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Introduction 

Many physical systems such as nuclear reactors and 
laser oscillators, etc. give rise to stiff non-linear ordinary 
differential equations (ODEs) in which the magnitudes of the 
eigenvalues vary greatly. Methods not designed for stiff 
problems are ineffective on intervals where the solution 
changes slowly because they use time steps small enough to 
resolve the fastest possible change. Stiff problems typically 
arise in chemical kinetics, nuclear reactor theory, control 
theory, biochemistry, climatology, electronics, fluid dynamics, 
etc.  

Cash [1] has derived a class of extended backward 
differentiation formulae suitable for the approximate numerical 
integration of stiff system of first order ODEs. Lopez [2] has 
explained an explicit two-step method for solving stiff systems 
of ODEs. Ismail et al. [3] have suggested a new higher order 
predictor corrector method for solving stiff systems. Hsiao [4] 
has proposed Haar wavelet approach to linear stiff systems. 
Bujurke et al. [5] have obtained numerical solution of stiff 
systems from non-linear dynamics using Single Term Haar 
Wavelet Series. 

The STWS technique was introduced by Rao et al. [6] 
using Walsh Functions (WFs). This is based on an approach 
called “single segment approximation” which avoids 
operational matrices of large size and maximizes the 
reduction in the computational effort.  This method provides 
block-pulse and discrete solutions of problems, to any length 
of time, in an easy manner. Many researchers have made use 
of STWS technique to solve different systems such as time 
invariant and time varying singular systems, linear and non-
linear singular systems, singularly perturbed systems, bilinear 

systems, optimal control of linear time invariant and time 
varying systems etc. [7 - 14].  

RK methods are being used widely to solve many 
problems in Science and Engineering because of their 
efficiency, flexibility and accuracy. Yaakub and Evans [15] 
have studied RK methods based on different means to solve 
IVPs. Abdul Majid Wazwaz [16] has compared the modified 
third order RK formulae based on variety of means. Sanugi 
and Evans [17] have introduced the concept of fourth order 
RK formulae based on HaM.  

This paper presents a comparison of the STWS 
technique and the fourth order extended RK methods based 
on variety of means AM, HaM, CeM and CoM to solve stiff 
non-linear systems. The effectiveness of the STWS method 
has been demonstrated by considering some examples of stiff 
non-linear systems.  

Stiffness 
Traditionally in numerical analysis, a linear stiff system 

of size n is defined by Lambert [18], Re( iλ ) < 0, 1 ≤ i ≤ n, 

where iλ  are the eigenvalues of the Jacobian of the system 

with 
11

max Re( ) min Re( ) .i ii ni n
λ λ

≤ ≤≤ ≤
 The Stiffness Ratio 

(SR) provides a quantitative measure of stiffness:    

1

1

max Re( )
.

min Re( )
ii n

ii n

SR
λ

λ
≤ ≤

≤ ≤

=    (2.1) 

By this definition, a stiff problem has a stable fixed point 
with eigenvalues of greatly differing magnitudes; large negative 
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eigenvalues correspond to fast decaying transients te λ in 
the solution.  

The definition of linear stiffness is not relevant for non-
linear systems. The stiffness ratio defined by Eqn. (2.1) is often 
not a good measure of stiffness even for linear systems, since 
if the minimum eigenvalue is zero, the problem has infinite 
stiffness ratio. The standard form for first-order non-linear 
ODEs is as follows: 

'
1 2( , ,..., )i i Ny f y y y=   for i = 1, 2, . . . , N,   

where N is the number of equations and take initial 
conditions yi (0) = αi . It can be linearised around time t=tn using 
a Taylor expansion. Retaining only the first two terms  

'
iy  ≈ fi (yn) + J (tn)(y − yn), where 

ij
( )( ) J i

n n
j

f yJ t t
y

⎧ ⎫⎡ ⎤∂⎪ ⎪= = ⎢ ⎥⎨ ⎬∂⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
 is the Jacobian matrix for 

the problem at t = tn. Here, Ji j is the element of J in row i and 
column j.  

