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DEGREE UPPER BOUNDS FOR H-BASES

AMIR HASHEMI - MASOUMEH JAVANBAKHT - H. MICHAEL MÖLLER

The main objective of this paper is to present upper bounds for the
degree of H-bases of polynomial ideals. For this purpose, we introduce
the new concept of reduced H-bases and show that the maximal degree
of the elements of any reduced H-basis of an ideal is independent of the
choice of the basis. Furthermore, we show that, given an ideal, this maxi-
mal degree is invariant after performing any linear change of variables on
the ideal. These results allow us to establish explicit degree upper bounds
in the case of either a zero-dimensional ideal or an ideal generated by a
regular sequence.

1. Introduction

The concept of Gröbner bases, introduced by Buchberger in 1965 in his PhD
thesis [9], has played an important role in the development of computational
algebraic geometry. This concept is an important ingredient to study various
problems in science and engineering. Furthermore, it has many applications
in different areas such as optimization, coding theory/cryptography, signal and
image processing, robotics, statistics and so on, see e.g. [8].

One of the main drawbacks of Gröbner bases is the fact that they are based
on term orderings [14] and therefore computing a Gröbner basis of an ideal
generated by a set of symmetric polynomials may break the symmetry among
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the variables. In addition, Gröbner bases are not numerically stable. Hence,
investigating for alternative bases for polynomial ideals which are not tied to a
term ordering (which behave numerically stable under small perturbations) is
worthwhile. In this direction, several theories have been developed. One of the
attractive tools for this purpose is the theory of border bases, which was intro-
duced in [37]. These bases behave numerically better than Gröbner bases and
preserve also the symmetry; for a discussion of their properties, see [30]. For
a Gröbner-free normal form construction using linear algebra tools in the spe-
cial case of vanishing ideals of points, we refer to [34]. On the other hand, as
another numerically stable tool, Macaulay in 1914 in [35] introduced the con-
cept of H-bases which is independent of monomial orderings and merely tied to
the maximal degree (homogeneous) part of a polynomial. Indeed, he computed
an H-basis for a specific example by determining syzygies among the leading
parts of the polynomials. The original motivation of Macaulay was to transform
systems of polynomial equations into simpler ones. Although this notion was
known long before Gröbner bases, due to the lack of symbolic methods for com-
puting H-bases, they were not developed as much as Gröbner bases. We shall
note that the structure of H-bases in a constructive way was first studied in [52]
and later on in [40]. The main algorithm to construct these bases in a monomial
free fashion was introduced in [46] by using a reduction algorithm which is a
straightforward extension of the division algorithm which uses monomial order-
ing. This generalized reduction provides a facility to characterize H-bases which
yields a natural extension of Buchberger’s algorithm to compute H-bases which
will be referred to as the H-Basis algorithm in this paper. For a comprehensive
discussion on the construction of H-bases, their properties and their applications
to the solution of polynomial systems and to some numerical analysis problems
such as interpolation problem, we refer to [41, 46].

In this paper, we are interested in giving upper bounds for the maximal de-
gree of the elements of an H-basis of a given ideal. To the knowledge of the
authors, this subject has not been studied in literature. For practical applications
and in particular, for the implementation of algorithms in computer algebra sys-
tems, it is important to establish upper bounds for the complexity of determining
an H-basis. Using Lazard’s algorithm [32], a good measure to estimate such a
bound for Gröbner bases, is an upper bound for the degrees of the intermedi-
ate polynomials during the Gröbner basis computation. To review some of the
existing results for Gröbner bases, let P be the polynomial ring K[x1, . . . ,xn]
where K is a field of characteristic zero and I ⊂ P be an ideal generated by
homogeneous polynomials of degree at most d with dim(I) = D. The first dou-
bly exponential upper bounds were proven by Bayer, Möller, Mora and Giusti,
see [42, Chapter 38] for a comprehensive review of this topic. Based on results
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due to Bayer [1] and Galligo [19, 20], Möller and Mora [39] provided the up-
per bound (2d)(2n+2)n+1

for any Gröbner basis of I. They also proved that this
doubly exponential behavior cannot be improved. Simultaneously, Giusti [21]
showed the upper bound (2d)2n−1

for the degree of the reduced Gröbner basis
(w.r.t. the degree reverse lexicographic order) of I when the ideal is in generic
position. Then, using a self-contained and constructive combinatorial argument,
Dubé [16] proved the so far sharpest degree bound 2(d2/2+d)2n−1 ∼ 2d2n

. Mayr
and Ritscher [38], following the tracks of Dubé [16], obtained the dimension-
dependent upper bound 2(1/2dn−D + d)2D−1

for every reduced Gröbner basis
of I. Finally, using a combination of Hermann’s bound and the bound given
by Dubé, Wiesinger-Widi [53] was able to give new bounds for Gröbner bases
computation, see also [43, page 800].

In this article, we give first an upper bound for an H-basis in terms of the
Hilbert regularity, satiety and dimension of the ideal. In addition, we discuss
this bound in generic position by introducing the new notion of reduced H-
bases and showing that the maximal degree of the elements of an H-basis of an
ideal is independent of the choice of the basis and is stable after performing any
linear change of variables on the ideal. Our study shows that in general H-bases
may be reached earlier than Gröbner bases. Since in our approach, we apply
Pommaret bases, let us give some historical remarks on these bases. Pommaret
division was introduced by Janet [28] in order to apply Cartan test [10–12] for
producing, essentially, an H-basis of minimal degree. This result and its relation
with Castelnuovo-Mumford regularity was discussed in [36], see also [13].

The rest of the paper is organized as follows. Secs. 2, 3 and 4 are devoted
to review some preliminaries on Gröbner bases, Pommaret bases, and H-bases,
respectively. In these sections, we give some helpful properties of these bases
needed throughout this paper. In Sec. 4, we state and prove an upper bound for
the degrees of the elements in an H-basis of a given ideal. Finally, in Sec. 5 we
analyse this bound in generic position and show that in general H-bases may be
reached earlier than Gröbner bases.

2. Gröbner bases

In this section, we review the basic notations and some definitions related to
Gröbner bases that we use in this article. Throughout this paper, we will employ
the following notations. Let P = K[x1, . . . ,xn] be the polynomial ring over K
where K is an infinite field and n≥ 2. We consider also the (not necessarily ho-
mogeneous) polynomials f1, . . . , fk ∈P with k≥ 2 and the ideal I = 〈 f1, . . . , fk〉
generated by these polynomials. Assume that fi is (non-zero and) of total degree
di. We number the fi’s in order that d1 ≥ d2 ≥ ·· · ≥ dk ≥ 2 and set d = d1. Fur-
ther, we denote by R= P/I the corresponding factor ring and by D = dim(I)
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its Krull dimension. The following convention is adopted in this paper: We shall
use capital letters to designate homogeneous polynomials. Also, J denotes the
homogeneous ideal in P generated by F1, . . . ,Fk and the other notations remain
the same as earlier.

