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ON THE PRINCIPALLY POLARIZED ABELIAN VARIETIES
WITH M-MINIMAL CURVES

SHIN-YAO JOW - ADRIEN SAUVAGET - HACEN ZELACI

In this paper, we study principally polarized abelian varieties X of di-
mension g with a curve ν : C → X such that the class of C is m times
the minimal class. In [11], Welters introduced the formalism of com-
plementary pairs to handle this problem in the case m = 2. We general-
ize the results of Welters and construct families of principally polarized
abelian varieties for any m and compute the dimension of the locus of
these abelian varieties.

1. Introduction

Let g > 0, we will denote byAg the moduli space of complex principally polar-
ized abelian varieties (ppav). In order to study the geometry of Ag, a classical
approach is to construct a stratification using moduli spaces of curves. The first
stratum is the locus of Jacobians, which is isomorphic to the moduli space of
curves by the Torelli theorem, which is contained in the closure of the Prym lo-
cus obtained from the space of unramified coverings of degree two. For example
the spaceA5 is uniformized by the space of degree two unramified coverings of
a genus 6 curve (see [5] and [2]). However, the Jacobian locus has dimension
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3g− 3 and the Prym locus has dimension 3g while the space Ag has dimen-
sion g(g+1)

2 . Thus, the Jacobian and Prym loci will provide a high codimensions
subspaces when g becomes big.

Other constructions using spaces of coverings with more general groups of
monodromy have been extensively studied (see [7] or [6]); recently this has lead
to the uniformization of A6 (see [1]).

In order to stratify the moduli space Ag, one can generalize the Jacobian
and Prym loci. A Prym-Tjurin variety of exponent m is a principally polar-
ized abelian variety (X ,Θ) of dimension g such that X is an abelian subvariety
of the Jacobian JN of some genus g smooth projective curve N, and such that
the restriction of the principal polarisation of JN to X is equivalent to mΘ. In
particular, if ν : N→ X is the attached map, we have

ν∗[N] = m.
Θg−1

(g−1)!
.

We will often denote by z = Θg−1

(g−1)! the minimal class. Note that this class is not
divisible.
The important point to remark is that, by results of Welters, the existence of
m−minimal curves is related with the theory of Prym-Tjurin varieties, and
moreover, any ppav is a Prym-Tjurin variety for a certain exponent m.

Complementary pairs. In [11], Welters proposed a slightly more general ver-
sion of the Prym-Tjurin varieties. A ppav will be called m-minimal if there exists
a curve ν : C→ X such that ν∗([C]) is m times the minimal class; we will say
that the curve C is m-minimal. The interesting point is that we can reformulate
this property using the theory of complementary pairs. If X is ppav, we will
denote by λX : X → X̂ the morphism induced by the polarization. Let N be a
smooth curve. Then the following two sets of data are equivalent:

1. A ppav (X ,Θ) and a morphism ν : N→ X such that ν∗([N]) = m · z.

2. An abelian subvariety B of JN and a finite subgroup H ⊂ JN, such that,
if λB is the induced polarization on B by the principal polarization λN of
JN then:

(a) kerλB ⊂ H ⊂ Bm (m−torsion points of B).

(b) H is maximal totally isotropic subgroup of Bm.

We describe a little bit more the construction from 2 to 1. Let N be a smooth
curve and B a subvariety satisfying the conditions of 2. Let A⊂ JN be obtained
by the dual exact sequence:
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0 // ĴN/B // ĴN = JN // B̂ // 0

0 // A //

'

OO

JN //

'λN

OO

JN/A

'

OO

// 0.

Thus we get a couple (A,B) of abelian subvarieties of JN satisfying A∩B =
kerλB = kerλA. This pair is called a complementary pair. All the statements
that follow will be valid if we exchange the roles of A and B.

We denote by µB : B̂→B the polarization dual to λB. We have λB◦µB = [m]B
and the following sequence is exact

0→ kerλB→ Bm→ ker µB→ 0.

In particular, in the condition 2, we can replace the datum of H a maximal
totally isotropic (m.t.i.) subgroup of Bm containing ker(λB) by the choice of a
m.t.i. subgroup K of ker µB.