The definition of stiffness utilizes the eigen values of the 
Jacobian matrix. Stiff ODEs are called extremely stable or 
super stable if there is at least one of the eigenvalues with a 
large negative real part [19].  

Walsh Series 
It is well known that a function, which is periodic, may be 

expanded into a Fourier series or Power series. In a similar 
manner, a function f(t), which is integrable in [0,1) may be 
approximated by using Walsh functions as  

  f(t) = i
0

f  ( )i
i

tψ
∞

=
∑

      

 
 
where  ( )i tψ  is the ith Walsh function and fi is the 

corresponding coefficient.  
In practice, while approximating a function, only the first 

‘m’ components are considered. If the coefficient of the Walsh 
functions are concisely written as ‘m’ vectors, then  
   F = ( f0,  f1, . . . , fm-1 ) T   
 and     )( tψ  = [ )( 0 tψ , )( 1 tψ , . . . , )( 1 tm−ψ ] T  
    

where m = 2k, k is an integer and T denotes transpose. 
Then the above function f(t) becomes   

f(t) ≈  FT )( tψ .      
  

The coefficients fi are chosen to minimise the mean 
integral square error  

1
2

0

[ ( ) ( )] .Tf t F t dtψ∈= −∫     

    
The coefficients are given by  

 
1

0

( ) ( ) .i if f t t dtψ= ∫       

             
It has been proved by Chen et al. (1975a) that   

  ,)()(
0
∫ ≈
t

T tEFdttf ψ       

   
where E is called the operational matrix for integration in 

WF. In STWS, 
1 .
2

E =  

STWS Technique for Non-linear Systems 
Consider a non-linear system of the following form: 

( )x τ&  = f(t, x(t), u(t)),  x(0) = x0,   (4.1) 
where the non-linear function f ∈  Rn, the state x(t) ∈  Rn, 

and the control u(t) ∈  Rq.  
With the STWS approach, the given function is expanded 

in the normalized interval τ  ∈  [0, 1), which corresponds to t 
∈  [0,1/m) by defining τ  = mt, m being any integer. 
Normalizing Eqn. (4.1) by defining τ  = mt, we get 

( ) ( , ( ), ( )),mx f x uτ τ τ τ=&  0(0)x x=   
 (4.2) 

Let ( )x τ& and ( )x τ be expanded by STWS series in the 
kth interval as 

( )x τ&  = V(k)
0 ( )ψ τ and  ( )x τ  = X(k)

0 ( ).ψ τ  (4.3) 

Integrating Eqn. (4.3) with E = 
1
2

, we get 

 X(k) = 
1
2

V(k) + x(k-1)  and  

x(k) = V(k) +x(k −1).         (4.4) 

Therefore, ( )
0

1( ) ( 1) ( )
2

kx V x kτ ψ τ⎛ ⎞= + −⎜ ⎟
⎝ ⎠

 (4.5) 
To solve Eqn. (4.2), we first substitute Eqn. (4.5) 

in ( , ( ), ( ))f x uτ τ τ . Then we express the resulting 
equation by STWS as 

 

( ) ( )
0 0

1, ( 1) ( ), ( ) ( )   
2

k kf V x k u Fτ ψ τ τ ψ τ⎛ ⎞⎛ ⎞+ − =⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
  (4.6) 

Using Eqns. (4.2), (4.3), (4.5), and (4.6), we get 
( ) ( ).k kmV F=    (4.7) 

By solving Eqn. (4.7), the components of V(k) can be 
obtained. By substituting V(k) in Eqn. (4.4), we obtain block-
pulse and discrete approximations of the state, respectively. 
For higher order non-linear system of IVPs, the system can be 
transformed into system of first order IVPs and then the STWS 
technique can be applied as mentioned above.  
RK Methods Based on Variety of Means  

 The classical fourth order RK formula for solving IVPs of 
the form ( , )x f t x=& may be written as 

[ ]1 n 1 2 3 4
hx  k   2k   2k  k
6nx + = + + + +
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3
1

n
i 1

h x  
3 2

i ik k +

=

+
= + ∑  

       
3

n
i 1

h x  ( )
3

AM
=

= + ∑  

where 

  

( )

