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COMPLEX FACTORIZATION BY CHEBYSEV POLYNOMIALS

MURAT SAHIN - ELIF TAN - SEMIH YILMAZ

Let {ai} ,{bi} be real numbers for 0 6 i 6 r− 1, and define a r-
periodic sequence {vn} with initial conditions v0, v1 and recurrences vn =
atvn−1 + btvn−2 where n ≡ t (mod r) (n > 2). In this paper, by aid of
Chebyshev polynomials, we introduce a new method to obtain the com-
plex factorization of the sequence {vn} so that we extend some recent
results and solve some open problems. Also, we provide new results by
obtaining the binomial sum for the sequence {vn} by using Chebyshev
polynomials.

Let {ai} and {bi} be real numbers for 0 6 i 6 r−1, and define a sequence
{vn} with initial conditions v0, v1, and for n > 2,

vn =


a0vn−1 +b0vn−2, if n≡ 0(mod r) ,
a1vn−1 +b1vn−2, if n≡ 1(mod r) ,
...

...
ar−1vn−1 +br−1vn−2, if n≡ r−1(mod r) .

(1)

We call {vn} as a r-periodic sequences. It is studied in [7] by Panario et. al. and
they find the generating function and Binet’s like formula for the sequence {vn}
via generalized continuant. Petronilho obtain the same Binet’s like formula by
using tools from ortogonal polynomials in [8].
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For r = 2 and initial values v0 = 1, v1 = a1, Cooper and Parry [3] called
the sequence {vn} as the period two second order linear recurrence system, and
gave the complex factorization of odd terms of this sequence by determining the
eigenvalues and eigenvectors of certain tridiagonal matrices. The problems re-
mained unsolved in [3] are determining the complex factorization of even terms
of the period two second order linear recurrence system and determining the
complex factorization of the sequence {vn} for given general r. Also, for r = 2
and initial values v0 = 0, v1 = 1, Jun [5] give a connection between the sequence
{vn} and Chebyshev polynomials of the second kind {Un(x)}. By using the fac-
torization of {Un(x)}, Jun derive the complex factorization of the sequence {vn}
with initial values v0 = 0 and v1 = 1 for r = 2.

In Section 3, we solve the open problems in [3] for the sequence {vn} with
initial values v0 = 0 and v1 = 1 by using Chebyshev polynomials. Also, since
we will get the complex factorization for any r, our results are a generalization
of [5].

In Section 4, we provide new results by obtaining the binomial sum for the
sequence {vn} by using Chebyshev polynomials of the second kind {Un(x)}.

1. Chebyshev polynomials {Tn(x)} and {Un(x)}

Chebyshev polynomials of the first and second kinds are the polynomials Tn(x)
and Un(x), respectively, such that

Tn(x) = cos
(
ncos−1 x

)
and

Un(x) =
sin((n+1)cos−1 x)

sin(cos−1 x)
.

Note that both formulas hold for all x where they make sense and they are de-
fined by continuity for other values of x (since both formulas define polynomials
in the variable x at least on the interval−1 < x < 1). Also, Tn(x) and Un(x) both
satisfy the following second order recurrence

yn+1(x) = 2xyn(x)− yn−1(x), n≥ 0,

with initial conditionas T−1(x)= x, T0(x)= 1, T1(x)= x and U−1(x)= 0, U0(x)=
1, U1(x) = 2x. The complex factorization of Chebyshev polynomials is given as
follows:

Tn(x) = 2n−1
n

∏
k=1

(
x− cos

(
(2k−1)π

2n

))
, n≥ 1 (2)
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Un(x) = 2n
n

∏
k=1

(
x− cos

(
kπ

n+1

))
(3)

and it is well known that the binomial sums for Chebyshev polynomials are

Tn(x) =
n
2

bn/2c

∑
j=0

(−1) j

n− j

(
n− j

j

)
(2x)n−2 j. (4)

and

Un(x) =
bn/2c

∑
j=0

(−1) j
(

n− j
j

)
xn−2 j. (5)

Also, a well known relation between Chebsyshev polynomials is

Tn(x) =Un(x)− xUn−1(x). (6)

(See [1], [2], [6], [9], [10] and [11] for details).