We denote by τ the natural isogeny from A×B→ JN which maps (a,b) to
a+b. The kernel of τ is given by {(x,−x),x ∈ A∩B}. We define j : JN→ JN
the unique morphism which makes the following diagram commutative

JN
j // JN

A×B

τ

OO

(
1 0
0 1−m

)// A×B.

τ

OO

Then A = Im( j+m−1) = ker(1− j)0 and B = Im(1− j) = ker( j+m−1)0 (we
can permute the roles of A and B by taking j′ = m− 2− j). The morphism j
satisfies the classical Prym-Tjurin property ( j−1)( j−m+1) = 0.

With this set-up, the variety X will be defined as B̂/K ' (JN/A)/K and the
map ν from N to X is given by the composition of maps

N→ JN→ JN/A→ (JN/A)/K.

The abelian variety X is principally polarized because K is totally isotropic. We
denote by u the map from JN to X and by ut = λ

−1
N ◦ u∗ ◦ λX . Then we have

uut = [m]. The class of N in JN is the minimal class of JN, therefore the class
ν∗([N]) is equal to m times the minimal class.

Case m = 2. We have three different constructions in the case m = 2.

1. Quotients of Jacobians. We take B = JN and H is any maximal isotropic
subgroup of JN2.
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2. Quotients of Prym varieties. Let π : N → N0 be a double covering. We
denote by π∗ : JN0 → JN and by Nmπ (or simply Nm if the context is
clear) the norm map associated to π . Moreover, the covering comes with
an involution ι : N→ N. Then by taking B = ker(Nm)0 (the neutral com-
ponent) the Prym variety attached to π , A = π∗(JN0) and j = ι∗ we get an
m-minimal curve by choosing a m.t.i. subgroup of ker(µB). In this case
the map µB is the map JN/π∗J0→ B induced by 1− j

3. Quotient of pull-back of Jacobians. This construction is obtained by ex-
changing the roles of A and B. In this case B = π∗(JN0) and µB is induced
by 1+ j. Now ker(µB) is non-trivial if and only if π is unramified. In
which case ker(µB) ' (Z/mZ)2 thus the maximal isotropic are isomor-
phic to Z/mZ and X can be explicitely described.

Welters proved that any 2-minimal ppav is of one of the three above types.

Statement of the results. The current paper has two purposes. The first one
is to compute the dimension of loci defined by Welters in the case m = 2.

Proposition 1.1. The dimension of the locus of 2-minimial ppav arising from
cases (1) and (3) is 3g− 3, and for case (2), the dimension is equal to the
dimension of the Hurwitz space classifying double coverings. In particular the
dimension of the locus of 2-minimal ppav in Ag is 3g (obtained from the Prym
varieties of unramified coverings).

The second purpose is to study the generalization of these three families of
m-minimal ppav for m ≥ 3. Two important questions about m-minimal ppav
arise:

1. Compute the dimension of the locus of m-minimal varieties in Ag.

2. Fixing m and g, what are the bound on the geometric genus of N if we
assume that the image of N is irreducible? For m= 1, Matsusaka criterion
(see [9]) implies that g(N) = g. For m = 2, the classification of 2-minimal
curves (see [11]) implies that g≤ g(N)≤ 2g+1 and that these bounds can
be realized. For general m, the lowest bound is g (and we will provide
examples). However the existence (and the value) of an upper bound is
still open even for m = 3. We expect this upper bound to take the form
g+(g,m) = mg+P(m) where P is a polynomial.

We will prove the following

Theorem 1. For any m, there exists (3g−3)-dimensional families of m-minimal
ppav of dimension g such that the geometric genus of the curve is given by g (see
Section 2) and mg−m+1 (see Section 3).
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The dimension of these families should be far from the dimension of the lo-
cus of m-minimal ppav. However, these families provide an inequality g+(g,m)≥
mg−m+1 (which is close to the expected one for big values of g).

Acknowledgement We would like to thank Juan Carlos Naranjo for having
proposed this subject and for his many helpful advices. We are very grateful to
Vı́ctor González-Alonso for his help all along the work. Finally we would like
to thank Alfio Ragusa, Francesco Russo and Giuseppe Zappalà, the organizers
of the school PRAGMATIC, for having created the environment for the present
work.