A power product of the variables x1, . . . ,xn is called a term and T denotes
the monoid of all terms in P . We fix the term ordering ≺ on P given by the
reverse degree lexicographic ordering with xn ≺ ·· · ≺ x1. The leading term of a
polynomial 0 6= f ∈ P , denoted by LT( f ), is the greatest term (with respect to
≺) appearing in f and its coefficient is the leading coefficient of f and we denote
it by LC( f ). The leading monomial of f is the product LM( f ) = LC( f )LT( f ).
The leading term ideal of I is defined to be LT(I) = 〈LT( f ) | 0 6= f ∈ I〉. For
a finite set F = { f1, . . . , fk} ⊂ P , let LT(F) be the set {LT( f1), . . . ,LT( fk)}.
A finite subset {g1, . . . ,gm} ⊂ I of non-zero polynomials is called a Gröbner
basis for I w.r.t. ≺ if LT(I) = 〈LT(G)〉. In the sequel, deg(I,≺) stands for the
maximal degree of the elements of the reduced Gröbner basis of I with respect
to ≺. We refer e.g. to [14] for more details on Gröbner bases.

If X is a graded module or a homogeneous ideal and s is a positive integer,
we denote by Xs the K-vector space of elements of X of degree s. To define the
Hilbert regularity of a homogeneous idealJ ⊂P , recall that the Hilbert function
of J is defined by HFJ (t) = dimK(Rt) where dimK(Rt) denotes the dimension
of Rt as a K-vector space. From a certain degree, this function of t is equal to
a polynomial in t, called Hilbert polynomial, and denoted by HPJ (see e.g.
[14]). It is useful to remark that if J is zero-dimensional then HPJ (t) = 0 has
degree−1. Thus, in this case, the affine variety of J has finitely many elements,
however its projective variety is the empty set. So, the projective dimension of
J is −1. Otherwise, if D > 0, the degree of HPJ is equal to D− 1. Note that
throughout this article, for each ideal (even if the ideal is homogeneous) we use
its Krull dimension which corresponds to the dimension as affine variety (and
not as projective variety).

Definition 2.1. The Hilbert regularity of J is

hilb(J ) = min{m | ∀t ≥ m, HFJ (t) = HPJ (t)}.

Recall that the Hilbert series of a homogeneous idealJ ⊂P is the following
power series

HSJ (t) =
∞

∑
s=0

HFJ (s)ts.

It is well-known that the Hilbert series of a homogeneous ideal may be ex-
pressed as the quotient of two polynomials.

Proposition 2.2. There exists a univariate polynomial p(t) so that HSJ (t) =
p(t)/(1− t)D with p(1) 6= 0. Moreover, hilb(J ) = max{0,deg(p)−D+1}.
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For the proof of this proposition we refer to [18, Thm 7, page 130] and [7,
Prop. 4.1.12]. From [14, Prop. 4, page 458] we deduce that the Hilbert func-
tion of J is the same as that of LT(J ) and this provides an effective method
to compute the Hilbert series of an ideal using Gröbner bases, see e.g. [22].
Similar to the notion of Hilbert function of a homogeneous ideal (in the pro-
jective setting), one can define the affine Hilbert function for an arbitrary ideal.
If X is a module or an ideal and s is a positive integer, we denote by X≤s the
K-vector space of elements of X degree ≤ s. Then, the affine Hilbert func-
tion of I is aHFI(t) = dimK(R≤t). The similar concepts of Hilbert polyno-
mial, Hilbert series and Hilbert regularity may be defined for a given ideal
I. It should be noticed that LT(I) and I share the same affine Hilbert func-
tion. In addition, for any (not necessarily homogeneous) ideal I, the degree
of aHPI is equal to dim(I). For example, if an ideal is zero-dimensional
then its affine Hilbert polynomial is 1. For a homogeneous ideal J we have
HFJ (t) = aHFJ (t)− aHFJ (t−1), For more details, see [14, Chap. 9].

In all the paper, we keep the following notations concerning the homog-
enization of an ideal of P . We denote by hP the ring K[x1, . . . ,xn+1] where
xn+1 is a new variable. For any polynomial f ∈ P , we consider its homog-
enization h f = xdeg( f )

n+1 f (x1/xn+1, . . . ,xn/xn+1) ∈ hP . For an ideal I ⊂ P , we
let Ĩ = 〈h f1, . . . ,

h fk〉. Note that this notion is not well-defined, because Ĩ de-
pends on the basis f1, . . . , fk. In addition, the homogenization of I is defined as
hI = 〈h f | f ∈ I〉 ⊂ hP . From loc. cit., we know that aHFI(t) = HFhI(t).

We end this section by giving the definition of the degree of a homogeneous
ideal from [23, page 52]. Assume that J is a homogeneous ideal of dimension
D. If D > 0, then the degree of J , denoted by deg(J ), is (D− 1)! times the
leading coefficient of the Hilbert polynomial of J . If D = 0, then it is defined
to be the sum of the coefficients of HSI(t).

3. Pommaret bases

In this section, we give some basic properties of Pommaret bases which are used
in the subsequent sections. We follow the notations fixed in Sec. 2.

Given a polynomial f ∈ P with LT( f ) = xα where α = (α1, . . . ,αn), the
class of f is the integer cls( f ) = max{i | αi 6= 0}. Then the multiplicative vari-
ables of f are XP( f ) = {xcls( f ), . . . ,xn}. The term xβ is a Pommaret divisor of
xα , and we write xβ |P xα , if xβ | xα and xα−β ∈K[XP(xβ )].

Definition 3.1. Suppose that H ⊂ I is a finite set such that no leading term of
an element of H is a Pommaret divisor of the leading term of another element.
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Then H is a Pommaret basis of I, if

LT(I) =
⊕
h∈H

K[XP(h)] ·LT(h) .

From this definition, it follows that a Pommaret basis remains a Gröbner
basis of the ideal that it generates, however the converse may not be true. On
the other hand, Pommaret bases do not always exist. If the base field K is infinite
then any ideal has a Pommaret basis after a generic linear change of variables
[48]. Indeed, quasi stable position is exactly the notion of generic position to
characterize the existence of finite Pommaret bases.

Definition 3.2. A monomial idealJ is called quasi stable, if for any term m∈J
and all integers i, j,s with 1≤ j < i≤ n and s > 0, if xs

i |m there exists an integer
t ≥ 0 such that xt

jm/xs
i ∈ J . A homogeneous ideal is in quasi stable position if

its leading term ideal is quasi stable.

