LE MATEMATICHE Vol. LXXIII (2018) – Fasc. I, pp. 179–189 doi: 10.4418/2018.73.1.13

COMPLEX FACTORIZATION BY CHEBYSEV POLYNOMIALS

MURAT SAHIN - ELIF TAN - SEMIH YILMAZ

Let $\{a_i\}, \{b_i\}$ be real numbers for $0 \le i \le r-1$, and define a *r*-periodic sequence $\{v_n\}$ with initial conditions v_0, v_1 and recurrences $v_n = a_t v_{n-1} + b_t v_{n-2}$ where $n \equiv t \pmod{r}$ $(n \ge 2)$. In this paper, by aid of Chebyshev polynomials, we introduce a new method to obtain the complex factorization of the sequence $\{v_n\}$ so that we extend some recent results and solve some open problems. Also, we provide new results by obtaining the binomial sum for the sequence $\{v_n\}$ by using Chebyshev polynomials.

Let $\{a_i\}$ and $\{b_i\}$ be real numbers for $0 \le i \le r-1$, and define a sequence $\{v_n\}$ with initial conditions v_0 , v_1 , and for $n \ge 2$,

$$v_{n} = \begin{cases} a_{0}v_{n-1} + b_{0}v_{n-2}, & \text{if } n \equiv 0 \pmod{r}, \\ a_{1}v_{n-1} + b_{1}v_{n-2}, & \text{if } n \equiv 1 \pmod{r}, \\ \vdots & \vdots \\ a_{r-1}v_{n-1} + b_{r-1}v_{n-2}, & \text{if } n \equiv r-1 \pmod{r}. \end{cases}$$
(1)

We call $\{v_n\}$ as a *r-periodic sequences*. It is studied in [7] by Panario et. al. and they find the generating function and Binet's like formula for the sequence $\{v_n\}$ via generalized continuant. Petronilho obtain the same Binet's like formula by using tools from ortogonal polynomials in [8].

Entrato in redazione: 1 gennaio 2007

AMS 2010 Subject Classification: 33C47,65Q30,11B39,05A15 Keywords: Chebyshev polynomials, complex factorization, binomial sums

For r = 2 and initial values $v_0 = 1$, $v_1 = a_1$, Cooper and Parry [3] called the sequence $\{v_n\}$ as *the period two second order linear recurrence system*, and gave the complex factorization of odd terms of this sequence by determining the eigenvalues and eigenvectors of certain tridiagonal matrices. The problems remained unsolved in [3] are determining the complex factorization of even terms of the period two second order linear recurrence system and determining the complex factorization of the sequence $\{v_n\}$ for given general r. Also, for r = 2and initial values $v_0 = 0$, $v_1 = 1$, Jun [5] give a connection between the sequence $\{v_n\}$ and Chebyshev polynomials of the second kind $\{U_n(x)\}$. By using the factorization of $\{U_n(x)\}$, Jun derive the complex factorization of the sequence $\{v_n\}$ with initial values $v_0 = 0$ and $v_1 = 1$ for r = 2.

In Section 3, we solve the open problems in [3] for the sequence $\{v_n\}$ with initial values $v_0 = 0$ and $v_1 = 1$ by using Chebyshev polynomials. Also, since we will get the complex factorization for any *r*, our results are a generalization of [5].

In Section 4, we provide new results by obtaining the binomial sum for the sequence $\{v_n\}$ by using Chebyshev polynomials of the second kind $\{U_n(x)\}$.

1. Chebyshev polynomials $\{T_n(x)\}$ and $\{U_n(x)\}$

Chebyshev polynomials of the first and second kinds are the polynomials $T_n(x)$ and $U_n(x)$, respectively, such that

$$T_n(x) = \cos\left(n\cos^{-1}x\right)$$

and

$$U_n(x) = \frac{\sin((n+1)\cos^{-1}x)}{\sin(\cos^{-1}x)}$$

Note that both formulas hold for all *x* where they make sense and they are defined by continuity for other values of *x* (since both formulas define polynomials in the variable *x* at least on the interval -1 < x < 1). Also, $T_n(x)$ and $U_n(x)$ both satisfy the following second order recurrence

$$y_{n+1}(x) = 2xy_n(x) - y_{n-1}(x), \quad n \ge 0,$$

with initial conditionas $T_{-1}(x) = x$, $T_0(x) = 1$, $T_1(x) = x$ and $U_{-1}(x) = 0$, $U_0(x) = 1$, $U_1(x) = 2x$. The complex factorization of Chebyshev polynomials is given as follows:

$$T_n(x) = 2^{n-1} \prod_{k=1}^n \left(x - \cos\left(\frac{(2k-1)\pi}{2n}\right) \right), \quad n \ge 1$$
(2)

$$U_n(x) = 2^n \prod_{k=1}^n \left(x - \cos\left(\frac{k\pi}{n+1}\right) \right)$$
(3)

and it is well known that the binomial sums for Chebyshev polynomials are

$$T_n(x) = \frac{n}{2} \sum_{j=0}^{\lfloor n/2 \rfloor} \frac{(-1)^j}{n-j} \binom{n-j}{j} (2x)^{n-2j}.$$
 (4)

and

$$U_n(x) = \sum_{j=0}^{\lfloor n/2 \rfloor} (-1)^j \binom{n-j}{j} x^{n-2j}.$$
 (5)

Also, a well known relation between Chebsyshev polynomials is

$$T_n(x) = U_n(x) - xU_{n-1}(x).$$
 (6)

(See [1], [2], [6], [9], [10] and [11] for details).

2. The Connection between $\{v_n\}$ and $\{U_n(x)\}$

In this section, we give a connection between the sequence $\{v_n\}$ and Chebyshev polynomials of second kind $\{U_n(x)\}$. We need to remind that some definitions from [8] to obtain our results.

Consider the determinant of a tridiagonal matrix

$$\Delta_{\mu,\xi} := \begin{vmatrix} a_{\mu} & 1 \\ -b_{\mu+1} & a_{\mu+1} & 1 \\ & \ddots & \ddots & \ddots \\ & & -b_{\xi-1} & a_{\xi-1} & 1 \\ & & & -b_{\xi} & a_{\xi} \end{vmatrix} \quad \text{if} \quad 0 \le \mu < \xi \le r$$

and if $\mu \geq \xi$,

$$\Delta_{\mu,\xi} := \begin{cases} 0, & \text{if } \mu > \xi + 1 \\ 1, & \text{if } \mu = \xi + 1 \\ a_{\mu}, & \text{if } \mu = \xi. \end{cases}$$

Then, we consider

$$\Delta_r := \begin{vmatrix} a_2 & 1 & & & 1 \\ -b_3 & a_3 & 1 & & & \\ & \ddots & \ddots & \ddots & & \\ & & -b_{r-1} & a_{r-1} & 1 & \\ & & & -b_0 & a_0 & 1 \\ -b_2 & & & -b_1 & a_1 \end{vmatrix}.$$

181

Also, recall the following definitions from [8]:

$$b := (-1)^r \prod_{i=0}^{r-1} b_i,$$
$$c := (-1)^r (b_2 + b/b_2)$$

and

$$\widetilde{U}_n(x) := d^n U_n\left(\frac{x-c}{2d}\right), \quad n \ge 0,$$

where d is one of the square roots of b. (k in [8] corresponds to our r).

Now, we can establish the connection between the sequence $\{v_n\}$ and Chebyshev polynomials of the second kind $\{U_n\}$.

Lemma 2.1. For $r \ge 3$, the terms of the sequence $\{v_n\}$ are given by in terms of Chebyshev polynomials of the second kind $\{U_n\}$ as follow:

$$v_{nr} = \Delta_{2,r} U_{n-1} \left(\Delta_r \right),$$

and for $1 \le t \le r - 1$,

$$v_{nr+t} = \Delta_{2,t} \widetilde{U}_n(\Delta_r) + (-1)^t \left(\prod_{i=2}^{t+1} b_i\right) \Delta_{t+2,r} \widetilde{U}_{n-1}(\Delta_r)$$

Proof. We will use the results from [8] in the proof. Let $\{R_{n+1}(x)\}$ be the sequence of polynomials defined by the recurrence relation

$$R_{n+1}(x) = (x - \beta_n)R_n(x) - \gamma_n R_{n-1}(x), \quad n \ge 0,$$

with initial conditions $R_{-1}(x) = 0$ and $R_0(x) = 1$ where

$$\beta_{nr+j} := -a_{j+2}, \gamma_{nr+j} := -b_{j+2}, \quad 0 \le j \le r-1, \quad n \ge 0.$$

Then clearly,

$$v_n = R_{n-1}(0), \quad n \ge 0.$$
 (7)

Let $\Delta_{\mu,\xi}(x)$ be a polynomial of degree $\xi - \mu + 1$ obtained by replacing a_i by $x + a_i$ in the definition of $\Delta_{\mu,\xi}$. Similarly, let $\varphi_r(x)$ be a polynomial of degree r obtained by replacing a_i by $x + a_i$ in the definition of Δ_r . In this case, $\Delta_{\mu,\xi} = \Delta_{\mu,\xi}(0)$ and $\Delta_r = \varphi_r(0)$.