2. Quotient of Jacobians

LetMg be the moduli space of smooth curves of genus g. The Torelli map as-
sociates to an element [C] ∈Mg the class of the Jacobian JC in Ag. The Torelli
map is injective. Moreover it is an immersion outside the locus of hyperelliptic
curves.

Let C be a smooth curve of genus g. Let K ⊂ JCm be a m.t.i subgroup of JC
with respect to the Riemann bilinear form on JCm (the m torsion point of JC).
Then the quotient JC/K is a ppav and the composition C ↪→ JC→ X gives an
m-minimal curve of X .

Lemma 2.1. For all [C] ∈Mg the map f : C→ X is generically injective.

Proof. Assume that f : C → X is not generically injective. Denote by C̃ the
reduced image of f in X . Then f is a covering (possibly ramified) on C̃, hence
the genus of the normalisation of C̃ is strictly smaller than g(C). On the other
hand, by definition, JC−→ X is an isogeny, it follows that the curve C̃ generates
X (as a group). So the genus of the normalisation of C̃ is at least dim(X), a
contradiction.

Let g > 0. Let δ = (d1, . . . ,dg) be a polarization type. We will denote by
Aδ

g the moduli of abelian varieties with polarization of type δ . We define the
following moduli space

Definition 2.2. Let g > 0 and δ be a polarization type. For m > 0, we define
Aδ

g,m to be the moduli space of pairs (X ,K) where X is an abelian variety of
dimension g with polarization type δ and K is a m.t.i. of the group of m-torsion
points.

The forgetful map Aδ
g,m →Aδ

g which maps (X ,K) to X is étale. Thus we

have dim(Aδ
g,m) =

g(g+1)
2 . We have also
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Proposition 2.3. Let f : Aδ
g,m →Ag be the map which sends a pair (X ,K) to

the quotient X/K. The map f is finite.

Proof. Since the map is projective, it is sufficient to prove that the fibers are fi-
nite. Let (X ,K) and (Y,L) be two elements ofAδ

g,m such that X/K ∼=Y/L. Then
the composition f : X → X/K→ Y/L is an isogeny of degree |K|. Composing
this with the inverse isogeny Y/L→Y ([3], Proposition 1.2.6) which has degree
equals the e(L)2g/|L|, where e(L) is the exponent of the finite group L, we get
an isogeny X→Y . Moreover, this isogeny has degree |K| ·e(L)2g/|L|. Since the
cardinals of K and L are bounded above, and because that there are finitely many
(modulo isomorphism) étale coverings of a given degree of any fixed abelian va-
riety, it follows that, for a fixed (X ,K), there exists a finite number of elements
(Y,L) ∈ Aδ

g,m such that X/K ∼= Y/L.

Applied to the principally polarized abelian varieties, the dimension of the
locus of m-minimal abelian varieties defined by a pair (JC,K) is the same as the
dimension of the Jacobian locus, thus 3g−3.

3. Quotient of pull-back of Jacobians

Let π : N → N0 be a finite map of degree m between smooth projective curves
N and N0. Let A = (kerNm)0 and B = π∗JN0. Then (A,B) is a complementary
pair in JN with A∩B ⊂ JNm. By Welters construction [11, Proposition 1.17],
given a maximal totally isotropic subgroup K of ker µB, one obtains a ppav
X = B′/K (where B′ = JN/A ∼= B∨) together with a morphism v : N→ X such
that v∗[N] = mz, where

z = Θ
dimX−1/(dimX−1)!

is the minimal class. The following proposition describes those ppav X obtained
in this way such that the morphism v : N→ X is birational onto its image.

Proposition 3.1. With notations as above, the following statements hold.

(a) Suppose that m is prime. If the morphism v : N → X is birational onto
its image, then π : N → N0 is an unramified cyclic cover. Moreover, let
η ∈ (JN0)m be the m-torsion line bundle on N0 attached to π . Then X ∼=
JN0/[m]−1〈η〉, where 〈η〉 is the subgroup generated by η in JN0, and
[m]−1〈η〉 is its preimage under the morphism [m] : JN0→ JN0.