1 n n

2 n n 1

3 n n 2

4 n n 3

          f (t , x )
h h          f   ,  x     k
2 2
h h          f   ,  x     k
2 2

k           f   h,  x    h k     

k

k t

k t

t

=

⎛ ⎞= + +⎜ ⎟
⎝ ⎠
⎛ ⎞= + +⎜ ⎟
⎝ ⎠

= + +

 

By replacing the AM by the various means such as HaM, 
CeM, and CoM, we get different RK formulae. The means 
HaM, CeM, and CoM are defined in terms of AM and 
Geometric Mean (GM). The formulae for various means are 
given in Table 1, in terms of two values x1 and x2. For 

( , )x f t x=& the fourth order linear or non-linear methods 
using a variety of means which can be written in the form  

 
3

1 n
i 1

h Mean
3nx x+

=

⎡ ⎤
= + ⎢ ⎥

⎣ ⎦
∑   

               
where Mean includes AM, HaM, CeM and CoM which 

involve 4   i  1   ,k i ≤≤ as follows: 
               

1 n n

2 n 1 n 1 1

3 n 2 3 n 2 1 3 2

4 n 4 5 6 n 4 1 5 2 6 3

f (t , x )
f (t a h,  x a h k )
f (t (a a )h,  x a hk a hk )
f (t (a a a )h,  x (a hk a hk a hk )

k
k
k
k

=
= + +
= + + + +
= + + + + + +

 
and the parameters  aj, 1 ≤ j ≤ 6 are shown in Table 2. 

The fourth order formulae, based on the Runge-Kutta scheme 
using various means, are given in Table 3. 

 
Table 1 Formulae for Various Means 

Mean Notation Formula Formula in terms of  
AM & GM 

Arithmetic Mean AM 

2
 x x 21 +  

-- 

Geometric Mean GM 
21xx  -- 

Harmonic Mean HaM 

21

21

xx
xx
+

2
 

AM
)GM( 2

 

 
Centroidal Mean 

 
CeM 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
++

21

21
2

2
2

1

 x x
x x  x x 

3
2

 

(AM) 3
(GM) - (AM) 4 22

 
 
Contraharmonic Mean 

 
CoM 

21

2
2

2
1

 x x
 x x
+
+

 
AM

(GM) - (AM) 2 22

 
 

Table 2 Values of the Parameters aj 
                Means 
Parameters AM HaM CeM CoM 

a1 1/2 1/2 1/2 1/2 
a2 0 -1/8 1/24 1/8 
a3 1/2 5/8 11/24 3/8 
a4 0 -1/4 1/12 1/4 
a5 0 7/20 -25/132 -3/4 
a6 1 9/10 73/66 3/2 
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Table 3 Fourth Order RK Formulae 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Numerical Examples 
Example 1  

Consider the stiff system of two non-linear differential 
equations given by  

 2
1 1 21002 1000 ,x x x= − +&  1(0) 1,x =  

 2 1 2 2(1 ),x x x x= − +&              2 (0) 1,x =  (6.1)  
As the independent variable‘t’ does not appear explicitly in 

Eqn. (6.1), it is an autonomous system. The exact solution of 
this system is given by  

 2
1( ) e tx t −=   and   2 ( ) .tx t e−=  

For this problem, the Jacobian at t = 0 is 
1002 2000
1 3

J
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 ,  whose eigenvalues are 

λ = [-1,  -1004] and Stiffness Ratio SR = 1004. Hence it 
is classified as stiff at t = 0. Further, this problem is super 
stable since there is at least one eigenvalue with a large 
negative real part.  

 The discrete solutions obtained by using STWS 
technique with m = 300 and RK methods based on variety of 
means with h = 0.001 are compared with the corresponding 
exact solution. The results are shown in Tables 4 and 5. The 
error graphs of these methods are shown in Fig. 1 and Fig. 2. 

