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Abstract 

Article History 
 Various types of moments have been used to recognize planar shapes. The algorithms are 

mostly based upon extracting moment features and train the machine to match these 
features with a database of templates. The shape could be represented by a polygon whose 
vertices lie on the boundary. The computational complexity of algorithm is a function of 
number of vertices of polygon. In this paper, we first present one such algorithm for hand 
drawn shapes. Vertices are picked up randomly as the user draws the shape with the help of 
mouse on a monitor. We have used a database of four templates for training the machine. 
The robustness of the algorithm based upon the moment features has been exhibited by 
matching a test shape that is a distortion of one of template stored in the database. In the 
second part of paper we have proposed an optimization technique that discards most of the 
redundant vertices of the polygon representing the shapes, thus reducing significantly the 
complexity. Integral square error norm is used to calculate optimal vertices and nearest – 
neighbor (NN) classifier for classifying the shapes. Empirical results have been presented 
for extracting the moment feature vectors. 
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Introduction 

In this paper, a database of four hand drawn shapes has 
been used to train the machine to recognize shapes. A two-
dimensional (2D) moment introduced by Hu [1] and one-
dimensional (1D) contour sequence moments by Gupta and 
Srinath [2], with one component added to the feature vector 
has been used. 

 A computer program using the Borland Visual C++ is 
developed that picks up randomly the vertices of the polygon 
representing the shape as the user draws it on the monitor by 
dragging the mouse. The contour of geometric shape  can be 
described by an ordered set N vertices pi = ( xi , yi) ; i = 1,2,..,N  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

where pi +1 is a neighbor of pi (module N). Let Z(i) be the 
Euclidean distance of the ith  vertex from the centroid. For each 
hand drawn shape, the contour sequence moment is defined 
as the array Z(i): i = 1,2,..,N.The hand drawn shapes a-d are 
displayed in Figure 1 and the corresponding contour 
sequences are displayed in Figure 2. 
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With the help these contour sequences the components 
(F1, F2, F3, F4, F5) of the feature vector F are defined as:  

 

 
 

The feature vectors F of the hand drawn shapes are listed  
 in Table I. 

   
  Table I: Normalized contour sequence moments of original shapes a-d and their optimal shapes e-h 

 
 

Classifying Distorted Shapes  
 
Distortion function: 
The distortion function takes two arguments: the first a 

real number p and second an offset (dx,dy) , it randomly 
selects p percentage of the vertices of the shape and shifts 
each one of them to any one of the eight neighboring points ± 
(x±dx,y±dy) randomly. 

 For example, for p=0.1 and for dx=1, dy=1, 10% of the 
randomly selected vertices will shift to one of their respective 
eight nearest-neighbors randomly. The distortion is modeled as 
a Gaussian random noise. The nearest-neighbor (NN) 
classifier has been used for matching the distortion with the 
original. The description of NN classifier is given below. 

 
NN classifier:  
The nearest-neighbor classifier labels an unknown shape 

represented by a 5-dimensional feature vector X =[X1, X2, X3, 
X4, X5] with the label of the nearest neighbor of X among all the 
training samples. The distance between X and a training 
sample are measured using Euclidean distance. This is a 

mapping from 5-dimensional feature vector space onto a 1-
dimensional Euclidean space. 

Let FK = [FK1; FK2; FK3; FK4; FK5], K=1,2,3,4 be the             
5-dimensional training feature vector of the K-th class. The 
unknown test sample X is classified to class K*, where 

K* = arg  minK  d (X,FK) ;       K=1,2,3,4.    
 
Computer simulation: 
Distortion function has been used to introduce 

monotonically increasing noise. The noise introduced in this 
manner alters the amplitude duration and over all shape of 
resulting contour sequence representation. In the training 
phase, reference feature vectors FK =[FK1; FK2; FK3; FK4; FK5], 
K=1,2,3,4 were computed for all four hand drawn shapes. In 
the testing phase one hundred distorted shapes of each of the 
shape has been generated using a particular value of dx, dy 
and p. NN classifier described above has been than used to 
recognize by matching the distortion with the original shape. 

 F1 F2 F3 F4 F5 

Original:  
     

Shape (a) 0.459864 -0.0735808 1.71522 -0.015820 3.47974 
Shape (b) 0.460720 -0.0414717 1.67194 -0.114521 3.23941 
Shape (c) 0.491434  0.0287178 1.69621 -0.024448 3.42233 
Shape (d) 0.466609  0.0556029 1.85951  0.109075 4.06449 
Optimal:      
Shape (e) 0.460402 -0.1687660 1.64606 -0.381847 3.20971 
Shape (f) 0.550918  0.2842860 2.49774  2.064740 8.85521 
Shape (g) 0.486562  0.3314800 2.34005  1.823670 7.39668 
Shape (h) 0.431112 -0.0848057 2.03209 -0.479509 5.16413 
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We have found that in almost hundred percent of the cases the 
machine is able to classify the shapes correctly if the 
arguments to the Gaussian distortion function are assigned 
reasonable value. This establishes that the Gaussian distortion 
has very little effect in case of hand drawn shapes. In other 
words the normalized moment descriptor is able to withstand 
small distortions. 