Proposition 3.3. [48] A homogeneous ideal J has a Pommaret basis, if and
only if it is in quasi stable position.

Let us now recall the definition of a regular sequence and the depth of an
ideal. A sequence of polynomials f1, . . . , fk ∈ P is called regular if fi is a non-
zero divisor in the ring P/〈 f1, . . . , fi−1〉 for i = 2, . . . ,k. It is shown that the
Hilbert series of a regular sequence of homogeneous polynomials F1, . . . ,Fk ∈P
is equal to ∏

k
i=1(1− tdi)/(1− tn) where di = deg(Fi), see e.g. [18, 33]. Given a

homogeneous ideal J , a sequence of homogeneous polynomials G1, . . . ,Gt ∈P
is called almost regular on P/J if Gi for i = 2, . . . , t is a non-zero divisor on
the ring P/(J + 〈G1, . . . ,Gi−1〉)≥s for some s sufficiently large. In this case,
we say that Gi is an almost non-zero divisor on P/(J + 〈G1, . . . ,Gi−1〉). This
is equivalent to the condition that Gi is outside of all associated primes of J +
〈G1, . . . ,Gi−1〉 except the maximal homogeneous ideal of P . For more details,
see e.g. [31, page 290]. The depth of the homogeneous ideal J is defined
to be the maximum integer λ so that there exists a regular sequence of linear
homogeneous forms y1, . . . ,yλ on P/J . Furthermore, P/J is called Cohen-
Macaulay if depth(J ) = dim(J ). Note that if P/J is Cohen-Macaulay then J
is unmixed1, see [33, Prop. 4.3.1, page 109]. It is well-known that if f1, . . . , fk ∈
P is a regular sequence then 〈 f1, . . . , fk〉 is unmixed, see e.g. [7, Thm. 2.1.6].

Let us recall the definitions of satiety and Castelnuovo-Mumford regularity
of a homogeneous ideal. Let m = 〈x0, . . . ,xn〉 be the unique maximal homoge-
neous ideal of P . The saturation of J is defined as J : m∞ =

⋃
∞
i=1J : mi and

is denoted by J sat. The ideal J is called saturated if J =J sat. Equivalently, J

1An ideal is unmixed if all associated primes of the ideal share the same dimension.
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is saturated iff the maximal homogeneous ideal 〈x1, . . . ,xn〉 is not an associated
prime of J .

Definition 3.4. The satiety of J , denoted by sat(J ), is the smallest positive
integer m such that Js = J sat

s for all s≥ m.

From Noetherianity of P , it follows that the satiety of a homogeneous ideal
is always finite.

Definition 3.5. A homogeneous ideal J ⊂ P is m-regular, if there exists a
minimal graded free resolution:

0−→
⊕

j

P(er j)−→ ·· · −→
⊕

j

P(e1 j)−→
⊕

j

P(e0 j)−→J −→ 0

of J such that ei j− i≤m for each i, j. The Castelnuovo-Mumford regularity of
J is the smallest m such that J is m-regular; we note it by reg(J ).

For more details on the regularity, we return to [2, 4, 17, 44]. By a well-
known result, reg(I) is an upper bound for the degrees of the Gröbner basis
elements, in generic coordinates and for the degree reverse lexicographic order-
ing. This upper bound is reached if the characteristic of K is zero, see [2]. From
[24], it is helpful to highlight an important relation between Hilbert regularity,
satiety and Castelnuovo-Mumford regularity by the equality

reg(J ) = max{sat(J ),sat(J + 〈L1〉), . . . ,sat(J + 〈L1, . . . ,LD〉)}
= max{hilb(J ),hilb(J + 〈L1〉), . . . ,hilb(J + 〈L1, . . . ,LD〉)}

where L1, . . . ,LD is an almost regular sequence of linear polynomials for P/J .
We conclude this section by listing some helpful properties of the ideals

in quasi stable position from [25, Thm. 16]. Assume that J is a homoge-
neous ideal (in quasi stable position) having a finite Pommaret basis H. Then,
we have reg(J ) equals the maximal degree of the elements of H. In addition,
depth(J ) = depth(LT(J )) is given by n minus the maximal class of an element
of H. Also, J sat = J : x∞

n and sat(J ) = sat(LT(J )) which equals the maxi-
mal degree of an element of class n in H. Finally, P/J is Cohen-Macaulay,
if and only if P/LT(J ) is Cohen-Macaulay. For more details on the theory of
Pommaret bases and its applications, we refer the reader to [47–49].

4. H-bases

In this section, we recall briefly the definition of an H-basis and the main prop-
erties, that we will need. H-bases can also be defined similar to Gröbner bases,
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if one replaces the concept of leading term by the leading form. Given a poly-
nomial f ∈ P , the leading form of f , denoted by LF( f ), is the highest degree
homogeneous part of f . Indeed, LF( f ) is the sum of all monomials appearing in
f with the highest degree. In addition, for a given finite set F = { f1, . . . , fk} the
leading form of F is denoted by LF(F) = {LF( f1), . . . ,LF( fk)}. The leading
form ideal of I is defined as LF(I) = 〈LF( f ) | 0 6= f ∈ I〉.

Definition 4.1. A finite set H = {h1, . . . ,ht} ⊂ I is called an H-basis for I if

LF(I) = 〈LF(h1), . . . ,LF(ht)〉. (1)

In the literature these bases are known also under the name Macaulay bases,
see e.g. [31, page 43]. For more details on the theory of H-bases, we refer to
[31, 40, 41, 46]. It can be seen that there is a very close relationship between
H-bases and Gröbner bases. It was remarked in [40] that any Gröbner basis
w.r.t. any degree compatible term ordering (i.e., for two polynomials p,q, if
deg(p) < deg(q) then p ≺ q) is also an H-basis. This approach may lead to a
naive degree upper bound for H-bases that we discuss in the following. Keep-
ing the notations of Sec. 2, we let I = 〈 f1, . . . , fk〉. Following [18, Def. 31,
page 112] we consider a good extension ≺h of ≺ defined by the degree reverse
lexicographic ordering with xn+1 ≺ xn ≺ ·· · ≺ x1. Suppose that {G1, . . . ,Gm}
is a Gröbner basis of Ĩ w.r.t. ≺h. By [18, Prop. 34, page 113], we know that
G = {G1|xn+1=1, . . . ,Gm|xn+1=1} forms a Gröbner basis for I w.r.t. ≺. Moreover,
from [31, Thm. 4.3.19], it follows that G remains an H-basis for I. Assume
that U(n,d) is a function presenting a degree upper bound for the Gröbner basis
of a homogeneous ideal J . Then, these arguments entail the naive upper bound
U(n+1,d) for the degrees of the polynomials in an H-basis of I. Remark that
it is not true that every H-basis is obtained from a Gröbner basis as it was shown
in [41], see also Exam. 6.6. This is the crucial property allowing us to present
sharper degree upper bounds for H-bases in the next sections.