We can obtain

$$R_{nr+j}(x) = \Delta_{2,j+1}(x)\widetilde{U}_n(\varphi_r(x)) + (-1)^{j+1} \left(\prod_{i=2}^{j+2} b_i\right) \Delta_{j+3,r}(x)\widetilde{U}_{n-1}(\varphi_r(x)), \quad (8)$$

where $0 \le j \le r - 1, n \ge 0$, by using Theorem 5.1 in [4].

If we use (7) and (8) then we get

$$v_{nr} = R_{nr-1}(0)$$

= $R_{(n-1)r+(r-1)}(0)$ (Take $j = r - 1$ and $n = n - 1$ in (8))
= $\Delta_{2,r} \widetilde{U}_{n-1}(\varphi_r(0)) + (-1)^r \left(\prod_{i=2}^{r+1} b_i\right) \Delta_{r+2,r}(0) \widetilde{U}_{n-2}(\varphi_r(0))$
= $\Delta_{2,r} \widetilde{U}_{n-1}(\Delta_r) + (-1)^r \left(\prod_{i=2}^{r+1} b_i\right) \Delta_{r+2,r} \widetilde{U}_{n-2}(\Delta_r).$

Then, since $\Delta_{r+2,r} = 0$, we get the first equality in the hypothesis of theorem as follow:

$$v_{nr} = \Delta_{2,r} \widetilde{U}_{n-1}(\Delta_r).$$

Now, again if we use (7) and (8) for $1 \le t \le r - 1$, we get the desired result

$$v_{nr+t} = R_{nr+t-1}(0) \quad (\text{Take } j = t - 1 \text{ in } (8))$$

$$= \Delta_{2,t} \widetilde{U}_n(\varphi_r(0)) + (-1)^t \left(\prod_{i=2}^{t+1} b_i\right) \Delta_{t+2,r}(0) \widetilde{U}_{n-1}(\varphi_r(0))$$

$$= \Delta_{2,t} \widetilde{U}_n(\Delta_r) + (-1)^t \left(\prod_{i=2}^{t+1} b_i\right) \Delta_{t+2,r} \widetilde{U}_{n-1}(\Delta_r).$$

Example 2.2. We combine Fibonacci, Jacobsthal and a second order recurrence equations to get the following sequence $\{v_n\}$:

$$v_n = \begin{cases} v_{n-1} + v_{n-2}, & \text{if } n \equiv 0 \pmod{3}, \\ v_{n-1} + 2v_{n-2}, & \text{if } n \equiv 1 \pmod{3}, \\ 3v_{n-1} - 2v_{n-2}, & \text{if } n \equiv 2 \pmod{3}. \end{cases}$$

A few terms of the sequence $\{v_n\}$ are $\{0, 1, 3, 4, 10, 22, 32, 76, 164, 240, 568, 1224, ...\}$ and we have $r = 3, a_0 = a_1 = b_0 = 1, b_1 = 2, a_2 = 3$ and $b_2 = -2$. We need to compute $\Delta_3, \Delta_{2,1}, \Delta_{2,2}, \Delta_{2,3}, b, c$ and *d* to establish the connection. By using the definitions from Section 2, we get

$$\Delta_{3} = \begin{vmatrix} a_{2} & 1 & 1 \\ -b_{0} & a_{0} & 1 \\ -b_{2} & -b_{1} & a_{1} \end{vmatrix} = 12, \ \Delta_{2,3} = \begin{vmatrix} a_{2} & 1 \\ -b_{0} & a_{0} \end{vmatrix} = 4, \ \Delta_{2,1} = 1, \ \Delta_{2,2} = a_{2} = 3,$$

п	v _{3n}	$2^{n+1}U_{n-1}(x)$
1	4	4
2	32	16 <i>x</i>
3	240	$64x^2 - 16$
4	1792	$256x^3 - 128x$
5	13376	$1024x^4 - 768x^2 + 64$
6	99840	$4096x^5 - 4096x^3 + 768x$

$$b = (-1)^3 b_0 b_1 b_2 = 4$$
, $d = \sqrt{b} = 2$, $c = (-1)^3 \left(b_2 + \frac{b}{b_2} \right) = 4$.