In the next section we show that only a small portion of 
the vertices play an important role and most of the vertices 
could be eliminated by an optimization technique, thus 
reducing the time complexity significantly with minimal effect 
on the accuracy.  

Effect of Optimization 
The computational complexity of extracting feature vector 

is obviously proportional to a polynomial function of number of 
vertices of the polygon representing the shape. In this section 
we describe an optimization technique and study its effect on 
the wisdom of machine. The algorithm discards most of the 
almost collinear vertices whose contribution towards the shape 
is negligible.  The algorithm that is a slight modification of that 
given by Ray and Ray [3] is stated below. 
Algorithm for optimal Polygon using Integral Square error: 
Comments: The inputs are the data points (xi, yi), i = 1,..,N. 
The outputs are the optimal vertices (xj*, yj*) and j*. All 
arithmetic is in modulo N. 
 
Step 1: Initiate i=1. 
Step 2: Set j = i + 1. 
Step 3: Compute Fj = {(xj – xi)2 + (yj - yi)2}1/2 
Step 4:Change j to j+1 
 

 
 

Table II:  Reduction of vertices using E2 error norm 
 
 

 
Table III: Recognition rate 

Step 5:Compute  
Fj = { (xj – xi)2 + (yj - yi)2}1/2 —  
                 ∑k= i+1,j-1 {(yj – yi) xk – (xj – xi) yk + xjyi -xiyj}2 

 
                          {(xj – xi)2 + (yj - yi)2}1/2  
Step 6: If Fj ≥ Fj-1 , then go to step 5 
     Else write j* = j-1 and (xj*,yj*) 
     Set i = j* and go to step 2 
Step 7: Repeat this process until j* is repeated. 
Step 8: Join (xj*,yj*) successively to determine the optimal 
polygon. 
Step 9: End of algorithm 

Table II compares the number of vertices in the original 
shape to that of the optimal shape. We have found that the 
percentage reduction in number of vertices varies between 80 
and 90. Figure2 shows the contour sequence moment and 
corresponding optimal contour sequence moment of all hand 
drawn shapes. 

The computer simulation, described above, is repeated by 
using the four optimal shapes. We find that there is practically 
no effect on the rate of recognition if the noise introduced is 
small. Indeed, the recognition rate is around 98% even when 
25% of vertices are distorted by three pixel each. The machine 
may falter only if one of the corner vertex is shifted significantly 
from its original position. That establishes that normalized 
moment descriptor could be used for hand drawn noisy shapes 
as well. 

 Table III exhibits the probability error (the ratio of the 
number of mismatched to that of the total number of noisy 
shapes) and the recognition rate after optimization distortion 
steps. We emphasize that the optimization technique will not 
compromise on the wisdom of the machine.  

 
 
 
 

 

 Number of vertices Comparison rate  
          (n / nV ) 

Percentage of data 
reduction Original shapes (n) Optimal shapes (nV) 

Shape (a) 500 91 5.49 81.80 
Shape (b) 535 76 7.04 85.79 
Shape (c) 502 88 5.70 82.47 
Shape (d) 471 55 8.56 88.32 

 Distortion  Original shape                Optimal shape 
p dx dy Number  of 

mismatches  
out of 400 

Probability  
error 

Recognition 
rate 

Number  of 
mismatches 
out of 400 

Probability 
error 

Recognition 
rate 

0.25 1 1 0 0.0 100 0   0.0 100 
0.25 2 2 0 0.0 100 2 0.005 99.5 
0.25 3 3 0 0.0 100 8 0.02 98.0 
0.50 1 1 0 0.0 100 1 0.0025 99.75 
0.50 2 2 0 0.0 100 5 0.0125 98.75 
0.50 3 3 0 0.0 100 9 0.0225 97.75 
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Conclusion  

We conclude that the contour sequence moments are 
able to recognize hand drawn shapes with almost hundred 
percent accuracy under small Guassian distortion and the 
uniqueness theorem given by Papoulis[4] for 1D contour 
sequence moments  is stable even under noisy shapes. In the 
second part, we have shown that the time taken for evaluation 
of the optimal feature vector was between (1/10)th to (1/20)th of 
the original but the accuracy remained almost the same. 
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