 
The ability of a MLP to correctly classify input data patterns, which 
has not been used for training the MLP, is termed as generalization 
[5]. The multi-layer perceptrons are highly suitable for any 
classification task e.g. pattern recognition, character recognition and 
face recognition. This is due to the reason that the MLPs build hyper 
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surfaces that divide the output space into different classes that have 
dissimilar properties. In the face recognition process it is desired to 
have all the faces of the same person to belong to the same class 
and the faces of different persons to be classified as different classes. 
A remarkable thing about MLP is that it has good extrapolative and 

interpolative properties and is thus able to correctly classify faces 
that it has not been trained with as belonging to the correct class. 
The MLPs are trained with the back-propagation algorithm which is 
an error-minimizing and optimization approach.

 

    
 

Fig1. A Multi-layer Perceptron 

 

 
Fig 2. Division of Output Space into Different Classes 

 
Designing an Optimal Multi-layer Neural Network 
 
     While designing an optimal multi-layer Neural Network, we 
have to decide upon a number of parameters. In this section, we 
discuss the different parameters and the way in which, we determine 
the optimal values for these parameters. 
 
Number of Nodes in the Input Layer 
 
     The number of input nodes can generally be easily determined 
because the number of nodes in the input layer is equal to the number 
of inputs that we want to feed into the network. In the typical neural 
networks for the recognition of the faces, the number of input nodes is 
equal to the number of pixels in the face image. It leads to the huge 
complexity of the neural network architecture. But in the Principal 
Component Analysis, rather than applying the pixel values as the input, 
only the multipliers of the eigenfaces are used as the input. This 
approach greatly reduces the complexity of the neural network 
architecture. The original faces are represented as the sum of products 
of the eigenfaces and these multipliers. So these multipliers can be 
used to differentiate between the faces of different persons. The main 
hurdle is the determination of the number of eigenfaces that are 

sufficient to correctly represent the variation in the faces. The number of 
input nodes is then equal to the number of eigenfaces and the input 
values are the multipliers with which these eigenfaces should be 
multiplied to correctly reconstruct the original faces. 
 
Number of Nodes in the Output Layer 
 
     The number of nodes in the output layer is equal to the number 
of persons that are to be recognized. The value of the output node 
corresponding to the correct face will be highest while the other output 
nodes will have very less values. The output nodes have competition 
among themselves for the highest output value and the node having the 
highest value is the winner that decides the identity of the person. It is 
also possible to have one extra output node for the faces of persons 
that are outside the training set of faces.  
 
Number of Hidden Layers 
 
     Generally one hidden layer with sufficient number of nodes is 
enough for most of the problems that use neural networks.  It is 
advisable to use as few hidden layers as possible because the addition 
of each hidden layer significantly increases the network complexity, 
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increases the number of weighted connections between the nodes and 
unnecessary addition of the hidden layers will lead to slower learning. 
However, having more than one hidden layer has few advantages when 
they are used in the networks where their use is essential, like better 
learning of relationship between inputs and outputs, faster learning and 
at times having more than one hidden layer can help in avoiding the 
pitfalls of the local minimums. For the design of an optimal multi-layer 
perceptron, we may vary the number of hidden layers and study the 
effect of these variations. We may also vary the number of nodes in the 
first hidden layer and see the effects of these variations. Then, we may 
add the second hidden layer and vary the number of nodes in both the 
hidden layers and note the effects of these variations. We may repeat 
the process until we decide upon an optimal value for the number of 
hidden layers. 
 
Number of Hidden Nodes 
 
     Determining the number of hidden nodes is a tricky problem 
and there are no absolutely correct guidelines for the number of 
nodes. The number of hidden nodes determines the mapping ability 
of the network. In other words, larger the number of hidden nodes, 
more powerful is the network. However, if this number is too large, 
the generalization may get worse. This is due to over-fitting the 
training set, which can be solved by using cross-validation. If there 
are too many hidden nodes in the network, many problems may 
occur e.g. too much training time, the network may fail to generalize 
the input data and it may instead memorize the correct response to 
each input pattern. On the other hand, if there are too few hidden layer 
units, the network may fail to train correctly because this may result in 
insufficient and incorrect mapping between the inputs and the outputs. If 
we examine the weight values on the hidden nodes periodically as the 
network trains, we can see that weights on certain nodes change very 
little from their starting values. These nodes may not be participating in 
the learning process, and fewer hidden nodes may suffice. Some rules 
that may be used for determining the number of hidden nodes are 
given as 

 outinphid NNN ≈
,  inphid NN ≤

 and outhid NN ≤
 

where, hidN
 is number of hidden nodes, inpN

 is number of 

input nodes and outN
 is the number of output nodes. 