Below, we give a brief review of the construction of H-bases. This algorithm
is based on a reduction procedure which is a fairly straightforward extension
of the well-known division algorithm. Assume that F = { f1, . . . , fk} ⊂ P and
f ∈ P . Then, we say that f is reducible modulo F and write f −→F r if r =
f −∑

k
i=1 gi fi,deg(r)< deg( f ) and deg(gi fi)≤ deg( f ). In addition, we say r is a

remainder of the division of f by F and write f ∗−→F r if there exists a sequence
of polynomials r1, . . . ,rm ∈ P with f −→F r1 −→F · · · −→F rm = r and r is no
longer reducible modulo F . If a polynomial f is not reducible by F , we say
that it is reduced w.r.t. F . We refer the reader to [45] for an efficient reduction
process.

Definition 4.2. An H-basis H = {h1, . . . ,ht} ⊂ P is reduced if for each i, hi is
reduced w.r.t. H \{hi}.
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It is worth noting that there may not exist a unique reduced H-basis for
a given ideal. As a toy example, let I = 〈x2 − y2,x2 + y2〉. Then, the sets
{x2− y2,x2 + y2} and {x2,y2} are two reduced H-bases for I. This general-
ized reduction provides a characterization of H-bases by means of the module
of syzygies (referred to also as syzygy module). Let us briefly recall this notion.

Definition 4.3. For a given finite sequence (F1, . . . ,Fk) ∈ Pk of homogeneous
polynomials, the (first) module of syzygies is defined as

Syz(F1, . . . ,Fk) = {(G1, . . . ,Gk) ∈ Pk |
k

∑
i=1

GiFi = 0}.

We shall note that the study of syzygies may be traced back to [27]. It
is well-known that Syz(F1, . . . ,Fk) as an P-module is finitely generated, see
[50]. The classical method to construct a basis for such a module by using a
Gröbner basis of 〈F〉, was described in [8]. The following result [46] is useful
to characterize H-bases.

Theorem 4.4. Let H = {h1, . . . ,ht} ⊂ P and G a basis for Syz(LF(H)). Then
H is an H-basis for 〈H〉 if and only if for each (G1, . . . ,Gt) ∈ G we have
∑

t
i=1 Gihi

∗−→H 0.

According to this theorem, we are able to describe a straightforward exten-
sion of Buchberger’s algorithm, referred to as the H-Basis algorithm, to compute
H-bases, see [46].

Algorithm 1 H-Basis
Require: H ⊂P; a finite set
Ensure: An H-basis for 〈H〉

G:=A basis for Syz(LP(H))
while G 6= {} do

select and remove (Gp | p ∈ H) from G
let ∑p∈H Gp p ∗−→H h
if h 6= 0 then

H := H ∪{h}
G:=A basis for Syz(LF(H))

end if
end while
Return (H)

5. Degree bounds for H-bases

In this section, we prove upper bounds for the degrees of elements in an H-basis
of a given ideal. We maintain the notations of Sec. 2. Let us fix some further
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notations. Throughout this section, for polynomials h1, . . . ,ht ∈ P , we denote
by J the homogeneous ideal generated by LF(h1), . . . ,LF(ht). For an arbitrary
s let

Js = {∑t
i=1 GiLF(hi) | Gi ∈ Ps−deg(hi)} ,

Syzs(LF(h1), . . . ,LF(ht)) = {(G1, . . . ,Gt) | ∑t
i=1 GiLF(hi) = 0,Gi ∈ Ps−deg(hi)} .

Indeed, the ideal generated by h1, . . . ,ht can eventually contain polynomials f
such that LF( f ) is not included in J . This leads to the definition of H-bases.
Following [32], we define below the notion of truncated H-bases.

Definition 5.1. The set {h1, . . . ,ht} ⊂ I is called an H-basis for I up to (de-
gree) K, if one of the following equivalent conditions holds for all non-negative
integers s≤ K.

(1) If f ∈ I≤s then f = ∑
t
i=1 pihi with pi ∈ P≤s−deg(hi) for i = 1, . . . , t.

(2) If p ∈ I and deg(p) = s, then LF(p) ∈ Js.

(3) For each (G1, . . . ,Gt) ∈ Syzs(LF(h1), . . . ,LF(ht)), there exists p1, . . . , pt

in P such that ∑
t
i=1 Gihi = ∑

t
i=1 pihi with pihi ∈ P≤s−1.

In particular, the set {h1, . . . ,ht} is an H-basis for I, if it is an H-basis up to K
for all K.

The main obstacle in constructing H-bases is to find conditions for an H-
basis up to a fixed K, which allow to conclude that it is already an H-basis.

In the sequel we shall need the following lemmatas in which L (resp. `)
denotes always a (resp. not necessarily) homogeneous linear polynomial in P .

Lemma 5.2. Let H = {h1, . . . ,ht} ⊂ I, J = 〈LF(h1), . . . ,LF(ht)〉 ⊂ P and K
an arbitrary positive number. Let L ∈ P1 be a homogeneous linear non-zero
divisor on P/J . If H is an H-basis for I up to K then {L,h1, . . . ,ht} is also an
H-basis for the ideal it generates up to K .

Proof. We prove the assertion by showing that (3) of Def. 5.1 holds, i.e., for
every

(G0,G1, . . . ,Gt) ∈ Syzs(L,LF(h1), . . . ,LF(ht))

and s≤K we have to show that there exist p0, p1, . . . , pt such that we have G0L+
∑

t
i=1 Gihi = p0L+∑

t
i=1 pihi with p0 ∈ P≤s−2, pihi ∈ P≤s−1. Now, two cases

may occur: Case 1 Let G0 = 0, then (G1, . . . ,Gt) ∈ Syzs(LF(h1), . . . ,LF(ht)).
Since H is an H-basis up to K, from (3) of Def. 5.1 it follows that there are
g1, . . . ,gt such that G0L+∑

t
i=1 Gihi = 0 ·L+∑

t
i=1 gihi with gihi ∈P≤s−1. Thus in

this case the assertion holds. Case 2 If G0 6= 0 then G0L=−∑
t
i=1 GiLF(hi)∈J .
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Therefore from assumption we have G0 ∈J . Since G0 ∈Ps−1, it has a represen-
tation of the form G0 = ∑

t
i=1UiLF(hi) where Ui ∈ Ps−1−deg(hi) is homogeneous.

Substituting this G0 in the representation for G0L gives

(U1L+G1, . . . ,UtL+Gt) ∈ Syzs(LF(h1), . . . ,LF(ht)) .