Now, substituting these values in Lemma 2.1, we obtain

$$v_{3n} = \Delta_{2,3} \widetilde{U}_{n-1}(\Delta_3)$$

= $\Delta_{2,3} d^{n-1} U_{n-1} \left(\frac{\Delta_3 - c}{2d} \right)$
= $2^2 2^{n-1} U_{n-1} \left(\frac{12 - 4}{4} \right)$
= $2^{n+1} U_{n-1}(2)$.

We show this connection in Table 1 by calculating a few terms of the sequence of $\{v_n\}$ and Chebsyev polynomials of second kind $\{U_n(x)\}$. We use a symbolic programming language to calculate the terms in the table.

Similarly, we can obtain the connections for $\{v_{3n+1}\}$ and $\{v_{3n+2}\}$ by using Lemma 2.1.

3. The Complex Factorization of the sequence $\{v_n\}$

Theorem 3.1. *For* $r \ge 3$,

$$v_{nr} = \Delta_{2,r} (2d)^{n-1} \prod_{k=1}^{n-1} \left(\frac{\Delta_r - c}{2d} - \cos\left(\frac{k\pi}{n}\right) \right).$$

Proof. If we use Lemma 2.1 and $\widetilde{U}_n(x) := d^n U_n\left(\frac{x-c}{2d}\right)$, we obtain

$$v_{nr} = \Delta_{2,r} U_{n-1}(\Delta_r)$$

= $\Delta_{2,r} d^{n-1} U_{n-1}\left(\frac{\Delta_r - c}{2d}\right).$

Table	1:
10010	.

Now, if we use (3), that is the complex factorization of Chebyshev polynomials of the second kind $\{U_n\}$, we get the desired result

$$v_{nr} = \Delta_{2,r} (2d)^{n-1} \prod_{k=1}^{n-1} \left(\frac{\Delta_r - c}{2d} - \cos\left(\frac{k\pi}{n}\right) \right).$$

Example 2.2 (continued). We get the connection between $\{v_{3n}\}$ and $\{U_n\}$. So, using Theorem 3.1, we obtain the complex factorization of $\{v_{3n}\}$ as follow:

$$v_{3n} = \Delta_{2,3} (2d)^{n-1} \prod_{k=1}^{n-1} \left(\frac{\Delta_3 - c}{2d} - \cos\left(\frac{k\pi}{n}\right) \right)$$

= $4^{n-1} \prod_{k=1}^{n-1} \left(\frac{12-4}{4} - \cos\left(\frac{k\pi}{n}\right) \right)$
= $2^{2n-2} \prod_{k=1}^{n-1} \left(2 - \cos\left(\frac{k\pi}{n}\right) \right).$

Theorem 3.2. *For* $r \ge 3$ *, if the equality*

$$\Delta_{2,t}(c - \Delta_r) = 2(-1)^t \prod_{i=2}^{t+1} b_i \Delta_{t+2,r}, \quad 1 \le t \le r-1$$

holds for some t then

$$i.v_{nr+t} = \Delta_{2,t} d^n T_n \left(\frac{\Delta_r - c}{2d}\right)$$
$$ii..v_{nr+t} = 2^{n-1} d^n \Delta_{2,t} \prod_{k=1}^n \left(\frac{\Delta_r - c}{2d} - \cos\left(\frac{(2k-1)\pi}{2n}\right)\right).$$

Proof. We can obtain the following connection by using Lemma 2.1:

$$v_{nr+t} = \Delta_{2,t} d^{n} U_{n} \left(\frac{\Delta_{r} - c}{2d} \right) + (-1)^{t} \prod_{i=2}^{t+1} b_{i} \Delta_{t+2,r} d^{n-1} U_{n-1} \left(\frac{\Delta_{r} - c}{2d} \right)$$

= $d^{n} \Delta_{2,t} \left(U_{n} \left(\frac{\Delta_{r} - c}{2d} \right) + \frac{(-1)^{t} \prod_{i=2}^{t+1} b_{i} \Delta_{t+2,r}}{d\Delta_{2,t}} U_{n-1} \left(\frac{\Delta_{r} - c}{2d} \right) \right).$