 
Number of Training Examples 
 
     From the available training data, a subset of data is needed to 
train the network successfully. The remaining data can be used to test 
the network to verify that the network can perform the desired mapping 
on input vectors it has never encountered during training. In contrast to 
generalization, the back-propagation network does not extrapolate well. 
If it is inadequately or insufficiently trained on a particular class of input 
examples, subsequent identification of members of that class may be 
unreliable. The faces of the same person can have a large number of 
variations like presence or absence of glasses; facial expressions like 
smile, frown, etc; changes in pose in horizontal and vertical plane. This 
necessitates a large number of faces per person that capture almost all 
of the variations that a person’s face can have. We work with two face 
databases namely ORL [6] and UMIST [7]. The ORL face database 
consists of 10 faces for each person, out of which, we use 8 faces per 
person in training the neural network and the rest 2 for testing the neural 
network. For the UMIST face database, 14 faces of a person are used 

in training the neural network and 5 faces are used in testing the neural 
network. This may be noted that the number of training examples 
should neither be so less that the MLP is not able to correctly generalize 
the classes, nor it should so large that the network memorizes the faces. 
 
Dealing with the Local Minima 
 
     Sometimes during training it is observed, that after long 
training, the algorithms seem to stall. In other words, error remains 
high and the continuous training does not lead to its reduction. One 
of the explanations is that the optimization algorithm has found a 
local minimum, but not the global minimum. Once the network settles 
on a minimum, whether local or global, learning ceases. Since back-
propagation uses a gradient-descent procedure, a back-propagation 
network follows the contour of an error surface with weight updates 
moving it in the direction of steepest descent.  
     As a general rule of thumb, the more hidden nodes we have 
in a network the less likely we are to encounter a local minimum 
during training. Although additional hidden nodes increase the 
complexity of the error surface, the extra dimensionality increases 
the number of possible escape routes.  
     In case the back-propagation seems to stall, some help is 
needed. The various suggestions to deal with the local minima and 
get out of it, may be listed as 

1. We may make use of the adaptive learning rate.  

2. Weights can be re-randomized and the process be repeated.  

3. The number of hidden nodes can be changed.  

4. Addition of the momentum term may help in taking large steps 
in the correct direction thus over-stepping some of the local 
minimums.  
 

 
 

Fig 3. Variation of learning error with weight adjustment 
 

Momentum 
 
     The original back-propagation algorithm is quite slow. By 
adding a term to the weight adjustment that is proportional to the 
amount of the previous weight change, the performance of the back-
propagation algorithm can be improved. Such term is called 
momentum. The purpose of the momentum method is to accelerate 
the convergence of the back-propagation algorithm. The concept of 
momentum is that previous changes in the weights should influence 
the current direction of movement in weight space.  
     The benefits of using momentum in terms of optimization for 
the neural network learning are: it speeds up the back-propagation of 
errors, keeps the error minimization process going in the same 
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direction and also helps in jumping out of a local minimum and 
guides in finding the global minima. 
     The benefits of using momentum in terms of optimization for 
the neural network learning are listed as follows. 
1. It speeds up the back-propagation of errors. 
2. It keeps the error minimization process going in the same 

direction. 
3. It helps in preventing the oscillations, which are very common in 

the traditional back-propagation approach. 
4. The momentum term helps in jumping out of a local minimum 

and guides in finding the global minima. 
 
Learning Rate 
 
     The back-propagation algorithm requires that the weight 
changes be proportional to the derivative of the error. The larger the 
learning rate the larger the weight changes on each epoch, and the 
quicker the network learns. However, the size of the learning rate 
can also influence whether the network achieves a stable solution. If 
the learning rate gets too large, then the weight changes no longer 
approximate a gradient descent procedure (true gradient descent 
requires infinitesimal steps). Oscillation of the weights is often the 
result. Ideally then, one should like to use the largest learning rate 
possible without triggering oscillation. This would offer the most rapid 
learning and the least amount of time spent waiting for the network to 
train. We may obtain the optimum value the learning rate by hit and 
trial. The learning rate may be kept the least in the beginning and 
then, it may be slowly increased in steps of 0.1 up to the optimum 
value, after which, its increase may lead to errors in correct 
recognition.  
 