2. The Connection between {vn} and {Un(x)}
In this section, we give a connection between the sequence {vn} and Chebyshev
polynomials of second kind {Un(x)}. We need to remind that some definitions
from [8] to obtain our results.

Consider the determinant of a tridiagonal matrix

∆µ,ξ :=

∣∣∣∣∣∣∣∣∣∣∣

aµ 1
−bµ+1 aµ+1 1

. . . . . . . . .
−bξ−1 aξ−1 1

−bξ aξ

∣∣∣∣∣∣∣∣∣∣∣
if 0≤ µ < ξ ≤ r

and if µ ≥ ξ ,

∆µ,ξ :=


0, if µ > ξ +1
1, if µ = ξ +1
aµ , if µ = ξ .

Then, we consider

∆r :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

a2 1 1
−b3 a3 1

. . . . . . . . .
−br−1 ar−1 1

−b0 a0 1
−b2 −b1 a1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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Also, recall the following definitions from [8]:

b := (−1)r
r−1

∏
i=0

bi,

c := (−1)r (b2 +b/b2)

and

Ũn(x) := dnUn

(
x− c
2d

)
, n≥ 0,

where d is one of the square roots of b. (k in [8] corresponds to our r).
Now, we can establish the connection between the sequence {vn} and Cheby-

shev polynomials of the second kind {Un}.

Lemma 2.1. For r ≥ 3, the terms of the sequence {vn} are given by in terms of
Chebyshev polynomials of the second kind {Un} as follow:

vnr = ∆2,rŨn−1 (∆r) ,

and for 1≤ t ≤ r−1,

vnr+t = ∆2,tŨn (∆r)+(−1)t

(
t+1

∏
i=2

bi

)
∆t+2,rŨn−1 (∆r) .

Proof. We will use the results from [8] in the proof. Let {Rn+1(x)} be the
sequence of polynomials defined by the recurrence relation

Rn+1(x) = (x−βn)Rn(x)− γnRn−1(x), n≥ 0,

with initial conditions R−1(x) = 0 and R0(x) = 1 where

βnr+ j :=−a j+2,γnr+ j :=−b j+2, 0≤ j ≤ r−1, n≥ 0.

Then clearly,
vn = Rn−1(0), n≥ 0. (7)

Let ∆µ,ξ (x) be a polynomial of degree ξ − µ + 1 obtained by replacing ai

by x+ai in the definition of ∆µ,ξ . Similarly, let ϕr(x) be a polynomial of degree
r obtained by replacing ai by x+ai in the definition of ∆r. In this case, ∆µ,ξ =
∆µ,ξ (0) and ∆r = ϕr(0).

We can obtain

Rnr+ j(x) = ∆2, j+1(x)Ũn(ϕr(x))+(−1) j+1

(
j+2

∏
i=2

bi

)
∆ j+3,r(x)Ũn−1(ϕr(x)), (8)
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where 0≤ j ≤ r−1,n≥ 0, by using Theorem 5.1 in [4].
If we use (7) and (8) then we get

vnr = Rnr−1(0)

= R(n−1)r+(r−1)(0) (Take j = r−1 and n = n−1 in (8))

= ∆2,rŨn−1(ϕr(0))+(−1)r

(
r+1

∏
i=2

bi

)
∆r+2,r(0)Ũn−2(ϕr(0))

= ∆2,rŨn−1(∆r)+(−1)r

(
r+1

∏
i=2

bi

)
∆r+2,rŨn−2(∆r).

Then, since ∆r+2,r = 0, we get the first equality in the hypothesis of theorem as
follow:

vnr = ∆2,rŨn−1(∆r).

Now, again if we use (7) and (8) for 1≤ t ≤ r−1, we get the desired result

vnr+t = Rnr+t−1(0) (Take j = t−1 in (8))

= ∆2,tŨn(ϕr(0))+(−1)t

(
t+1

∏
i=2

bi

)
∆t+2,r(0)Ũn−1(ϕr(0))

= ∆2,tŨn(∆r)+(−1)t

(
t+1

∏
i=2

bi

)
∆t+2,rŨn−1(∆r).

Example 2.2. We combine Fibonacci, Jacobsthal and a second order recurrence
equations to get the following sequence {vn}:

vn =


vn−1 + vn−2, if n≡ 0(mod 3) ,
vn−1 +2vn−2, if n≡ 1(mod 3) ,
3vn−1−2vn−2, if n≡ 2(mod 3) .