Also, if we substitute the equality

$$\Delta_{2,t}(c - \Delta_r) = 2(-1)^t \prod_{i=2}^{t+1} b_i \Delta_{t+2,r} \quad 1 \le t \le r-1,$$

on the statement of theorem in the above equation, we obtain

$$v_{nr+t} = d^n \Delta_{2,t} \left(U_n \left(\frac{\Delta_r - c}{2d} \right) - \frac{\Delta_r - c}{2d} U_{n-1} \left(\frac{\Delta_r - c}{2d} \right) \right).$$

Now, if we use the well known identity $T_n(x) = U_n(x) - xU_{n-1}(x)$ in the last equation, we get the part (i) of the theorem:

$$v_{nr+t} = d^n \Delta_{2,t} T_n \left(\frac{\Delta_r - c}{2d} \right).$$

Now, by using Equation (2), that is the complex factorization of Chebyshev polynomials of first kind we get the part (ii) of the theorem as follow:

$$v_{nr+t} = d^n \Delta_{2,t} T_n \left(\frac{\Delta_r - c}{2d} \right)$$

= $2^{n-1} d^n \Delta_{2,t} \prod_{k=1}^n \left(\frac{\Delta_r - c}{2d} - \cos\left(\frac{(2k-1)\pi}{2n} \right) \right).$

•

Example 3.3. Let us consider the following 3-periodic sequence $\{v_n\}$

$$v_n = \begin{cases} -7v_{n-1} + 6v_{n-2}, & \text{if } n \equiv 0 \pmod{3}, \\ 3v_{n-1} - 2v_{n-2}, & \text{if } n \equiv 1 \pmod{3}, \\ v_{n-1} + v_{n-2}, & \text{if } n \equiv 2 \pmod{3}. \end{cases}$$

A few terms of the sequence $\{v_n\}$ are $\{0, 1, 1, -1, -5, -6, 12, 48, 60, -132, -516, -648, 1440...\}$ and we have $r = 3, a_0 = -7, a_1 = 3, a_2 = 1 = b_2, b_0 = 6$ and $b_1 = -2$. We want to get the complex factorization of $\{v_{3n+2}\}$ by using Theorem 3.2. By using the definitions from Section 2, we get

$$\Delta_3 = \begin{vmatrix} a_2 & 1 & 1 \\ -b_0 & a_0 & 1 \\ -b_2 & -b_1 & a_1 \end{vmatrix} = -25, \quad \Delta_{2,2} = \Delta_{4,3} = 1,$$
$$b = (-1)^3 b_0 b_1 b_2 = 12, \quad d = \sqrt{b} = 2\sqrt{3}, \quad c = (-1)^3 \left(b_2 + \frac{b}{b_2}\right) = -13$$

For t = 2, since

$$\begin{split} \Delta_{2,t} \left(c - \Delta_r \right) &- 2 \left(-1 \right)^t \prod_{i=2}^{t+1} b_i \Delta_{t+2,r}, &= \Delta_{2,2} \left(c - \Delta_3 \right) - 2 \left(-1 \right)^2 \prod_{i=2}^3 b_i \Delta_{4,3} \\ &= 1. \left(-13 + 25 \right) - 2.1.b_2 b_3.1 \right) \\ &= 12 - 2.b_2 b_0 \\ &= 0, \end{split}$$

the condition of Theorem 3.2 is satisfied. So, if we use Theorem 3.2, we obtain

$$v_{3n+2} = \Delta_{2,t} d^n T_n \left(\frac{\Delta_r - c}{2d}\right) = \Delta_{2,2} (2\sqrt{3})^n T_n \left(\frac{\Delta_3 - (-13)}{4\sqrt{3}}\right) = (2\sqrt{3})^n T_n (-\sqrt{3}).$$

and we get the complex factorization

$$\begin{aligned} v_{3n+2} &= 2^{n-1} d^n \Delta_{2,t} \prod_{k=1}^n \left(\frac{\Delta_r - c}{2d} - \cos\left(\frac{(2k-1)\pi}{2n}\right) \right) \\ &= \Delta_{2,2} 2^{n-1} d^n \prod_{k=1}^n \left(\frac{\Delta_3 - c}{2d} - \cos\left(\frac{(2k-1)\pi}{2n}\right) \right) \\ &= \Delta_{2,2} 2^{n-1} (2\sqrt{2})^n \prod_{k=1}^n \left(\frac{-25+13}{4\sqrt{2}} - \cos\left(\frac{(2k-1)\pi}{2n}\right) \right) \\ &= 2^{(5n-2)/2} \prod_{k=1}^n \left(\frac{-3}{\sqrt{2}} - \cos\left(\frac{(2k-1)\pi}{2n}\right) \right). \end{aligned}$$