Updating the Weights 
 
     Back-propagation is essentially a learning algorithm that 
modifies the weights as is dictated by the error. The error is 
propagated backwards through the network and used to update the 
weights. After the weights are updated, the next instance is used to 
calculate the output, compute the errors, calculate the weights’ 
updates, etc. There are two ways in which the weights can be 
updated. Updating the weights in a back-propagation network can be 
done either after the presentation of each pattern (say, pattern 
learning), or after all of the patterns in the training set have been 
presented (say, epoch learning). If the learning rate is small, there is 
little difference between the two procedures. However, substantial 
differences can be observed when the learning rate is large, as the 
derivation of the back-propagation algorithm assumes that the error 
derivatives are summed over all of the patterns. When the weights 
are updated immediately it leads to slow learning but the network 
learns in a better manner. On the other hand, when the weights are 
updated after each epoch it leads to faster convergence, speeding 
up of the learning process but may lead to improper training. In our 
case, the weights are updated after all the training examples have 
been presented. 
 
Initialization with Free Parameter 
 
     The parameters that need to be set before the learning can 
start are: weights, biases and thresholds. A good choice for the initial 
values of the synaptic weights, biases and thresholds of the network 
can significantly accelerate learning. 

     A common practice is to set all the free parameters of the 
network to random numbers that are uniformly distributed inside a 
small range of values. If the weights are too large the sigmoid 
functions will start saturating from the very beginning of training and 
the system will become stuck in a kind of saddle point near the 
starting point itself. This phenomenon is known as “premature 
saturation”. Premature saturation can be avoided by getting the initial 
values of the weights and threshold levels of the network, to be 
uniformly distributed inside a small range of values. The weights may 
be randomly set to some random values, when the process of 
training is started.  
 
Pruning 
 
     When a MLP network is created the layers are fully connected 
with weights between all the nodes of the input, output and hidden 
layers. Some networks can learn with a much lower number of 
connections. The process of removing the weights that contain no 
useful information but just add to the network complexity is called 
pruning. When we examine the weights of the various connections, 
we may find many weights that are not changing at all or very leFGss.  
Such weights are redundant and do not help the network in learning. 
Pruning of the neural network serves two purposes. First, it speeds 
up the neural network learning by eliminating redundant weights and 
second, it reduces the network complexity. Pruning is performed 
when the values of the weights fall below some thresholds.  
 
Stopping Criteria 
 
     Eventually training of the neural network has to terminate so 
that it can be queried to get the response for some input. The neural 
network will continue to learn until some stopping criteria is satisfied 
and the training can be stopped. There are a number of ways to 
suggest when the network training should stop. For example, the 
network training may be stopped if any of the following three criteria 
is satisfied. 

1. The average/maximum/minimum training error falls below 
some user-defined level 

2.  The number of training cycles or epochs exceeds a 
certain value. 

3.  All the validation tests have been performed. 
 
Performance Criteria 
 
     The performance criteria are parameters on the basis of 
which the performance of the network can be evaluated. Three of the 
performance criteria, which are suitable for the face recognition 
neural network, are- 1. the accuracy of the recognition results, 2. the 
number of cycles and 3, the absolute or relative errors in the training 
and testing phases.  

Related Work 

     Attempts have been made in past to use the neural network for 
the problem of face recognition [3, 4, 8, 9]. For example, in [3], the 
first 50 principal components of the images are extracted and 
reduced to 5 dimensions using an auto associative neural network. 
The resulting representation is classified using a standard multi-layer 
perceptron. Good results are reported but the database is quite 
simple, the pictures are manually aligned and there is no lighting 
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variation, rotation, or tilting. There are 20 people in the database. 
Pan Z. et al., in their study [4], used the multilayer perceptron neural 
network. There is just one hidden layer with number of hidden units 
being in between 60 to 80. The input of neural network is a set of 
discrete cosine transform coefficients. They report that the achieved 
recognition rate is in between 94% to 97%. In [8], Henry Rowley et. 
al. used three types of hidden units, 4 looking at 10x10 pixel sub-
regions, 16 looking at 5x5 pixel sub-regions and 6 looking at 20x5 
pixel sub-regions. These sub-regions are chosen to represent facial 
features that are important to face detection. Overlapping detections 
are merged. To improve the performance of their system, multiple 
networks are applied. They are trained under different initial 
condition and have different self-selected negative examples. The 
outputs of these networks are arbitrated to produce the final decision. 
In [9], there is only one hidden layer in the network with 20 to 30 
units in it. The number of units in the input layer is equal to the 
number of image pixels, 2576 (i.e. 46 × 56). Gray level of every pixel 
is linearly scaled from range (0, 255) to (-0.05, +0.05). The number 

of output units is equal to the number of classes, which is 40, the 
number of persons in the ORL database. 