A few terms of the sequence {vn} are {0,1,3,4,10,22,32,76,164,240,568,
1224, . . .} and we have r = 3,a0 = a1 = b0 = 1, b1 = 2, a2 = 3 and b2 = −2.
We need to compute ∆3, ∆2,1, ∆2,2, ∆2,3, b, c and d to establish the connection.
By using the definitions from Section 2, we get

∆3 =

∣∣∣∣∣∣
a2 1 1
−b0 a0 1
−b2 −b1 a1

∣∣∣∣∣∣= 12, ∆2,3 =

∣∣∣∣ a2 1
−b0 a0

∣∣∣∣= 4, ∆2,1 = 1, ∆2,2 = a2 = 3,
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Table 1:

n v3n 2n+1Un−1(x)
1 4 4
2 32 16x
3 240 64x2−16
4 1792 256x3−128x
5 13376 1024x4−768x2 +64
6 99840 4096x5−4096x3 +768x

b = (−1)3b0b1b2 = 4, d =
√

b = 2, c = (−1)3
(

b2 +
b
b2

)
= 4.

Now, substituting these values in Lemma 2.1, we obtain

v3n = ∆2,3Ũn−1(∆3)

= ∆2,3dn−1Un−1

(
∆3− c

2d

)
= 222n−1Un−1

(
12−4

4

)
= 2n+1Un−1 (2) .

We show this connection in Table 1 by calculating a few terms of the se-
quence of {vn} and Chebsyev polynomials of second kind {Un(x)}. We use a
symbolic programming language to calculate the terms in the table.

Similarly, we can obtain the connections for {v3n+1} and {v3n+2} by using
Lemma 2.1.

3. The Complex Factorization of the sequence {vn}
Theorem 3.1. For r ≥ 3,

vnr = ∆2,r(2d)n−1
n−1

∏
k=1

(
∆r− c

2d
− cos

(
kπ

n

))
.

Proof. If we use Lemma 2.1 and Ũn(x) := dnUn

(
x− c
2d

)
, we obtain

vnr = ∆2,rŨn−1(∆r)

= ∆2,rdn−1Un−1

(
∆r− c

2d

)
.
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Now, if we use (3), that is the complex factorization of Chebyshev polyno-
mials of the second kind {Un}, we get the desired result

vnr = ∆2,r(2d)n−1
n−1

∏
k=1

(
∆r− c

2d
− cos

(
kπ

n

))
.

Example 2.2 (continued). We get the connection between {v3n} and {Un}.
So, using Theorem 3.1, we obtain the complex factorization of {v3n} as follow:

v3n = ∆2,3(2d)n−1
n−1

∏
k=1

(
∆3− c

2d
− cos

(
kπ

n

))
= 4n−1

n−1

∏
k=1

(
12−4

4
− cos

(
kπ

n

))
= 22n−2

n−1

∏
k=1

(
2− cos

(
kπ

n

))
.

Theorem 3.2. For r ≥ 3, if the equality

∆2,t (c−∆r) = 2(−1)t
t+1

∏
i=2

bi∆t+2,r, 1≤ t ≤ r−1

holds for some t then

i.vnr+t = ∆2,tdnTn

(
∆r− c

2d

)
ii..vnr+t = 2n−1dn

∆2,t

n

∏
k=1

(
∆r− c

2d
− cos

(
(2k−1)π

2n

))
.

Proof. We can obtain the following connection by using Lemma 2.1:

vnr+t = ∆2,tdnUn

(
∆r− c

2d

)
+(−1)t

t+1

∏
i=2

bi∆t+2,rdn−1Un−1

(
∆r− c

2d

)
= dn

∆2,t

(
Un

(
∆r− c

2d

)
+

(−1)t
∏

t+1
i=2 bi∆t+2,r

d∆2,t
Un−1

(
∆r− c

2d

))
.
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Also, if we substitute the equality

∆2,t (c−∆r) = 2(−1)t
t+1

∏
i=2

bi∆t+2,r 1≤ t ≤ r−1,

on the statement of theorem in the above equation, we obtain

vnr+t = dn
∆2,t

(
Un

(
∆r− c

2d

)
− ∆r− c

2d
Un−1

(
∆r− c

2d

))
.