(b) Conversely, let m be any positive integer, η be any nontrivial m-torsion line
bundle on N0, and let π : N = Spec(ON0 ⊕η−1)→ N0 be the unramified
cyclic cover associated to η . Then there exists a maximal totally isotropic
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subgroup K of ker µB such that v : N → X is birational onto its image and
X ∼= JN0/[m]−1〈η〉.

Before the proof, we first give an elementary algebra lemma.

Lemma 3.2. Let V be a real vector space, and let Γ ⊂ V be a lattice. Let ω

be a non-degenerate alternating bilinear form on V which is integral on Γ. Let
Λ= {v∈V |ω(v,γ)∈Z for all γ ∈Γ}. Assume that the quotient group Λ̄=Λ/Γ

is isomorphic to (Z/mZ)2 for some positive integer m.

(a) If ϕ : (Z/mZ)2 → Λ̄ is a group isomorphism, then the subgroup 〈ϕ(1,0)〉
in Λ̄ generated by the element ϕ(1,0) is a maximal isotropic subgroup of Λ̄

with respect to the alternating (multiplicative) bilinear form

e2iπω(·,·) : Λ̄× Λ̄→ C∗.

(b) If m is prime, then the maximal isotropic subgroups of Λ̄ with respect to
e2iπω(·,·) are precisely all the nonzero cyclic subgroups of Λ̄.

Proof. (a) By [4, Proposition 6.1], there exists a basis {γ1,γ
′
1, . . . ,γg,γ

′
g} for Γ

such that ω(γi,γ j) = ω(γi,γ
′
j) = 0 for all i 6= j, and if we let mi = ω(γi,γ

′
i ), then

m1 | m2 | · · · | mg. One sees that {γ1/m1,γ
′
1/m1, . . . ,γg/mg,γ

′
g/mg} is a basis for

Λ, and Λ̄ ∼= (Z/m1Z)2×·· ·× (Z/mgZ)2. Since Λ̄ ∼= (Z/mZ)2 by assumption,
m1 = · · · = mg−1 = 1 and mg = m. Hence {γg/m,γ ′g/m} is a basis for Λ̄. Since
{ϕ(1,0),ϕ(0,1)} is also a basis for Λ̄, there exist integers a,b,c,d such that

ϕ(1,0) = aγg/m+bγ
′
g/m, ϕ(0,1) = cγg/m+dγ

′
g/m,

and ad − bc is relatively prime to m. Suppose that there exists a subgroup
〈ϕ(1,0)〉 ( G ⊂ Λ̄ which is isotropic with respect to e2iπω(·,·). Since G )
〈ϕ(1,0)〉, G contains ϕ(0,n) for some positive integer n | m, n 6= m. Since
G is isotropic with respect to e2iπω(·,·), ω(ϕ(1,0),ϕ(0,n)) ∈ Z. But

ω(ϕ(1,0),ϕ(0,n)) = ω(aγg/m+bγ
′
g/m,ncγg/m+ndγ

′
g/m) = n(ad−bc)/m,

which is not an integer and thus a contradiction.
(b) If m is prime, then Λ̄∼= (Z/mZ)2 is a two-dimensional vector space over

the finite field Z/mZ, and the subgroups of Λ̄ coincide with its vector subspaces.
Hence proper nonzero subgroups of Λ̄ are the same as its one-dimensional vec-
tor subspaces, which are the same as its nonzero cyclic subgroups, and these are
all obviously isotropic.
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Proof of Proposition 3.1. We have the following commutative diagram of mor-
phisms between abelian varieties. All the maps with labels, as well as the quo-
tient map B′→ B′/K = X , are isogenies. The central vertical morphism Nm is
induced from the norm map Nm: JN→ JN0. From the obvious fact Nm◦π∗ =
m, we get the commutativity of the central triangle NmλBπ∗ = [m]. This in
turn implies that π∗NmλBπ∗ = π∗[m] = [m]π∗, and since π∗ is an isogeny,
π∗NmλB = [m]. Hence π∗Nm = µB by the definition of µB.