Using the fact that that H is an H-basis up to K, we find gi ∈ P≤s−1−deg(hi), such
that ∑

t
i=1(UiL+Gi)hi = ∑

t
i=1 gihi. It is clear that G0 = LF(∑t

i=1Uihi), and in
turn we can write

G0L+
t

∑
i=1

Gihi = (G0−
t

∑
i=1

Uihi)L+
t

∑
i=1

gihi .

This entails that in both cases that condition (3) of Def. 5.1 holds true. There-
fore H ∪{L} is an H-basis for the ideal it generates up to K.

Lemma 5.3. Suppose that H = {h1, . . . ,ht} ⊂ I and ` ∈ P is a linear non-zero
divisor on P/〈h1, . . . ,ht〉. If H∪{`} is an H-basis for the ideal it generates then
H is an H-basis for I.

Proof. In contrary, assume that H is not an H-basis for I. By (1) of Def. 5.1,
there exists f ∈I with deg( f )= s such that it cannot be written as a combination
of degree at most s of the hi’s. We may assume that f has minimal degree with
this property. Since {`,h1, . . . ,ht} is an H-basis, polynomials p0 ∈ P≤s−1 and
pi ∈ P≤s−deg(pi) for i = 1, . . . , t exist satisfying f = p0`+∑

t
i=1 pihi. It follows

from assumption of our lemma that p0 ∈ 〈h1, . . . ,ht〉. Since p0 ∈ P≤s−1, by
the choice of f , one obtains polynomials u1, . . . ,ut so that p0 = ∑

t
i=1 uihi, with

uihi ∈ P≤s−1, i = 1, . . . ,s. Substituting this p0 in the representation for f , one
obtains f = ∑

t
i=1(pi +ui`)hi with (pi +ui`)pi ∈ P≤s for i = 1, . . . ,s. Hence we

will arrive at a contradiction.

The following lemma may be well-known, however, since we could not find
the exact statement that we need in the literature, we give a proof for the sake of
completeness.

Lemma 5.4. With the above notations, assume that J is saturated . Then, there
exists a linear homogeneous polynomial which is a non-zero divisor on P/J .

Proof. Let {P1, . . . ,Pm} be the set of all associated primes of J . From assump-
tion, we may infer that the maximal homogeneous ideal of P does not belong
to this set. Consider the K-linear space S =Kn and for each integer i = 1, . . . ,m
we define the subspace

Si = {(a1, . . . ,an) ∈ S | a1x1 + · · ·+anxn ∈ Pi}
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It is easy to see that Si is a subspace of S. We claim that Si 6= S for each i.
Otherwise, x1, . . . ,xn ∈ Si and it follows that Pi = 〈x1, . . . ,xn〉 which leads to a
contradiction. Since K is infinite, S 6= S1∪·· ·∪Sm by an elementary result from
linear algebra. This implies that there exists a linear homogeneous polynomial
which is an non-zero divisor on P/J .

Below, we show that a non-zero divisor for the leading form ideal of a given
ideal remains a non-zero divisor for the ideal, cf. [31, Prop. 5.6.34].

Lemma 5.5. Let H = {h1, . . . ,ht} ⊂ I be an H-basis for I up to K where K
is an arbitrary positive number and J = 〈LF(h1), . . . ,LF(ht)〉. If a linear ho-
mogeneous polynomial L ∈ P is a non-zero divisor on P<K/J<K then it is a
non-zero divisor on P<K/I<K , too.

Proof. We proceed by reductio ad absurdum. Assume that there exists f /∈ I
of degree < K so that L. f ∈ I. Without loss of generality, we may assume that
f is reduced w.r.t. H. From the membership LF(L. f ) = L.LF( f ) ∈ J and the
assumptions, we conclude that LF( f ) ∈ J . It follows that f is reducible by H
which leads to a contradiction and this proves the assertion.

Let us review a few concepts related to Hilbert function before proving the
main results of this section. If H = {h1, . . . ,ht} is an H-basis for I up to K
and generates the ideal I, then the Hilbert functions of the ideals I and J =
〈LF(h1), . . . ,LF(ht)〉 are correlated by aHFJ (s) = aHFI(s) for all s ≤ K, see
[31, Prop. 5.6.3]. Thus, we can write

HFJ (s) = aHFI(s)− aHFI(s−1)

for all s ≤ K. Based on this property, and following [7, page 148], we define
backward differences of the affine Hilbert function of I, inductively, by

∇0
aHFI(s) = aHFI(s),

∇i+1
aHFI(s) = ∇i

aHFI(s)−∇i
aHFI(s−1)

for each i = 0,1,2, . . ..

Proposition 5.6. Suppose that H = {h1, . . . ,ht} generates I and is an H-basis
up to K− 1 for some K. Furthermore, suppose that J = 〈LF(h1), . . . ,LF(ht)〉
is saturated and ∇m+1

aHFI(K) = 0 for some m ≥ 0. Then I has an H-basis
containing only polynomials of degree≤K and ∇m+1

aHFI(s) = 0 for all s > K.

Proof. We proceed by induction on m. Let m = 0, i.e.; ∇
aHFI(K) = 0. Then

aHFI(K) = aHFI(K−1) and hence

dimK(I≤K)−dimK(I≤K−1) =

(
K +n−1

n−1

)
= dimK(JK).
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Therefore, for every monomial u = xi1
1 · · ·xin

n of degree K, there is a polynomial
pu ∈ I with LF(pu) = u, such that {LF(pu) | u∈PK} is a basis of PK and of JK .
Hence we have JK = PK . Multiplication of such pu by arbitrary monomials of
degree s−K gives by an analogous argument that Js = Ps for all s≥ K and so
and ∇

aHFI(s) = 0 for all s > K. Therefore every f ∈ I can be reduced to a
polynomial p ∈ I of degree < K, f = ∑u qu pu + p with deg(pu)≤ deg( f )−K.
On the other hand, p has a representation p = ∑

t
i=1 p′ihi with deg(p′ihi) < K by

condition (1) of Def. 5.1. Inserting it into f =∑u qu pu+ p gives a representation
(1) of Def. 5.1 which confirms that {h1, . . . ,ht}∪{pu | u = xi1

1 · · ·xin
n , deg(u) =

K} is an H-basis for I and the degrees of the elements of this basis is at most K.
Assume the induction hypothesis holds for m− 1. From assumptions and

by Lemmatas 5.4 and 5.5, there exists a linear homogeneous polynomial L ∈ P
which is simultaneously a non-zero divisor on P/I<K and P/J . So, for such
an L, a classical property of the Hilbert function gives rise to aHFI+〈L〉(K) =
aHFI(K)− aHFI(K−1) = ∇1

aHFI(K), and therefore we can write

∇m
aHFI+〈L〉(K) = ∇m∇1

aHFI(K) = ∇m+1
aHFI(K) = 0 .