EXPERIMENTS AND RESULTS 

     We experimented with the ORL[6] and UMIST[7] face 
databases using a  neural network simulater called EasyNN-Plus[8]. 
The UMIST university face database consists of 564 images of 20 
people, each covering a range of poses from profile to frontal views. 
Subjects cover a range of race/sex/appearance. Each subject exists 
in its own directory labeled as 1a, 1b, ... , 1t and the images are 
numbered consecutively as they were taken. The files are all in 
Portable Gray Map (PGM) format, 220 x 220 pixels in 256 shades of 
grey. As an example, the different images of face of a person in the 
directory 1a are shown in Fig.4.

 
 

Fig 4. Different images of the subject 1a in UMIST face database. 
 

     On the other hand, ORL database contains a set of faces 
taken between April 1992 and April 1994 at Olivetti Research 
Laboratory (ORL) in Cambridge, U.K. There are 10 different images 
of 40 distinct subjects. There are variations in facial expression 
(open/closed eyes, smiling/non-smiling), and facial details 
(glasses/no glasses). All the images are against a dark 

homogeneous background with the subjects in an up-right, frontal 
position, with tolerance for some tilting and rotation of up to about 20 
degrees. There is some variation in scale of up to about 10%. The 
images are grayscale with a resolution of 92 x 112 pixels. As an 
example, 10 different images of face of a person are shown in Fig.5. 

 

 
 

Fig 5. The set of 10 images for a subject in ORL database.  
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     We report here, the recognition accuracies for the different 
faces of different persons. We obtain the optimal values of different 
design parameters such as number of training examples, number of 
hidden layers, number of nodes in hidden layers, learning rate, 
momentum, number of input nodes and number of output nodes. 
 

Number of Training Examples 
 
     It is observed that as the number of training examples are 
increased the recognition accuracy increases. Fig. 6 shows the 
recognition accuracy for the first person in the ORL database as the 
number of faces is increased from 1 to 10. 
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 Fig 6. Variation of recognition accuracy as number of training faces is increased. 

 
Number of Hidden Layers 
 
     If only one hidden layer is taken, then, the number of training 
cycles that are required, might be very less, but, the accuracy may 
not be acceptable. The ORL faces have great variation in terms of 
presence of glasses, moustaches, beard, female faces, etc. So, one 
hidden layer is not found to be resulting in correct accuracy. So, we 
include two hidden layers in the multi-layer perceptron and discover 
that the accuracy is increased. In the case of UMIST faces, there is 
not much variation in the faces and the faces differ only slightly from 

each other in terms of the pose. So only a single hidden layer is 
found to be sufficient for these faces and it gives excellent results. 
 
Number of Nodes in Each Hidden Layer 
 
     The number of nodes in the hidden layer(s) should be such 
that it is neither too large to result in unnecessary network complexity 
nor too small to result in slow and inaccurate learning. The criteria to 
judge the optimum number of nodes is number of training cycles and 
the recognition accuracy.  
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Fig 7. Variation in training cycles as number of nodes in first hidden layer is increased. 

 
     Fig. 7 shows that as the number of nodes is increased, lesser 
number of training cycles is required. But, in order to reduce the 
network complexity, the optimum number of nodes is taken as 11 
and the recognition accuracy for this number of nodes is found to be 
around 99%. 
     For the ORL faces, it is observed that a MLP having 16 nodes 

in the first hidden layer gives good accuracy. As shown in Fig.8, 
number of training cycles is least, when the second hidden layer has 
8 hidden nodes. So, for ORL faces, the neural network are optimized 
if, we include 16 and 8 nodes in first and second hidden layer, 
respectively. 
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Variation in number of cycles with changing 
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Fig 8. Variation in training cycles as number of nodes in second hidden layer is increased. 