JN // JN/(kerNm)0

JN0
π∗ //

[m]
**

π∗JN0 = B
λB //

?�

OO

B′ //

µB

��

Nm
��

B′/K = X

JN0

π∗

��
π∗JN0 = B

The central horizontal row of the diagram gives X ∼= JN0/(λBπ∗)−1(K). Also
from the diagram we have (λBπ∗)−1(K) = [m]−1

(
Nm(K)

)
. Hence

X ∼= JN0/[m]−1(Nm(K)
)
.

By [3, Proposition 11.4.3], if m is prime then

ker(π∗ : JN0→ JN)=

〈η〉,
if π : N = Spec(ON0 ⊕η−1)→ N0 is an unrami-
fied cyclic cover defined by η ∈ (JN0)m;

0, otherwise.

If ker(π∗ : JN0→ JN) = 0, then ker(Nm: JN→ JN0) is connected since π∗ =
Nm∨. This means that the two vertical maps Nm: B′ → JN0 and π∗ : JN0 →
π∗JN0 in the commutative diagram are isomorphisms, so their composition µB

is also an isomorphism. Hence K = ker µB = 0. It follows that X =B′∼= JN0, and
the map v : N→ X is the composition of the Abel-Jacobi map N ↪→ JN followed
by the norm map Nm: JN→ JN0 = X . But this v is clearly non birational onto
its image since it factorizes through π : N → N0. Hence if m is prime and v is
birational onto its image, then π : N→ N0 must be an unramified cyclic cover.

Let m be any positive integer, η be any nontrivial m-torsion line bundle
on N0, and let π : N = Spec(ON0 ⊕η−1)→ N0 be the unramified cyclic cover
associated to η . Then there is an automorphism σ of N of order m such that
N0 = N/〈σ〉. The kernel of the norm map Nm: JN → JN0 has m connected
components P0, . . . ,Pm−1, where

P̀ = {ON
(
∑ni(xi−σ(xi))

)
| xi ∈ N, ni ∈ Z, ∑ni ≡ ` (mod m)}.
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Hence ker(Nm : B′ = JN/P0 → JN0) = {P0, . . . ,Pm−1} is a cyclic group of or-
der m generated by P1. Since µB = π∗Nm, and kerπ∗ = 〈η〉 is also a cyclic
group of order m, ker µB ∼= (Z/mZ)2. More precisely, pick any ξ ∈ JN such
that Nm(ξ ) = η , and denote by ξ̄ its image in B′ = JN/P0. Then an isomor-
phism (Z/mZ)2 → ker µB can be defined by sending (1,0) to ξ̄ and (0,1) to
P1.

Let K be a maximal totally isotropic subgroup of ker µB. We want to find
the conditions such that the morphisms v : N → X is birational onto its image.
Recall that v : N→ X is the composition

v : N ↪→ JN→ JN/P0 = B′→ B′/K = X

of the Abel-Jacobi map N ↪→ JN followed by the quotient maps. So for two
distinct points x,y ∈ N, since K ⊂ ker µB = 〈ξ̄ ,P1〉, we have

v(x) = v(y) =⇒ ON(x− y) ∈ 〈P0,ξ ,P1〉 in JN

=⇒ ON0

(
π(x)−π(y)

)
= Nm

(
ON(x− y)

)
∈ 〈η〉

=⇒ ON
(
π
−1(π(x))−π

−1(π(y))
)
= π

∗ON0

(
π(x)−π(y)

)
= 0.

If v is not birational onto its image, then for all but finitely many points x ∈
N, there exists y ∈ N different from x such that the divisors π−1(π(x)) and
π−1(π(y)) are linear equivalent. If π(x) 6= π(y) then π−1(π(x)) and π−1(π(y))
generate a g1

m on N. This can only happen for at most finitely many x, for
otherwise the g1

m consists of fibers of π : N → N0 and N0 ∼= P1. Hence π(x) =
π(y), i.e. y = σ `(x) for some ` ∈ Z/mZ. Since

ON(x− y) =ON
(
x−σ

`(x)
)
=ON

(`−1
∑

i=0
σ i(x)−σ i+1(x)

)
=ON

(`−1
∑

i=0
σ i(x)−σ

(
σ i(x)

))
∈ P̀ ,

the imageON(x− y) ofON(x−y) in B′ = JN/P0 is equal to P̀ = `P1. It follows
that v(x) = v(y) in X = B′/K if and only if `P1 ∈ K in B′. Hence

v is birational onto its image ⇐⇒ `P1 /∈ K for all ` 6= 0.