Now, if we use the well known identity Tn(x) = Un(x)− xUn−1(x) in the last
equation, we get the part (i) of the theorem:

vnr+t = dn
∆2,tTn

(
∆r− c

2d

)
.

Now, by using Equation (2), that is the complex factorization of Chebyshev
polynomials of first kind we get the part (ii) of the theorem as follow:

vnr+t = dn
∆2,tTn

(
∆r− c

2d

)
= 2n−1dn

∆2,t

n

∏
k=1

(
∆r− c

2d
− cos

(
(2k−1)π

2n

))
.

Example 3.3. Let us consider the following 3-periodic sequence {vn}

vn =


−7vn−1 +6vn−2, if n≡ 0(mod 3) ,
3vn−1−2vn−2, if n≡ 1(mod 3) ,
vn−1 + vn−2, if n≡ 2(mod 3) .

A few terms of the sequence {vn} are {0,1,1,−1,−5,−6,12,48,60,−132,−516,
− 648,1440 . . .} and we have r = 3,a0 = −7,a1 = 3,a2 = 1 = b2,b0 = 6 and
b1 = −2. We want to get the complex factorization of {v3n+2} by using Theo-
rem 3.2. By using the definitions from Section 2, we get

∆3 =

∣∣∣∣∣∣
a2 1 1
−b0 a0 1
−b2 −b1 a1

∣∣∣∣∣∣=−25, ∆2,2 = ∆4,3 = 1,

b = (−1)3b0b1b2 = 12, d =
√

b = 2
√

3, c = (−1)3
(

b2 +
b
b2

)
=−13.
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For t = 2, since

∆2,t (c−∆r)−2(−1)t
t+1

∏
i=2

bi∆t+2,r, = ∆2,2 (c−∆3)−2(−1)2
3

∏
i=2

bi∆4,3

= 1.(−13+25)−2.1.b2b3.1)

= 12−2.b2b0

= 0,

the condition of Theorem 3.2 is satisfied. So, if we use Theorem 3.2, we obtain

v3n+2 = ∆2,tdnTn

(
∆r− c

2d

)
= ∆2,2(2

√
3)nTn

(
∆3− (−13)

4
√

3

)
= (2

√
3)nTn(−

√
3).

and we get the complex factorization

v3n+2 = 2n−1dn
∆2,t

n

∏
k=1

(
∆r− c

2d
− cos

(
(2k−1)π

2n

))
= ∆2,22n−1dn

n

∏
k=1

(
∆3− c

2d
− cos

(
(2k−1)π

2n

))
= ∆2,22n−1(2

√
2)n

n

∏
k=1

(
−25+13

4
√

2
− cos

(
(2k−1)π

2n

))
= 2(5n−2)/2

n

∏
k=1

(
−3√

2
− cos

(
(2k−1)π

2n

))
.

4. The Binomial Sum for the sequence {vn}

Theorem 4.1. For r > 3, {vnr} can be defined in terms of sums

vnr = ∆2,rdn−1
[(n−1)/2]

∑
j=0

(−1) j
(

n−1− j
j

)(
∆r− c

2d

)n−1−2 j

.

Proof. We have the connection

vnr = ∆2,rdn−1Un−1

(
∆r− c

2d

)



188 MURAT SAHIN - ELIF TAN - SEMIH YILMAZ

by Lemma 2.1. If we make a substitution using (5) in this connection, we obtain
the desired result

vnr = ∆2,rdn−1
[(n−1)/2]

∑
j=0

(−1) j
(

n−1− j
j

)(
∆r− c

2d

)n−1−2 j

.

We can get the binomial sum for the sequence {v3n} in the Example 2.2 as
an example:

Example 2.2 (continued). Bu using Theorem 4.1, we can write the sequence
{v3n} in terms of sums as follow:

vnr = ∆2,rdn−1
[(n−1)/2]

∑
j=0

(−1) j
(

n−1− j
j

)(
∆r− c

2d

)n−1−2 j

= ∆2,32n−1
[(n−1)/2]

∑
j=0

(−1) j
(

n−1− j
j

)(
∆3−4

4

)n−1−2 j

= 2n+1
[(n−1)/2]

∑
j=0

(−1) j
(

n−1− j
j

)
2n−1−2 j.
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