 
Learning Rate and Momentum 
 
     The back-propagation algorithm that is used to train the MLP 
has two very important parameters namely, learning rate and 
momentum. We vary the learning rate and momentum by carrying 
out several simulations and discover that these parameters do not 
play a significant role in the accuracy of the recognition system. But, 
they have a great bearing on the number of cycles that the system 
takes to converge and reach the level, where the error is acceptable. 
If the values of the learning rate and momentum are very large then 

the neural network shows oscillations and does not converge even 
after 4200 cycles for a target error of 1%. If on the other hand, the 
values of learning rate and momentum are very less then the neural 
network takes a lot of time to converge to the desired error level. 
When both the learning rate and momentum are kept at 0.1 then the 
learning takes more than 5000 cycles. Fig. 9 shows the variation of 
cycles with changing momentum and learning rate. The number of 
cycles first decreases with increase in these parameters but after the 
values exceed a certain threshold the number of cycles takes an 
upward swing.  
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Fig 9. Effect of learning rate and momentum on the number of cycles. 
 
     So, the optimal values of learning rate and momentum are 
selected as follows. 
1. For the ORL database, learning rate is taken to be 0.4 and 
momentum is also taken to be 0.4.  
2. For the UMIST database, learning rate is taken to be 0.3 and 
momentum is taken to be 0.4.  
 
Number of Training Cycles 
 
     As it is clear from Fig. 9, the number of training cycle’s 
decreases as the learning rate and momentum are increased. But 

this happens only up to some threshold values of learning rate and 
momentum after which, the number of cycles required increases 
because of the oscillations in the learning process. Fig. 10 and fig. 
11 show the effect of increase in the number of nodes in the first 
hidden layer, on the number of training cycles. It is found that 
number of training cycles generally decreases with increase in the 
number of nodes. It is also clear that when the target error is halved 
from 1% to 0.5%, the number of training cycles roughly doubles. We 
find that, when the number of hidden layers is increased, the number 
of cycles needed to converge also increases.
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Variation in number of cycles with changing 
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Fig 10. Variation in training cycles as number of nodes in first hidden layer is increased, with target error set to 1%. 
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Fig 11. Variation in training cycles as number of nodes in first hidden layer is increased, with target error set to 0.5%. 

 
     We list the values of different design parameters for the 
optimal multi-layer perceptron for ORL and UMIST databases in the 
table 1 and 2 respectively. From the Table 1 and 2, it is clear that the 
different parameters get different values for the two different 

databases, for the same target error. While for ORL database, we 
require two hidden layers, just one hidden is layer required for face 
recognition in UMIST database. 

 
 

Table 1. The optimized neural network for ORL faces 

 
Name of the variable Value 

Number of nodes in input layer 50 

Number of nodes in output layer 25 

Number of hidden layers 2 

Number of nodes in first hidden layer 16 

Number of nodes in second hidden layer 8 

Learning rate 0.4 

Momentum 0.4 

Target error 0.5 % 

 
 

Table 2. The optimized neural network for UMIST faces 

 
Name of the variable Value 

Number of nodes in input layer 40 

Number of nodes in output layer 15 

Number of hidden layers 1 

Number of nodes in first hidden layer 11 

Learning rate 0.3 

Momentum 0.4 

Target error 0.5 % 
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CONCLUSION 
 
     In this paper, we discussed the design of an optimal multi-
layer perceptron for eigenfaces based face recognition. We 
discussed the various design issues and obtained the optimal values 
of different design parameters. The design of the neural network was 
discussed in the context of the face recognition on two face database 
namely ORL and UMIST.  Important findings of the study may be 
summarized as follows. 

1.  If the number of faces that are used in training of the neural 
network is increased, the accuracy of recognition generally 
improves because the system is able to draw better 
generalizations with the increase in the number of training faces. 

2.  Learning rate and momentum have a significant effect on the 
number of training cycles that the neural network takes to 
converge but does not have much impact on the accuracy of the 
face recognition system.  

3.  The number of eigenfaces that are used to represent the actual 
faces have a significant bearing on the accuracy of the face 
recognition system. Increasing the number of eigenfaces leads to 
more inputs to the system thus leading to better learning and 
accuracy. 

4.   The number of training cycles that the system needs for 
convergence also depends on the number of hidden layers and 
the number of nodes in the hidden layer(s). 
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