To finish the proof of Part (a), if m is prime, maximal isotropic subgroups K
of ker µB are cyclic by Lemma 3.2. So if moreover v is birational onto its image,
then K = 〈aξ̄ +bP1〉 for some integers a and b with m - a, and hence

X ∼= JN0/[m]−1(Nm(K)
)
= JN0/[m]−1〈η〉.
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As for Part (b), given any integer m > 0 and any nontrivial m-torsion line
bundle η on N0, pick any ξ ∈ JN such that Nm(ξ ) = η , and let K = 〈ξ̄ 〉. Then
K is a maximal totally isotropic subgroup of ker µB by Lemma 3.2, and this
choice of K makes v : N → X birational onto its image and X isomorphic to
JN0/[m]−1〈η〉.

If N0 is a curve of genus g, and π : N → N0 is an unramified cyclic cover
of degree m, then the genus of N is mg−m+1. So Proposition 3.1 implies the
following

Corollary 3.3. For any integers m > 0 and g > 1, the locus of ppav with an
m-minimal curve of genus mg−m+1 is at least 3g−3.

Proof. Let M1/m
g be the moduli space of pairs (N0,L) where N0 is a smooth

curve of genus g and L is a line bundle such that L⊗m ' OC. The datum of a
point in M1/m

g is equivalent to the datum of a cyclic étale covering of N0 of
degree d. The spaceM1/m

g is of dimension 3g−3.
The moduli space has several connected components indexed by the divisors

of m: indeed, if d|m we have a natural closed inclusion of M1/d
g into M1/m

g

corresponding to étale coverings which factors through a covering of degree d.
Let M̃1/m

g be the connected component corresponding to pairs (N0,L) such
that: L⊗d 6= ON0 for all d|m and d 6= m. We recall that the Torelli map is
generically an immersion. Therefore the composition of maps from M̃1/m

g to
Ag,(1,m,...,m)

(N0,L) 7→ (JN0,L) 7→ JN0/〈L〉= π
∗JN0

keeps the dimensions. The dual map A→ Â from Ag,(1,m,...,m) to Ag,(1,...,1,m) is

étale. Therefore the map which associates JN/P to (N0,L) ∈ M̃1/m
g keeps the

dimension. Finally using Proposition 2.3, the map which associates to (X ,K)
the ppav X/K where K is a m.t.i. subgroup of Xm is finite.

Therefore the locus of abelian varieties with an m-minimal curve of genus
mg−m+1 is at least 3g−3.

4. Quotient of Prym varieties

The last category of examples has been extensively studied. Let r be a pos-
itive integer such that m|r. We denote M1/m

g be the moduli space of objects
(C,x1, . . . ,xr,L) where C is smooth curves with markings and L is line bundle
satisfying L⊗m 'OC(−x1 . . .−xr): this is also the moduli space of simply ram-
ified cyclic coverings of a curve of genus g.
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Let (N0→ N) be a point inM1/m
g,r , then the Prym variety associated to this

map is equal to (kerNm)0. Let K be a m.t.i. subgroup of the kernel ker(µP̂),
where µP̂ is the induced polarization on the dual of P. The quotient P̂/K is

ppav with m-minimal curve. In [8] the authors proved that the map M1/m
g,r →

Am(g−1)+1+r/2,δ is generically finite if (g,m,r) are of the following types:

• g≥ 2 and r ≥ 6 for m even or r ≥ 7 for m odd,

• g≥ 3 and m = r = 4 or 5 or (m,r) = (2,4) or (3,6),

• g≥ 5 and m = r = 2 or 3.

Because the dual map and the quotient by m.t.i. keeps the dimensions we have
that the locus obtained by this construction is of the same dimension asM1/m

g,r
in all above cases.

In particular the dimension of the locus of m-minimal abelian varieties in
Ag that we obtain with this construction is at most 2(g−1+m)−3. Moreover,
with this construction, the genus of an m-minimal curve is at most 2g+1.
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