4. The Binomial Sum for the sequence $\{v_n\}$

Theorem 4.1. For r > 3, $\{v_{nr}\}$ can be defined in terms of sums

$$v_{nr} = \Delta_{2,r} d^{n-1} \sum_{j=0}^{[(n-1)/2]} (-1)^j \binom{n-1-j}{j} \left(\frac{\Delta_r - c}{2d}\right)^{n-1-2j} d^{n-1-2j} d^{n-$$

Proof. We have the connection

$$v_{nr} = \Delta_{2,r} d^{n-1} U_{n-1} \left(\frac{\Delta_r - c}{2d} \right)$$

by Lemma 2.1. If we make a substitution using (5) in this connection, we obtain the desired result

$$v_{nr} = \Delta_{2,r} d^{n-1} \sum_{j=0}^{[(n-1)/2]} (-1)^j \binom{n-1-j}{j} \left(\frac{\Delta_r - c}{2d}\right)^{n-1-2j}.$$

We can get the binomial sum for the sequence $\{v_{3n}\}$ in the Example 2.2 as an example:

Example 2.2 (continued). Bu using Theorem 4.1, we can write the sequence $\{v_{3n}\}$ in terms of sums as follow:

$$v_{nr} = \Delta_{2,r} d^{n-1} \sum_{j=0}^{[(n-1)/2]} (-1)^{j} {\binom{n-1-j}{j}} \left(\frac{\Delta_{r}-c}{2d}\right)^{n-1-2j}$$

$$= \Delta_{2,3} 2^{n-1} \sum_{j=0}^{[(n-1)/2]} (-1)^{j} {\binom{n-1-j}{j}} \left(\frac{\Delta_{3}-4}{4}\right)^{n-1-2j}$$

$$= 2^{n+1} \sum_{j=0}^{[(n-1)/2]} (-1)^{j} {\binom{n-1-j}{j}} 2^{n-1-2j}.$$

REFERENCES

- D. Aharonov, A. Beardon and K. Driver, Fibonacci, Chebyshev, and Orthogonal Polynomials, The American Mathematical Monthly, Vol. 112 (2005), No. 7, 612– 630.
- [2] N. Cahill, D. Derrico and J. R. Spence, J. P., Complex factorizations of the Fibonacci and Lucas numbers, Fibonacci Quart. 41 (2003), 13-19.
- [3] C. Cooper and R. Parry Jr., Factorizations of some periodic linear recurrence systems, The Eleventh International Conference on Fibonacci Numbers and Their Applications, Germany, July 2004.
- [4] M. N. de Jesus and J. Petronilho, On orthogonal polynomials obtained via polynomial mappings, J. Approx. Theory 162 (2010), 2243-2277.
- [5] Song Pyo Jun, Complex factorization of the generalized fibonacci sequences $\{q_n\}$, Korean J. Math. 23 (2015), no. 3, 371–377.

- [6] Russell Hendel and Charlie Cook, Recursive properties of trigonemetric products, App. of Fib. Numbers (1996), 6, 201–214.
- [7] D. Panario, M. Sahin and Q. Wang, A family of Fibonacci-like conditional sequences, INTEGERS Electronic Journal of Combinatorial Number Theory, Second Revision, 2012.
- [8] J. Petronilho, Generalized Fibonacci sequences via ortogonal polynomials, Applied Mathematics and Computation, 218 (2012), 9819–9824.
- [9] T.J. Rivlin, The Chebyshev Polynomials-From Approximation Theory to Algebra and Number Theory, Wiley-Interscience, John Wiley, 1990.
- [10] E. Weisstein, Chebyshev Polynomial of the First Kind, From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html
- [11] E. Weisstein, Chebyshev Polynomial of the Second Kind, From MathWorld–A Wolfram Web Resource, http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html

MURAT SAHIN Department of Mathematics, Science Faculty Ankara University e-mail: msahin@ankara.edu.tr

ELIF TAN Department of Mathematics, Science Faculty Ankara University e-mail: etan@ankara.edu.tr

> SEMIH YILMAZ Department of Actuarial Science Kirikkale University e-mail: syilmaz@kku.edu.tr