Example 2  
Consider the following stiff non-linear system: 
 

1 1 2 2

cos( ) sin( ) 40.2sin( )40.2 19.6 ,
1 (1 ) 1

t t tx x x
t t t

= − + + − +
+ + +

&

       2 1 2
19.6sin( )19.6 10.8 ,

1
tx x x

t
= − −

+
&        

with the initial conditions   

1(0) 3,x =  2 (0) 1.x =  
 
The exact solution of this system is given by   

 50
1

sin( )e 2e ,
1

t t tx
t

− −= + +
+  

 

 50
2 2e e .t tx − −= −  

For this problem, the Jacobian at t = 0 is 
40.2 19.6

19.6 10.8
J

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦   

 whose eigen values are  

λ = [-50,  -1] and stiffness ratio SR = 50. Hence it is 
classified as stiff at t = 0 and is also super stable.   

The discrete solutions obtained by using STWS technique 
and RK methods based on variety of means are compared with 
the corresponding exact solution. The results are shown in 
Tables 6 and 7. The error graphs of these methods are shown 
in Fig. 3 and Fig. 4. 

Example 3   
Consider the following second order stiff non linear 

equation: 

 
6 3

3 4 2

1 (1 ) 2 ,
(1 )
t tx x

x t t
⎧ ⎫+ +

= − ⎨ ⎬+⎩ ⎭
&&     (1) 0.5,x =     

(1) 0.25.x =&  

The exact solution is  
1

tx
t

=
+

. 

By putting 1x x=  and  2 ,x x=&  the above system can 
be transformed into system of two first order non-linear 
equations as follows: 

1 2 ,x x=&   
6 3

2 13 4 2
1

1 (1 ) 2 ,
(1 )
t tx x

x t t
⎧ ⎫+ +

= − ⎨ ⎬+⎩ ⎭
&  

with the initial conditions  1(1) 0.5x =   and  

2 (1) 0.25.x =  
Exact solution of this transformed system is given by 

Mean 
1nx + =   

 
AM [ ]1 2 3 4

h+   k   2 (k   k )  k
6nx + + +  

 
HaM 2 3 3 41 2

1 2 2 3 3 4

k  k k  kk  k2h  
3 k   k k   k k   knx

⎡ ⎤
+ + +⎢ ⎥+ + +⎣ ⎦

 

 
CeM 

2 2 2 22 2
2 2 3 3 3 3 4 41 1 2 2

1 2 2 3 3 4

k k k k k k k kk k k k2h
9 k  k k  k k  knx
⎡ ⎤+ + + ++ +

+ + +⎢ ⎥+ + +⎣ ⎦
 

 
CoM 

2 2 2 22 2
2 3 3 41 2

1 2 2 3 3 4

k  k k  kk  kh
3 k  k k  k k  knx
⎡ ⎤+ ++

+ + +⎢ ⎥+ + +⎣ ⎦
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1 1
tx

t
=

+
  and  2 2

1 .
(1 )

x
t

=
+  

The discrete solutions obtained by using STWS technique 
and RK methods based on variety of means are compared with 
the corresponding exact solution. The results are shown in 
Tables 8 and 9. The error graphs of these methods are shown 
in Fig. 5 and Fig. 6. 

Example 4 
Consider nuclear reactor model characterized by stiff non-

linear system that arises in nuclear reactor theory 
( ) ( )( )( )1 1 2 1 1 0.01 0.01 1 x 1000 x 1 ,x x x= − + + + + +&

     

( )( )2
2 1 2 20.01 0.01 1 ,x x x x= − + + +&   

   
with the initial conditions 

1(0) 0,x =  2 (0) 0.x =  
For this problem, the Jacobian at t = 0 is 

1011.01 1001
1 1

J
− −⎡ ⎤

= ⎢ ⎥− −⎣ ⎦   
 whose eigen values are 

λ = [-1012,  -0.0098913] and stiffness  ratio SR = 102312. 
This indicates that this problem is very stiff at t = 0 and it is 
also super stable. The discrete solutions are obtained using 
STWS technique and RK methods based on variety of means. 
The results are shown in Tables 10 and 11. 