Since L is a non-zero divisor on P/J then by Lem. 5.2, we have {L,h1, . . . ,ht}
is an H-basis up to K− 1. Apply then the induction hypothesis to I + 〈L〉 =
〈h1, . . . ,ht ,L〉 (we note that since L is a non-zero divisor on P/J then the ideal
I + 〈L〉 remains saturated). This gives that there are polynomials p1, . . . , pr

of degree at most K so that {L,h1, . . . ,ht} ∪ {p1, . . . , pr} is an H-basis and
∇m

aHFI+〈L〉(s) = 0 for each s > K. Without loss of generality, we may as-
sume that p1, . . . , pr are reduced w.r.t. L. It follows that p1, . . . , pr ∈ I. Since L
is a non-zero divisor on the ring P/I then, it is a non-zero divisor on the ring
P/〈h1, . . . ,ht , p1, . . . , pr〉 as well. Lem. 5.3 shows that {h1, . . . ,ht , p1, . . . , pr}
is an H-basis for the ideal it generates, i.e.; I. Finally, for all s > K we have
∇m+1

aHFI(s) = ∇m∇1
aHFI(s) = ∇m

aHFI+〈L〉(s) = 0 and this ends the proof.

Theorem 5.7. The ideal I possesses an H-basis H = {h1, . . . ,ht} so that for
each i, we have deg(hi)≤max{d,max{hilb(I),sat(LF(I))}+D+1}.

Proof. Suppose that {G1, . . . ,Gm} is a Gröbner basis for Ĩ w.r.t. xn+1 ≺ ·· · ≺
x1. As already discussed, {G1|xn+1=1, . . . ,Gm|xn+1=1} =: {g1, . . . ,gm} forms an
H-basis of I and the set {h(G1|xn+1=1)|xn+1=0 , . . . ,

h(Gm|xn+1=1)|xn+1=0} generates
J = LF(I). For T = sat(J ), consider the ideals I1 = 〈hg1, . . . ,

hgm〉≥T |xn+1=1
and J1 = J≥T . One sees readily that the set I \ I1 has an H-basis H1 of the
elements of degree < T . Thus, it is enough to show that I1 has an H-basis of
degree ≤max{hilb(I),sat(LF(I))}+D+1. Note that I and I1 share the same
dimension and J1 is saturated. We first claim that hilb(I1)≤max{hilb(I),T}.
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Since I and I1 differ only in degree < T then, we can say that aHFI1(s) =
aHFI(s)+a for an integer a and for each s≥ T which proves the claim.

On the other hand, we know that ∇D+1
aHFI1(s) = 0 for sufficiently large s,

because the degree of the affine Hilbert polynomial of I1 is D = dim(I1) and
every application of ∇ to a polynomial reduces its degree by 1. To give a lower
bound for s from which this equality holds, we note that for the computation
of ∇i

aHFI1(s) one needs the values of aHFI1(s),
aHFI1(s−1), . . . , aHFI1(s− i).

In addition, for s ≥ i+ hilb(I1), we have ∇i
aHFI1(s) uses only values of the

Hilbert polynomial. These arguments together show that ∇D+1
aHFI1(s) = 0 for

s≥max{hilb(I),sat(LF(I))}+D+1. Let

K = max{d,max{hilb(I),sat(LF(I))}+D+1}

and H2 an H-basis for I1 up to K−1. Since J1 is saturated then from Prop. 5.6,
we know that I1 has an H-basis H ′2 of degree≤K. This shows that H1∪H ′2 is an
H-basis (and a generating set) for I and this implies the desired conclusion.

6. Analysis of the upper bound

Up to this point we have proven an upper bound for the degrees of the elements
of an H-basis. In this section, we will discuss this bound for some special cases.
In addition, we show that the maximal degree of the elements of an H-basis
does not change if we transform the ideal it generates into generic position. In
particular, using these properties we show that in general an H-basis may be
reached earlier than a Gröbner basis. Let us first give some useful properties of
H-bases.

Lemma 6.1. Suppose that H = {h1, . . . ,ht} and G = {g1, . . . ,gm} are two re-
duced H-bases for I. Then, max{deg(hi) | i = 1, . . . , t} = max{deg(gi) | i =
1, . . . ,m}

Proof. Without loss of generality, assume that ht (resp. gm) has the maximal
degree between the elements in H (resp. G). Let us, in contrary, assume that
deg(ht)< deg(gm). Then, using the fact that G is an H-basis for I we conclude
that for each i there exist pi j ∈ P so that hi = ∑

m−1
j=1 pi jg j and deg(pi jg j) ≤

deg(hi). It follows that gm has a representation in terms of g1, . . . ,gm−1, contra-
dicting the assumption that G is reduced.

Based on this lemma, we can give the next definition.

Definition 6.2. Given an ideal I, Hdeg(I) denotes the maximal degree of the
elements of a reduced H-basis of I.
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Now, let us study some properties of H-bases after performing a linear
change of variables. For any linear change φ , we define φ(I) = 〈φ( f ) | f ∈ I〉.
In addition, for a finite set H ⊂P , φ(H) stands for {φ(h) | h ∈ H}.

Lemma 6.3. Suppose that H = {h1, . . . ,ht} is an H-basis for I. Then, for any
linear change of variables φ , the set φ(H) remains an H-basis for the ideal
φ(I). Moreover, if H is reduced then φ(H) is reduced, too.

Proof. Since any linear change of variables is a K-linear automorphism of P
preserving the degree and H is an H-basis, then trivially for any f ∈ φ(I) of
degree s, φ−1( f ) ∈ I has a representation of the form φ−1( f ) = ∑

t
i=1 pihi with

pi ∈ P≤s−deg(hi) for i = 1, . . . , t. Then applying φ on both sides of this equal-
ity yields a representation for f and this shows the first assertion. To prove
the second conclusion, arguing by reductio ad absurdum, suppose that φ(h1) is
reducible by {φ(h2), . . . ,φ(ht)}. Then, we can write φ(h1) = ∑

t
i=2 piφ(hi)+ r

for some pi,r ∈ P with deg(r) < deg(h1). Since φ is an automorphism of P ,
then, we conclude that h1 is reducible by {h2, . . . ,ht}, which leads to a contra-
diction.

This lemma allows us to assume, without loss of generality, that the ideal
I (an in consequence LF(I)) is in generic position and this assumption does
not change the maximal degree of the elements of a reduced H-basis of I. In
this paper, as the notion of genericity, we are interested in ideals in quasi stable
position introduced in Sec. 3. Remark that by [26], there exists an invertible
linear change φ of the variables x1, . . . ,xn such that I is in quasi stable posi-
tion. In addition, the Hilbert function and therefore also the Hilbert series, the
Hilbert polynomial, the Hilbert regularity and the dimension of an ideal I do
not change after performing any linear change of variables. If I is a not neces-
sarily homogeneous ideal then from sat(I) and reg(I) we mean sat(LF(I)) and
reg(LF(I)), respectively. Thus, if I is in quasi stable position then from [25,
Thm. 16] we conclude that sat(I) = sat(LT(I)) and reg(I) = reg(LT(I)).

Theorem 6.4. Assume that φ is an invertible linear change φ of the variables
x1, . . . ,xn such that φ(I) is in quasi stable position. Then, we have Hdeg(I)≤
max{d,max{hilb(φ(I)),sat(φ(I))}+D+ 1}. In consequence it follows that
Hdeg(I)≤max{d, reg(I)+D+1}.

Proof. From Thm. 5.7, we know that φ(I) has an H-basis H1 with

deg(H1)≤max{d,max{hilb(φ(I)),sat(LF(φ(I)))}+D+1}.

We may assume that H1 is reduced. From assumption, we conclude that LF(I)
is in quasi stable position and therefore sat(LF(φ(I))) = sat(LT(LF(φ(I)))).
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From definition of H-bases, we know that LT(LF(φ(I))) = LT(φ(I)) which
shows that deg(H1)≤max{d,max{hilb(φ(I)),sat(φ(I))}+D+1}. Let H be
a reduced H-basis for I. From Lem. 6.3, φ(H) is a reduced H-basis for φ(I)
and by Lem. 6.1 we have deg(φ(H)) = deg(φ(H1)). Then, the first assertion
will follow from the fact that deg(φ(H)) = deg(H). The second assertion is a
consequence of the fact that max{hilb(φ(I)),sat(φ(I))} ≤ reg(I).

Proposition 6.5. Suppose that the ideal I generated by f1, . . . , fk is unmixed
and D > 0. Then, Hdeg(I)≤max{d, reg(I)}.

Proof. Since any linear change of variables φ is a K-linear automorphism of P
then trivially the ideal generated by φ( f1), . . . ,φ( fk) remains unmixed. Thus,
using Lem. 6.3, and without loss of generality we may assume that LT(I) is in
quasi stable. If I =Q1∩·· ·∩Qt is a primary decomposition of I and Qi for each
i is Pi-primary then [18, Prop. 27] yields that hI = hQ1∩ ·· ·∩ hQt is a primary
decomposition of hI and hQi for each i is hPi-primary. Since I is unmixed
then hI is unmixed and in consequence P/hI is Cohen-Macaulay. In addition,
hI is in quasi stable position with depth(hI) = D+ 1 and xn−D+1, . . . ,xn+1 is
a regular sequence on P/hI. Since LT(I) is in quasi stable then LF(I) is in
this position too and its depth is D+1, see Sec. 3 (note I and LF(I) share the
same leading term ideal). The assumption D > 0 implies that depth(LF(I)) is
positive and therefore LF(I) is saturated and its satiety is zero. Hence, from
Thm. 5.7, we have Hdeg(I) ≤ max{d,hilb(I) +D+ 1}. Applying the fact
that P/LF(I) is Cohen-Macaulay and using [3, Rem. 2.3], we deduce that
reg(LF(I)) = hilb(LF(I))+D+1 and this completes the proof.

As already mentioned, a classical way to compute an H-basis for I is to
compute a Gröbner basis for hI (see the above notations). By [2, Prop. 2.9]
reg(hI) is the maximal degree of the elements of the reduced Gröbner basis
of hI provided that hI is in generic position. Therefore, by this theorem we
expect that in general H-bases may be reached earlier than Gröbner bases, as is
illustrated in the next example.

Example 6.6. Consider the ideal I = 〈xn+1
1 − x2xn−1

3 ,x1xn−1
2 − xn

3,x
n
1x3− xn

2〉 ⊂
K[x1,x2,x3] known as the Lazard-Mora example, cf. [32]. Then, we can see
dim(I) = 1, I is a prime ideal (which is unmixed) and hilb(I) = 2n−2. There-
fore, by Prop. 6.5, I has an H-basis of degree≤ 2n−2+1+1= 2n. Computing
an H-basis for I, we observe that the generating set of I forms an H-basis for
I and therefore Hdeg(I) = n+ 1 while the maximal degree of the elements of
the reduced Gröbner basis of Ĩ is n2+1. Note that all these general results have
been obtained by carrying out the computations over several choices of n using
the software MAPLE.
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Below, we will give an upper bound for Hdeg(I) when I is either an ideal
generated by a regular sequence or a zero-dimensional ideal. For this purpose,
we state the next lemma due to Sombra [51, Lem. 3.15] which allows us to
extract a generating set for an ideal generated by a regular sequence which re-
mains regular after homogenization. Let us denote by Ii, for i = 1, . . . ,k, the
ideal generated by f1, . . . , fi with the convention I0 = 〈0〉.

Lemma 6.7. Let f1, . . . , fk be a regular sequence. Then there exist polynomials
p1, . . . , pk and q1, . . . ,qk in P such that for each i the following conditions hold:

• h pi = xci
n+1

h fi +qi with qi ∈ hIi−1 and ci ≤max{deg(hIi−1),deg( fi)}

• deg(pi)≤max{deg(hIi−1),deg( fi)}

• h p1, . . . ,
h pk forms a regular sequence in hP .

One observes readily that p1, . . . , pk generate the ideal generated by the fi’s.
Lazard in his paper [32] investigated upper bounds for the maximal degree of
the Gröbner basis of a (affine) zero-dimensional ideal using the technique of
homogenization. The main obstacle in this direction is that for a given ideal I,
Ĩ may contain alien components including xn+1 with higher dimensions and this
may prevent us from applying the results for homogeneous ideals of dimension
one. In the following theorem, see [32, Thm. 2], a simple upper bound is given
for the degree of the Gröbner basis of I provided that I has no such an alien
component.

Theorem 6.8. Assume that I is a zero-dimensional ideal such that dim(Ĩ) = 1.
Then the maximal degree of the elements of the Gröbner basis of I is ≤ d1 +
· · ·+dn+1−n with dn+1 = 1 if k = n.

Theorem 6.9. Suppose that f1, . . . , fk is a regular sequence. Then, Hdeg(I)≤
dk. Moreover, if H is a reduced H-basis of I then for each h ∈ H there exist
q1, . . . ,qk ∈ P such that h = q1 f1 + · · ·+qk fk with deg(qi fi)≤ 2dk.