 
Example 1 

Table 4 Absolute Error in x1 (t) 
Time 
t 

 
STWS 

RK Methods Based on 
AM HaM CeM CoM 

0 
2 
4 
6 
8 
10 

0.00E+00 
1.17E-07 
3.18E-09 
5.12E-11 
2.67E-12 
5.86E-13 

0.00E+00 
1.36E-06 
7.17E-08 
3.09E-09 
8.92E-11 
1.69E-12 

0.00E+00 
1.36E-06 
7.17E-08 
3.10E-09 
8.92E-11 
1.69E-12 

0.00E+00 
1.36E-06 
7.17E-08 
3.10E-09 
8.92E-11 
1.69E-12 

0.00E+00 
1.36E-06 
7.17E-08 
3.10E-09 
8.92E-11 
1.69E-12 

 
         Table 5 Absolute Error in x2 (t) 

Time 
t 

 
STWS 

RK Methods Based on 
AM HaM CeM CoM 

0 
2 
4 
6 
8 
10 

0.00E+00 
2.51E-07 
6.79E-08 
1.38E-08 
2.49E-09 
4.21E-10 

0.00E+00 
5.04E-06 
1.96E-06 
6.24E-07 
1.33E-07 
1.86E-08 

0.00E+00 
5.04E-06 
1.96E-06 
6.24E-07 
1.33E-07 
1.86E-08 

0.00E+00 
5.02E-06 
1.96E-06 
6.25E-07 
1.33E-07 
1.86E-08 

0.00E+00 
5.02E-06 
1.96E-06 
6.25E-07 
1.33E-07 
1.86E-08 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  
 

         

 
 
 
 
 
 
 
 
 
 
 

Fig. 2 
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Example 2 
Table 6 Absolute Error in x1(t) 

Time 
t 

 
STWS 

RK Methods Based on 
AM HaM CeM CoM 

0 
5 
10 
15 
20 
25 
30 

0.00E+00 
1.32E-07 
2.50E-08 
4.60E-08 
2.52E-08 
2.44E-08 
2.66E-08 

0.00E+00 
1.97E-06 
6.52E-06 
7.67E-07 
3.80E-06 
2.23E-06 
1.44E-06 

0.00E+00 
1.88E-06 
6.52E-06 
7.71E-07 
3.80E-06 
2.23E-06 
1.44E-06 

0.00E+00 
1.97E-06 
6.52E-06 
7.67E-07 
3.80E-06 
2.23E-06 
1.44E-06 

0.00E+00 
2.00E-06 
6.52E-06 
7.64E-07 
3.80E-06 
2.23E-06 
1.44E-06 

 
Table 7 Absolute Error in x2 (t) 

Time 
t 

 
STWS 

RK Methods Based on 
AM HaM CeM CoM 

0 
5 
10 
15 
20 
25 
30 

0.00E+00 
3.49E-08 
1.43E-08 
3.64E-09 
4.34E-09 
1.96E-09 
4.09E-09 

0.00E+00 
4.17E-06 
1.18E-05 
6.98E-07 
7.21E-06 
3.62E-06 
2.99E-06 

0.00E+00 
3.97E-06 
1.18E-05 
7.01E-07 
7.21E-06 
3.61E-06 
2.99E-06 

0.00E+00 
4.18E-06 
1.18E-05 
6.99E-07 
7.22E-06 
3.61E-06 
2.99E-06 

0.00E+00 
4.24E-06 
1.18E-05 
6.95E-07 
7.22E-06 
3.61E-06 
2.99E-06 

 
 

 
 
 
 
 
 
 
 
 
 

Fig. 3 
 
 

 
 
 
 
 
 
 
 
 

Fig. 4  
 

 
     Example 3  

 Table 8 Absolute Error in x1 (t) 
Time 
t 

 
STWS 

RK Methods Based on 
AM HaM CeM CoM 

1 
5 
10 
15 
20 
25 
30 

0.00E+00 
6.40E-07 
5.11E-07 
4.36E-07 
1.89E-07 
4.53E-07 
3.49E-07 

0.00E+00 
1.19E-06 
2.15E-06 
1.61E-06 
1.61E-06 
6.56E-07 
3.93E-06 

0.00E+00 
1.13E-06 
2.21E-06 
1.19E-06 
2.15E-06 
1.79E-07 
4.59E-06 

0.00E+00 
1.13E-06 
2.03E-06 
1.07E-06 
1.79E-06 
5.96E-08 
4.35E-06 

0.00E+00 
1.07E-06 
2.09E-06 
1.19E-06 
1.79E-06 
1.19E-07 
4.41E-06 

 
Table 9 Absolute Error in x2 (t) 

Time 
t 

 
STWS 

RK Methods Based on 
AM HaM CeM CoM 

1 
5 
10 
15 
20 
25 
30 

0.00E+00 
8.13E-08 
3.51E-07 
6.26E-07 
1.04E-06 
5.14E-07 
8.22E-07 

0.00E+00 
3.45E-07 
3.52E-06 
5.15E-06 
8.05E-07 
2.12E-06 
1.29E-06 

0.00E+00 
9.44E-07 
4.71E-06 
6.41E-06 
1.51E-06 
3.06E-06 
1.90E-07 

0.00E+00 
3.13E-07 
4.62E-06 
5.63E-06 
2.12E-06 
2.28E-06 
2.55E-07 

0.00E+00 
1.10E-07 
3.98E-06 
5.62E-06 
1.69E-06 
2.42E-06 
1.17E-07 
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Fig. 5 
 

 

 
 
 
 
 
 
 

Fig. 6 
 
 

    Example 4 
  Table 10 Discrete Solution of x1 (t) 

Time 
t 

 
STWS 

RK Methods Based on 
AM HaM CeM CoM 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 

0 
-0.0119657 
-0.0139617 
-0.0159576 
-0.0179535 
-0.0199493 
-0.0219452 
-0.0239411 
-0.025937 
-0.0279328 
-0.0299287 

0 
-0.011965755 
-0.013961677 
-0.015957553 
-0.017953437 
-0.019949406 
-0.021945374 
-0.023941174 
-0.025936987 
-0.027932955 
-0.029928925 

0 
-0.011962901 
-0.013958823 
-0.015954699 
-0.017950581 
-0.019946551 
-0.021942521 
-0.023938319 
-0.025934132 
-0.027930100 
-0.029926069 

0 
-0.011966682 
-0.013962604 
-0.015958481 
-0.017954364 
-0.019950334 
-0.021946302 
-0.023942102 
-0.025937915 
-0.027933883 
-0.029929852 

0 
-0.011968782 
-0.013964703 
-0.01596058 
-0.017956464 
-0.019952433 
-0.021948401 
-0.023944201 
-0.025940014 
-0.027935982 
-0.029931951 

  
Table 11 Discrete Solution of x2 (t) 

Time 
t 

 
STWS 

RK Methods Based on 
AM HaM CeM CoM 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 

0 
0.0019859 
0.0039819 
0.0059778 
0.0079738 
0.0099697 
0.0119656 
0.0139615 
0.0159575 
0.0179533 
0.0199492 

0 
0.001985957 
0.003981919 
0.005977836 
0.007973761 
0.009969772 
0.011965782 
0.013961623 
0.015957478 
0.017953489 
0.0199495 

0 
0.001983103 
0.003979065 
0.005974982 
0.007970907 
0.009966917 
0.011962928 
0.013958768 
0.015954623 
0.017950634 
0.019946644 

0 
0.001986884 
0.003982846 
0.005978764 
0.007974689 
0.009970699 
0.01196671 
0.013962551 
0.015958406 
0.017954417 
0.019950427 

0 
0.001988984 
0.003984946 
0.005980863 
0.007976788 
0.009972799 
0.011968809 
0.01396465 
0.015960505 
0.017956516 
0.019952526 

 
A critical study on errors in stiff non-linear systems 

In Examples 1 – 3, the absolute errors between the 
discrete solutions and the exact solutions have been 
determined and presented in Tables 4 - 9.  For a better 
analysis of the system given in Example 4 which is a stiff non-
linear autonomous system with high stiffness ratio whose 
analytic solution is not known, and to demonstrate the 
applicability of the STWS technique, a critical study on the 
absolute errors of the STWS solutions has been carried as 
explained below: 

• First, the STWS solutions are obtained in the 
solution space [0, 2] for different values of ‘m’, for 
example, m = 900, 1000, 1100, 1200, 1300, 1400.  