Proof. Since after performing a linear change of variables a regular sequence re-
mains a regular sequence then by Lem. 6.3 we may assume that I is in generic
position. Lem. 6.7 implies the existence of polynomials p1, . . . , pk such that their
homogenizations is a regular sequence in hP and deg(h pi)≤max{deg(hIi−1),
deg( fi)}. On the other hand, we know that hIi−1 = 〈h f1, . . . ,

h fi−1〉 : x∞
n+1. Fur-

thermore, the degree of a homogeneous ideal is equal to the sum of the de-
grees of its primary components of the dimension of the ideal, cf. [6, page
282]. These arguments show that deg(hIi−1) ≤ deg(〈h f1, . . . ,

h fi−1〉) which is
less than or equal to d1 · · ·di−1 by [5, Thm. 4.5]. It follows that deg(h p1) ≤ d
and deg(h pi) ≤ di−1 for each i > 1. Let K = 〈h p1, . . . ,

h pk〉. Since K ⊂ hP
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is unmixed then, hI is unmixed too and hP/hI is Cohen-Macaulay. Hence
dim(hI) = depth(hI) = D+ 1. On the other hand, using the assumptions, we
can conclude that hI (and in consequence LT(hI)) is in quasi stable position
and this shows that the sequence xn−D+1, . . . ,xn,xn+1 is regular on hP/LT(hI),
see e.g. [49, Prop. 5.2.7]. Obviously, xn−D+1, . . . ,xn+1 (which forms a reg-
ular sequence on P/K) do not appear in the reduced Göbner basis of hI and
in turn xn−D+1, . . . ,xn do not appear in the leading terms of the the elements
of the Gröbner basis of K. Therefore, the ideal K+ 〈xn−D+1, . . . ,xn〉 ⊂ hP is
one-dimensional and by Thm. 6.8 has a Gröbner basis w.r.t. ≺h of degree at
most ∑

k
i=1 deg(h pi)− k+1 ≤ d + d + d2 + · · ·+ dk−1− k+ 1. Using a simple

induction and the fact that 2≤ d, we obtain d +d +d2 + · · ·+dk−1 ≤ dk. Since
xn−D+1, . . . ,xn do not appear in the leading terms of the elements of this basis
then Hdeg(I) ≤ dk − k + 1 ≤ dk. The second assertion follows immediately
from the fact that (under the assumptions of the theorem) for each f ∈ I there
exist q1, . . . ,qk ∈P such that f = q1 f1+ · · ·+qk fk with deg(qi fi)≤ dk+deg( f ),
cf. [15, Thm. 5.1].

Remark 6.10. As a direct consequence of this theorem, we infer that if f1, . . . , fk
is a regular sequence and LT(I) is quasi stable then the maximal degree of the
elements of the Gröbner basis of I w.r.t. ≺ is bounded above by dk and each
polynomial in this basis has a representation in terms of the fi’s of degree at
most 2dk.

To study the degree upper bound for the H-bases of zero-dimensional ideals,
we shall need also the following known lemma, see [29]

Lemma 6.11. Suppose I is zero-dimensional. For i = 2, . . . ,n let gi = fi +
ai,i+1 fi+1 + · · ·+ ai,k fk where ai, j ∈ K. For almost all choices of the ai, j the
sequence f1,g2, . . . ,gn is regular and deg(gi) = deg( fi).

Theorem 6.12. Suppose that the ideal I = 〈 f1, . . . , fk〉 is zero-dimensional.
Then, Hdeg(I) ≤ ndn− n. Furthermore, if H is a reduced H-basis of I then
for each h ∈ H there exist q1, . . . ,qk ∈ P such that h = q1 f1 + · · ·+ qk fk with
deg(qi fi)≤ (n+2)dn−n+d.

Proof. Following Lem. 6.11, without loss of generality, we may assume that
f1, . . . , fn is a regular sequence. Let I1 = 〈 f1, . . . , fn〉. From Thm. 6.9, I1 has
a reduced H-basis H1 = {h1, . . . ,ht} and a Gröbner basis G1 of degree ≤ dn.
Assume that H2 is a reduced H-basis for I. Reduce the elements of H2 by
H1 and call the new set H ′2. It is easy to check that H = H1 ∪H ′2 is an H-
basis for I. Assume in contrary that H contains a polynomial h with deg(h) ≥
ndn − n + 1. It is well-known that dimK(P/I1) ≤ dn which implies that I1
contains univariate polynomial gi ∈K[xi] of degree ≤ dn for each i. Thus using
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the zero-dimensionality of G1 we have LF(h) ∈ 〈LT(G1)〉. The set H1 is an H-
basis for I1 which yields that h is reducible by H1, leading to a contradiction.
The proof of the the second assertion was inspired by the proof of [15, Thm.
3.3]. Let us consider h ∈ H. Then, we can write h = ∑

k
i=1 pi fi with pi ∈ P .

Dividing p1, . . . , pk by H we get pi = ∑
t
j=1 qi jh j + p̃i with deg(p̃i) ≤ ndn− n.

Therefore,

h =
k

∑
i=1

(
t

∑
j=1

qi jh j + p̃i) fi.

Let us consider g = ∑
k
i=1 ∑

t
j=1 qi jh j fi. It is clear that g ∈ I1 and deg(g) ≤

ndn−n+d. Thus, we can write g = ∑
t
i=1 rihi with deg(rihi)≤ ndn−n+d. On

the other hand, from Thm. 6.9 we know that hi = ∑
k
i=1 si j fi with deg(si j fi) ≤

2dn. Therefore, h can be written of the form h = ∑
k
i=1 (∑

t
j=1 si jr j + p̃i) fi with

deg((∑t
j=1 si jr j + p̃i) fi)≤ (n+2)dn−n+d.

Remark 6.13. Similar results to Thm. 6.12 hold for Gröbner bases by repeating
the same argument. Assume that the zero-dimensional ideal I is generated by
the polynomials f1, . . . , fk. Then the maximal degree of the elements of the
Gröbner basis of I is bounded above by ndn− n and each polynomial in this
basis has a representation in terms of the fi’s of degree at most (n+2)dn−n+d.
It is worth noting that the existing degree upper bounds for these purposes are
ndn and nd2n +dn +d, respectively, cf. [15, Thm. 3.3].

We finish the paper by commenting that Mayr and Ritscher [38] gave the
upper bound 2(1/2dn−D +d)2D−1

for the maximal degree of the elements of the
reduced Gröbner basis of a homogeneous ideal generated by polynomials of
degree ≤ d. Using this result, we can give an upper bound for Hdeg(I). By
the above notations, Hdeg(I) is less than or equal to the maximal degree of
the elements of the reduced Gröbner basis of Ĩ. This shows that Hdeg(I) ≤
2(1/2dn+1−D′+d)2D′−1

where D′ = dim(Ĩ).
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