• The absolute errors between the STWS 
solutions obtained at two consecutive values of ‘m’, 
say m1 and m2, have been determined which may be 
denoted as 2

1
.m

mErr  
All these details have been presented in Tables 12 and 13 for 

x1 and x2 respectively. From these two tables, the maximum errors 
obtained for x1 and x2 in [0, 2] have been identified and presented in 
Table-14.
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Table 12 
 
Time 
t 

Error in x1 
1000
900Err  1100

1000Err  1200
1100Err  1300

1200Err  1400
1300Err  

0 
0.25 
0.50 
0.75 
1.00 
1.25 
1.50 
1.75 
2.00 

0 
2.432E-06 
2.431E-06 
2.432E-06 
2.432E-06 
2.431E-06 
2.431E-06 
2.432E-06 
2.432E-06 

0 
1.888E-06 
1.888E-06 
1.888E-06 
1.888E-06 
1.888E-06 
1.888E-06 
1.887E-06 
1.888E-06 

0 
1.492E-06 
1.492E-06 
1.492E-06 
1.492E-06 
1.492E-06 
1.492E-06 
1.492E-06 
1.492E-06 

0 
1.197E-06 
1.198E-06 
1.197E-06 
1.197E-06 
1.198E-06 
1.198E-06 
1.198E-06 
1.197E-06 

0 
9.74E-07 
9.73E-07 
9.74E-07 
9.74E-07 
9.73E-07 
9.73E-07 
9.73E-07 
9.74E-07 

 
Table 13 

 
Time 
t 

Error in x2 
1000
900Err  1100

1000Err  1200
1100Err  1300

1200Err  1400
1300Err  

0 
0.25 
0.50 
0.75 
1.00 
1.25 
1.50 
1.75 
2.00 

0 
2.432E-06 
2.432E-06 
2.432E-06 
2.431E-06 
2.432E-06 
2.432E-06 
2.432E-06 
2.432E-06 

0 
1.888E-06 
1.888E-06 
1.887E-06 
1.888E-06 
1.888E-06 
1.888E-06 
1.887E-06 
1.888E-06 

0 
1.492E-06 
1.492E-06 
1.493E-06 
1.492E-06 
1.492E-06 
1.492E-06 
1.493E-06 
1.492E-06 

0 
1.198E-06 
1.197E-06 
1.197E-06 
1.198E-06 
1.197E-06 
1.197E-06 
1.197E-06 
1.197E-06 

0 
9.73E-07 
9.74E-07 
9.74E-07 
9.73E-07 
9.74E-07 
9.74E-07 
9.74E-07 
9.74E-07 

 
Table 14  

Variables 

Maximum Error in [0, 2] 

200
100Err  300

200Err  400
300Err  500

400Err  600
500Err  

x1 2.432E-06 1.888E-06 1.492E-06 1.198E-06 9.740E-07 

x2 2.432E-06 1.888E-06 1.492E-06 1.198E-06 9.740E-07 
 
Conclusion 

 In this paper, the  applicability and effectiveness of the 
STWS technique in determining discrete solutions for the  stiff 
non-linear systems has been studied by comparing with the 
discrete solutions obtained using RK methods based on AM, 
HaM, CeM and CoM. To demonstrate the effectiveness of the 
STWS technique, four examples of stiff non-linear   systems 
have been considered. The stiffness ratios have been 
determined for the systems under discussion. 

From the Tables 4 - 9, it is evident that the absolute errors 
in STWS solutions of the stiff non-linear systems given in 
Examples 1 – 3 are lesser than the absolute errors in the 
solutions of the RK methods by variety of means. This proves 
that the STWS technique has an edge over RK methods based 
on variety of means in terms of accuracy.  

From the Tables 10 and 11, it is observed that the STWS 
solutions of the stiff non-linear system given in Examples 4 

(whose analytic solution is not known) agree well with that of 
the RK methods based on variety of means. Further, Table 14 
shows that the errors in x(t) decreases as the value of ‘m’ 
increases.  

Hence, in general, it is concluded that the proposed 
STWS technique is highly stable and very much applicable for 
solving stiff linear and non-linear autonomous as well as non-
autonomous problems including highly stiff problems.  
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